The thermo-magnetic quark-gluon vertex

Similar documents
with IMC Hao Liu Institute of High Energy Physics, CAS UCLA collaboration with Mei Huang and Lang Yu

Landau Levels in Lattice QCD in an External Magnetic Field

QCD in an external magnetic field

arxiv: v2 [hep-ph] 13 Sep 2017

QCD Thermodynamics at Intermediate Coupling. Nan Su. Frankfurt Institute for Advanced Studies

Quarks and gluons in a magnetic field

Workshop on Magnetic Fields in Hadron Physics ICTP/SAIFR - São Paulo, BR May 9-13, List of Abstracts

QCD in magnetic fields: from the butterfly to the phase diagram. Gergely Endrődi

QCD at finite Temperature

A study of π and ρ mesons with a nonperturbative

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

Electric Screening Mass of the Gluon with Gluon Condensate at Finite Temperature

Chiral Symmetry Breaking. Schwinger-Dyson Equations

Finite Temperature Field Theory

M. Sc. Physics ( ) From Gomal University, D. I. Khan (K. P. K), Pakistan.

Finite-temperature Field Theory

The Role of the Quark-Gluon Vertex in the QCD Phase Transition

Reorganizing the QCD pressure at intermediate coupling

El deposito de energia-mometo por partones rapidos en un plasma de quarks y gluones. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Non Fermi liquid effects in dense matter. Kai Schwenzer, Thomas Schäfer INT workshop From lattices to stars Seattle,

Richard Williams. Hèlios Sanchis-Alepuz

The phases of hot/dense/magnetized QCD from the lattice. Gergely Endrődi

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Chemical composition of the decaying glasma

Dual and dressed quantities in QCD

Introduction to Elementary Particle Physics I

QCD Phase Diagram and the Constant Mass Approximation

The Chiral Magnetic Effect: Measuring event-by-event P- and CP-violation with heavy-ion collisions Or from

QCD at finite density with Dyson-Schwinger equations

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Dimensional reduction near the deconfinement transition

Based on work in progress in collaboration with: F. Scardina, S. Plumari and V. Greco

Particle Physics I Lecture Exam Question Sheet

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

Universe Heavy-ion collisions Compact stars Dirac semimetals, graphene, etc.

Energy-momentum tensor correlators in hot Yang-Mills theory

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

arxiv: v1 [hep-lat] 19 Feb 2012

arxiv: v1 [hep-ph] 24 Oct 2012

Polyakov Loop in a Magnetic Field

Top quark effects in composite vector pair production at the LHC

Landau Levels in QCD in an External Magnetic Field

Quantum Field Theory 2 nd Edition

Q Q dynamics with external magnetic fields

The time evolution of the quark gluon plasma in the early Universe

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Tercera Sesión. XI Escuela de Física Fundamental. Universidad Veracruzana, Xalapa. 28 de Septiembre de 2016

Modelling Early Time Dynamics of Relativistic Heavy Ion Collisions

Lecture 11 Perturbative calculation

Transport theory and low energy properties of colour superconductors

The chiral transition in a magnetic background - finite density effec

Strongly interacting matter under external magnetic fields within nonlocal NJL-type models

arxiv: v2 [hep-ph] 5 Sep 2016

QCD at finite density with Dyson-Schwinger equations

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Heavy Quarks in Heavy-Ion Collisions

On bound states in gauge theories with different matter content

TMDs in covariant approach

Introduction to particle physics Lecture 6

Nuclear Matter between Heaven and Earth: The QCD Phase Diagram

QCD Factorization and PDFs from Lattice QCD Calculation

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Spectral Properties of Quarks in the Quark-Gluon Plasma

Chirality: from QCD to condensed matter

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Lecture 10. September 28, 2017

arxiv: v1 [hep-lat] 26 Dec 2009

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Lecture 3 (Part 1) Physics 4213/5213

PAPER 305 THE STANDARD MODEL

The QCD phase diagram at low baryon density from lattice simulations

Baryonic Spectral Functions at Finite Temperature

Pions in the quark matter phase diagram

Fluctuations and QCD phase structure

PARTICLE PHYSICS Major Option

Confinement in Polyakov gauge

Partons and waves. Alejandro Ayala*, Isabel Domínguez and Maria Elena Tejeda-Yeomans. December 2, 2012

!onformali" Los# J.-W. Lee D. T. Son M. Stephanov D.B.K. arxiv: Phys.Rev.D80:125005,2009

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-lat] 15 Nov 2016

QED plasma in the early universe

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

A first trip to the world of particle physics

HLbl from a Dyson Schwinger Approach

The non-linear regime of quantum chromodynamics in the context of relativistic heavy-ion collisions

Search for Quark Substructure in 7 TeV pp Collisions with the ATLAS Detector

Equilibration of Scalar Fields in an Expanding System

Hot and Magnetized Pions

Constraining the QCD equation of state in hadron colliders

Lecture II. QCD and its basic symmetries. Renormalisation and the running coupling constant

Introduction to Elementary Particles

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Particle Physics: Introduction to the Standard Model

Transcription:

The thermo-magnetic quark-gluon vertex María Elena Tejeda-Yeomans Departamento de Física, Universidad de Sonora, México in collaboration with A. Ayala (UNAM), J. Cobos-Martínez (UMICH), M. Loewe and R. Zamora (PUC) Workshop on Magnetic Fields in Hadron Physics 9-13 May 2016, ICTP-SAFIR M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 1 / 32

Magnetic fields in heavy-ion collisions M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 2 / 32

Magnetic fields in heavy-ion collisions A. Mocsy, BNL 2007 M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 3 / 32

Magnetic fields in peripheral HICs Y. Zhong, C.-B. Yang, X. Cai, S.-Q. Feng, Adv. High Energy Phys. 2014, 193039 (2014) snn = 62.4 GeV (a), 130 GeV (b), 200 GeV (c), 900 GeV (d) RHIC: (0.1 1)m 2 π, LHC: (10 15)m 2 π, m 2 π 10 19 G M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 4 / 32

Tc /condensate Inverse Magnetic Catalysis G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer, K. K. Szabo, JHEP 02 (2012) 044 G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, A. Schafer, Phys. Rev. D 86, 071502 (2012) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 5 / 32

IMC in NJL and/or QCD Magnetized effective QCD phase diagram A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, R. Zamora Phys.Rev. D92 096011 (2015), Phys.Rev. D92 119905 (2015) Thermo-magnetic strong coupling in the local NJL model A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, Alfredo Raya, J.C. Rojas, C. Villavicencio arxiv:1603.00833 [hep-ph] Finite temperature QGV with a magnetic field in HTL A. Ayala, J.J. Cobos-Martínez, M. Loewe, M. E. T-Y, R. Zamora Phys.Rev. D91 016007 (2015) IMC from QCD coupling in a magnetic field A. Ayala, C.A. Dominguez, L.A. Hernandez, M. Loewe, R. Zamora arxiv:1510.09134 [hep-ph] Study finite temperature and magnetic field dependence of the coupling constant through the QGV M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 6 / 32

Map M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 7 / 32

Map M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 8 / 32

Outline 1 QGV in HTL and weak B 2 Effective coupling from the QGV 3 Final remarks M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 9 / 32

QGV in HTL and weak B QGV at finite temperature with a weak magnetic field A. Ayala., M. Loewe, J. Cobos-Martinez, M. E. T-Y, R. Zamora, Phys. Rev. D 91, 016007 (2015) Set-up for leading B-field dependence of QGV at high T QCD matter in the presence of constant magnetic field B = Bẑ we work in the weak B-field limit for fermion propagator HTL approximation T 2 > qb Notation capital letters, four-momenta in Euclidean space K µ = (k 4, k) = ( ω, k) ω ω n = (2n + 1)πT, ω n = 2nπT the fermion/boson Matsubara frequencies Color factors C F = N2 1 2N, C A = N M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 10 / 32

QGV in HTL and weak B Diagrams at finite temperature A. Ayala., M. Loewe, J. Cobos-Martinez, M. E. T-Y, R. Zamora, Phys. Rev. D 91, 016007 (2015) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 11 / 32

QGV in HTL and weak B Diagrams with magnetic field A. Ayala., M. Loewe, J. Cobos-Martinez, M. E. T-Y, R. Zamora, Phys. Rev. D 91, 016007 (2015) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 12 / 32

QGV in HTL and weak B Charged fermion propagator in a medium The fermion propagator (Schwinger) where the phase factor is S(x, x ) = Φ(x, x ) Φ(x, x ) = exp d 4 p (2π) 4 e ip (x x ) S(k), { x iq dξ [A µ µ + 12 ]} F µν(ξ x ) ν x B-field breaks Lorentz invariance charged fermion prop (k, k ) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 13 / 32

QGV in HTL and weak B Charged fermion propagator in a medium S(k) is given by S(k) = i 0 ds cos(qbs) eis(k2 k2 tan(qbs) m qbs 2 ) { [cos(qbs) + γ 1 γ 2 sin(qbs)] (m + k /) (Euclidean) finite T + weak B up to O(qB) k / } cos(qbs) S(K) = m K K 2 + m 2 iγ m K 1γ 2 (K 2 + m 2 ) 2 (qb). parallel and perpendicular components (a b) = a 0 b 0 a 3 b 3, (a b) = a 1 b 1 + a 2 b 2 M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 14 / 32

QGV in HTL and weak B QGV at finite T and weak qb: QED-like diagram Magnetic field dependent part of the QED-like diagram (factor-out gt a common to the bare and purely thermal) ( δγ (QED-like) µ = ig 2 C F C ) A (qb)t 2 n d 3 k (2π) 3 [ γ ν γ 1 γ 2 K γ µ K (P ] 2 K) + Kγ µ γ 1 γ 2 K (P1 K) (K) (P 2 K) (P 1 K) γ ν where (K) 1 ω 2 n + k 2 + m 2 (K) 1 ω 2 n + k 2 and ω n = (2n + 1)πT and ω n = 2nπT the fermion and boson Matsubara frequencies M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 15 / 32

QGV in HTL and weak B QGV at finite T and weak eb: pure-qcd diagram Magnetic field dependent part of the pure-qcd diagram (factor-out gt a common to the bare and purely thermal) ( ) δγ (pure-qcd) µ = 2ig 2 CA (qb)t d 3 k 2 (2π) 3 n [ Kγ 1 γ 2 K γ µ + 2γ ν γ 1 γ 2 K γ ν K µ γ µ γ 1 γ ] 2 K K (K) 2 (P 1 K) (P 2 K) where (K) 1 ω 2 n + k 2 + m 2 (K) 1 ω 2 n + k 2 ω n = (2n + 1)πT and ω n = 2nπT the fermion and boson Matsubara frequencies M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 16 / 32

QGV in HTL and weak B QGV at finite T and weak eb: tensorial structure γ 1 γ 2 K = γ 5 [(K b)u/ (K u)b/] medium s rest frame u µ = (1, 0, 0, 0) direction of the magnetic field b µ = (0, 0, 0, 1) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 17 / 32

QGV in HTL and weak B QGV at finite T and weak eb: T 2 eb HTL approx: P 1 P 2 T [ γ 1 γ 2 K γ µ K (P ] 2 K) + Kγ µ γ 1 γ 2 K (P1 K) [ γ 1 γ 2 K γ µ K + Kγ µ γ 1 γ 2 K ] (P1 K) Tensorial structure for both diagrams: ( δγ (QED-like) µ = 2iγ 5 g 2 C F C A 2 δγ (pure-qcd) µ = 2iγ 5 g 2 ( CA 2 ) (qb)g (QED-like) µ (P 1, P 2 ) ) (qb)g (pure-qcd) µ (P 1, P 2 ) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 18 / 32

QGV in HTL and weak B QGV at finite T and weak eb: leading T behaviour { G µ (QED-like) G (pure-qcd) µ } = 2T n d 3 k (2π) 3 {(K b) Ku µ (K u) Kb µ + [(K b)u/ (K u)b/] K µ } { (K) 2 (P 1 K) (P 2 K) 2 (K) (P 1 K) (P 2 K) } M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 19 / 32

QGV in HTL and weak B QGV at finite T and weak eb: leading T behaviour Bose-Einstein: f (E) Fermi-Dirac: f (E) G µ (QED-like) = G µ (pure-qcd) Adding the contributions from the two Feynman diagrams we get δγ µ = δγ (QED-like) µ + δγ (pure-qcd) µ = 2i g 2 (qb) C F γ 5 G µ (P 1, P 2 ) G µ (P 1, P 2 ) can be computed from the tensor J αi (α = 1,... 4, i = 3, 4) J αi = T n d 3 k (2π) 3 K αk i 2 (K) (P 1 K) (P 2 K) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 20 / 32

QGV in HTL and weak B QGV at finite T and weak eb: J αi Leading temperature behaviour after frequency sums J αi = 1 dω 16π 2 [h ˆK α ˆK i 1(y) + f 1 (y)] 4π (P 1 ˆK)(P 2 ˆK) Using the high temperature expansions for h 1 (y) and f 1 (y) (Kapusta) h 1 (y) = π 2y + 1 ( y ) 2 ln + 1 4π 2 γ E +... f 1 (y) = 1 ( y ) 2 ln 1 π 2 γ E +... and keeping the leading terms, we get J αi = 1 [ 16π 2 ln(2) π ] T dω ˆK α ˆKi 2 m 4π (P 1 ˆK)(P 2 ˆK) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 21 / 32

QGV in HTL and weak B QGV at finite T and weak eb: leading T behaviour Z 1 dω = 4i g CF M (T, m, qb) γ5 4π (P1 K )(P2 K ) n h i o (K b)6k uµ (K u)6k bµ + (K b)u/ (K u)b/ K µ 2 δγµ (P1, P2 ) 2 where qb πt M (T, m, qb) = ln(2) 16π 2 2m 2 M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 22 / 32

QGV in HTL and weak B QGV at finite T (HTL) and weak eb: QED-like WI In the presence of the magnetic field and provided the temperature is the largest of the energy scales, the thermo-magnetic correction to the quark-gluon vertex is gauge invariant (P1 P2 ) δγ(p1, P2 ) = Σ(P1 ) Σ(P2 ) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 23 / 32

QGV in HTL and weak B Quark self-energy at finite T (HTL) and weak eb Σ(P) = 2i g 2 C F (qb) γ 5 T n { } (K b)u/ (K u)b/ = 2i g 2 C F M 2 (T, m, qb) γ 5 dω 4π d 3 k (2π) 3 (P K) 2 (K) [ ] ( ˆK b)u/ ( ˆK u)b/ (P ˆK) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 24 / 32

g eff from QGV Thermo-magnetic QCD coupling: g q q scenario Thermal gluon decaying into a back-to-back q q pair p 1 and p 2 make a relative angle θ 12 = π What happens to the angular contribution? J αi (P 1, P 2 ) dω 4π ˆK α ˆK i (P 1 ˆK)(P 2 ˆK) M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 25 / 32

g eff from QGV Thermo-magnetic QCD coupling: CM g q q scenario Focus on J αi for α = i = 3, 4 J 33 J 44 1 iω 1 p 2 + iω 2 p 1 f (ω/p) iω 1 p 2 + iω 2 p 1 1 1 { ln { } p 1 dx f (x) iω 1 + p 1 x + p 2 iω 2 p 2 x ( ) ( )} iω1 + p 1 iω2 + p 2 + ln iω 1 p 1 iω 2 p 2 M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 26 / 32

g eff from QGV Thermo-magnetic QCD coupling: CM g q q scenario Analytic continuation to Minkowski space iω 1,2 p 01,02 [ ˆK ( 1, ˆk)] scenario where p 01 = p 02 p 0 and p 1 = p 2 p J 44 J 00 = 1 2p 0 p ln ( ) p0 + p, J 33 = 1 [ p 0 p p 2 1 p 0 2p ln static limit, quarks are almost at rest, p 0 p 0 J 00 1 p 0 p0 2, J 33 1 3p0 2 ( )] p0 + p p 0 p The rest of the components of J αi vanish Only the longitudinal components of the thermo-magnetic vertex are modified M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 27 / 32

geff from QGV Thermo-magnetic QCD coupling: CM g q q scenario The longitudinal QGV is modified as 2 ~ δγk (p0 ) = 4g 2 CF M 2 (T, m, qb) ~γk Σ3 3p02 % 1st order magnetic corr spin - qb intn where ~γk = (γ0, 0, 0, γ3 ) and Σ3 = iγ1 γ2 = 2i [γ1, γ2 ] quark mass m IR scale scale thermal quark mass. So choose p0 = T and m2 = mf2 = 18 g 2 T 2 CF M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 28 / 32

geff from QGV Thermo-magnetic QCD coupling: CM g q q scenario The purely thermal correction to QGV (LeBellac) δγtherm (P1, P2 ) = mf2 µ Z K µk 6 dω 4π (P1 K )(P2 K ) Extract geff looking at (using same configuration as before) mf2 mf2 γ g g (p ) = 1 δγtherm 0 0 0 therm T2 p02 The effective thermo-magnetic modification to the quark-gluon cou~ k (p0 ) as pling can be extracted from δγ m2 geff = g 1 f2 + T M.Tejeda-Yeomans (DF-USON, Mex) 8 3T 2 2 2 g CF M (T, mf, qb) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 29 / 32

g eff from QGV QGV effective coupling decrease more significant for larger α s 15% 25% smaller than thermal corr at qb T 2 1 M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 30 / 32

Final remarks Final remarks thermo-magnetic corrections to QGV for a weak B-field and in HTL T 2 >> qb QGV satisfies a QED-like Ward identity hints to gauge-independence thermo-magnetic correction only to QGV longitudinal component spin component in the direction of the B-field quark anomalous magnetic moment at high T and weak qb extract behaviour on B-field dependence of QCD coupling under conditions prevailing in a QGP: back-to-back static quarks whose energy T and with IR scale m thermal coupling decreases as the B-field strength increases result supports the idea that the decreasing of the coupling constant is an important ingredient to understand IMC in this regime M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 31 / 32

Final remarks Map M.Tejeda-Yeomans (DF-USON, Mex) The thermo-magnetic quark-gluon vertex WMFHP @ ICTP-SAFIR 2016 32 / 32