Deactivation Pathways in Transition Metal Catalysis

Similar documents
deactivation or decomposition is therefore quantified using the turnover number.

Recent Advances of Alkyne Metathesis. Group Meeting Timothy Chang

N-Heterocyclic Carbenes (NHCs)

A Simple Introduction of the Mizoroki-Heck Reaction

Metal Hydrides, Alkyls, Aryls, and their Reactions

N-Heterocyclic Carbenes (NHCs)

N-HETEROCYCLIC CARBENES: STRUCTURE AND PROPERTIES

Basics of Catalysis and Kinetics

Iridium-Catalyzed Hydrogenation with Chiral P,N Ligands

Lecture 17 February 14, 2013 MH + bonding, metathesis

Lecture 13 February 1, 2011 Pd and Pt, MH + bonding, metathesis

Coupling Reactions Using Excited State Organonickel Complex _LS_Daiki_Kamakura

Organic Molecules, Photoredox, and. Catalysis

Applications of Non-Commercially Available Metathesis Catalysts

Development, Application and Understanding of Synthetic Tools!

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

CHEM 251 (4 credits): Description

C H activation of aliphatic amines without unnecessary mask M2 Takaya Togo

A Summary of Organometallic Chemistry

Reaction chemistry of complexes Three general forms: 1. Reactions involving the gain and loss of ligands a. Ligand Dissoc. and Assoc. (Bala) b.

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Insertion Reactions. 1) 1,1 insertion in which the metal and the X ligand end up bound to the same (1,1) atom

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

A. Loupy, B.Tchoubar. Salt Effects in Organic and Organometallic Chemistry

Oxidative Addition/Reductive Elimination 1. Oxidative Addition

Reactivity within Confined Nano-spaces

Organometallic Chemistry and Homogeneous Catalysis

Palladium-Catalyzed Oxidation of Alcohols by Molecular Oxygen: Recent Computational Insights. Presented by Dice

Module 6 : General properties of Transition Metal Organometallic Complexes. Lecture 2 : Synthesis and Stability. Objectives

The following molecules are related:

PHOTOCATALYSIS: FORMATIONS OF RINGS

HYDROGENATION. Concerned with two forms of hydrogenation: heterogeneous (catalyst insoluble) and homogeneous (catalyst soluble)

Chem 634. Introduction to Transition Metal Catalysis. Reading: Heg Ch 1 2 CS-B 7.1, , 11.3 Grossman Ch 6

Organometallic Catalysis

Organometallic Chemistry and Homogeneous Catalysis

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Bio-inspired C-H functionalization by metal-oxo complexes

Reaction Mechanisms - Ligand Substitutions. ML n-x P x + xl

H Organometallic Catalysis in Industry

Additions to Metal-Alkene and -Alkyne Complexes

CH 611 Advanced Inorganic Chemistry Synthesis and Analysis. Exam #3 12/12/2011. Print Name

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Chapter 2 The Elementary Steps in TM Catalysis

Elementary Organometallic Reactions

THE ORGANOMETALLIC CHEMISTRY OF THE TRANSITION METALS

The Synthesis of Molecules Containing Quaternary Stereogenic Centers via the Intramolecular Asymmetric Heck Reaction

Course 201N 1 st Semester Inorganic Chemistry Instructor: Jitendra K. Bera

Carbenes and Carbene Complexes I Introduction

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

The Mechanism of Pd-Catalyzed Amination Controversy.. And Conclusion?

Chiral Bronsted Acids as Catalysts

1. Determine the oxidation state of the metal centre and count the number of electrons.

Steric and Electronic Controllers in Ring-Closing Metathesis Reactions. Jennifer E. Farrugia October 29, 2003

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Scission of Dinitrogen by a Molybdenum(III) Xylidene Complex. CHM 5.33 Fall 2005

CHEM Lecture 7

Some Hartwig Chemistry Experimental Approaches and Detailed Mechanistic Analysis

Anti-Markovnikov Olefin Functionalization

O CH 3. Mn CH 3 OC C. 16eelimination

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Loudon Chapter 18 Review: Vinyl/Aryl Reactivity Jacquie Richardson, CU Boulder Last updated 2/21/2016

Reversible Interaction between Substrate and Ligand

σ Bonded ligands: Transition Metal Alkyls and Hydrides

Chiral Brønsted Acid Catalysis

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Functionalization of terminal olefins via H migratory insertion /reductive elimination sequence Hydrogenation

Recapping where we are so far

sp 3 C-H insertion by α-oxo Gold Carbene B4 Kei Ito

sp 3 C-H Alkylation with Olefins Yan Xu Dec. 3, 2014

Olefin Metathesis ROMP. L n Ru= ROMP n RCM. dilute

EPIC LIGAND SURVEY: METAL ALKYLS - I

Reductive Elimination from High-Valent Palladium. Kazunori Nagao MacMillan Group Meeting

Zr-Catalyzed Carbometallation

A Brief Survey on Synthesis and Catalytic Reactivity of Metal-Metal Bond Complexes

Chapter 21 Coordination chemistry: reactions of complexes

Oxidative Addition and Reductive Elimination

14-1 Reactions Involving Gain or Loss of Ligands Reactions Involving Modification of Ligands

Wilkinson s other (ruthenium) catalyst

Basic Organometallic Chemistry : Concepts, Syntheses, and Applications of Transition Metals. Table Of Contents: Foreword

Electrophilic Carbenes

Streamlining Reaction Discovery and Development Through Kinetic Analysis

Chemistry 610: Organic Reactions Fall 2017

Shi Asymmetric Epoxidation

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

The aza-baylis-hillman Reaction: Mechanism, Asymmetric Catalysis, & Abnormal Adducts. Larry Wolf SED Group Meeting

Organometallic Rections 1: Reactions at the Metal

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

Metalloporphyrin. ~as efficient Lewis acid catalysts with a unique reaction-field~ and. ~Synthetic study toward complex metalloporphyrins~

Chapter 14. Principles of Catalysis

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Sigma Bond Metathesis

Advanced Organic Chemistry

CHEM 203. Topics Discussed on Oct. 16

Enantioselective Borylations. David Kornfilt Denmark Group Meeting Sept. 14 th 2010

Hydrides and Dihydrogen as Ligands: Lessons from Organometallic Chemistry. Lecture 9

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Asymmetric Catalysis by Lewis Acids and Amines

Ligand Substitution Reactivity of Coordinated Ligands

An Overview of Organic Reactions. Reaction types: Classification by outcome Most reactions produce changes in the functional group of the reactants:

Transcription:

Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? decomposition active for catalysis inactive for catalysis "One of the reasons for [the] limited understanding [of catalyst deactivation] is that academic groups usually focus on the more rewarding improvement of activity and/or selectivity of a catalyst, since more or less rational strategies can be followed, rather than investing resources to follow catalyst deactivation along unexplored pathways." Poater, A.; Cavallo,. Theor. Chem. Acc. 2012, 131, 1155.

Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? Deactivation is much more studied in industrial settings where low catalyst loadings are critical. What happens if you lose 10% of your catalyst each cycle? 5%? 2%? 100.0 90.0 80.0 70.0 % Catalyst 60.0 50.0 40.0 30.0 20.0 10.0 0.0 0 10 20 30 40 50 60 70 80 umber of Cycles Even a modest improvement can have a large effect on TO!

Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? decomposition But first, some definitions: Irreversible processes that involves extensive breakup of bonds in a chemical structure: n Degredation: deletirious ligand functionalization or bond rupture n Decomposition: collapse of the metal complex as a whole n Deactivation: permanent loss in catalytic activity n Inhibition: reversible process that leads to loss in activity Crabtree, R.. Chem. Rev. 2015, 115, 127.

Deactivation Pathways in Transition tal Catalysis A Scarce Topic in the iterature igand loss or deleterious functionalization M M Multimetallic processes, cluster formation n Pd(0) Catalyst poisons C CO thiols O 2 Substrate or product inhibition O Br Crabtree, R.. Chem. Rev. 2015, 115, 127.

Deactivation Pathways in Transition tal Catalysis Outline ydrogenation Cross tathesis otoredox 2+ 2 Ir Cy 3 P 2 Ir Ir 2 2+ Ir III

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst + Crabtree's Catalyst Ir n discovered in 1977 n reactivity for tetrasubstituted olefins TOF (mol substrate per mol cat. per hour) catalyst Rh(P 3 ) 3 [Rh(cod)(P 3 ) 2 ]PF 6 [Ir(cod) (py)]pf 6 60 70 0 0 4000 10 0 0 6400 4500 3800 4000 Xu, Y.; Mingos, M. P.; Brown, J. M. Chem. Commun. 2008, 199.

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst + Ir A B A B C D 2, C 2 2 C D O O CO 2 CO 2 20 mol% cat, 99:1 dr 2 mol% cat, 89:11 dr Brown, J. M. Angew. Chem. Int. Ed. Engl. 1987, 26, 190.

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst 2 3 C C 3 py S Ir S S 3 C C 3 py S Ir 2 S py Ir S Ir I /Ir III py Ir S py Ir Ir III /Ir V py Ir reductive elimination py Ir S migratory insertion reductive elimination py Ir migratory insertion Verendel, J. J.; Pàmies, O.; Diéguez, M.; Andersson, P. G. Chem. Rev. 2014, 114, 2130.

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst 2 3 C C 3 py S Ir S S 3 C C 3 py S Ir 2 S py Ir S Ir I /Ir III py Ir S py Ir Ir III /Ir V py Ir reductive elimination py Ir S migratory insertion reductive elimination py Ir migratory insertion Verendel, J. J.; Pàmies, O.; Diéguez, M.; Andersson, P. G. Chem. Rev. 2014, 114, 2130.

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst + K 2 Pt 4 2+ Ir 2, C 2 2 low [alkene] 2 Ir Cy 3 P 2 Ir Ir 2 n bulkier ligands can prevent trimerisation through steric hindrance n low catalyst concentration can prevent trimerisation n complexes with BAr F counterion rather than PF 6 are less moisture sensitive Xu, Y.; Mingos, M. P.; Brown, J. M. Chem. Commun. 2008, 199.

Deactivation Pathways in Transition tal Catalysis Crabtree's Catalyst + X O o-tol o-tol P Ir O tbu O 2, C 2 2 X mol% cat. conditions conversion % PF 6 4% 57% PF 6 4% rigorously dry 99% BAr F 0.3% 99% n complexes with BAr F counterion rather than PF 6 are less moisture sensitive ightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem. Int. Ed. 1998, 37, 2897.

Deactivation Pathways in Transition tal Catalysis Outline ydrogenation Cross tathesis otoredox 2+ 2 Ir Cy 3 P 2 Ir Ir 2 2+ Ir III

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts EtO 2 C CO 2 Et metathesis cat. EtO 2 C CO 2 Et Schrock Chauvin Grubbs

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts unstable to: n coordinating solvents (C, DMSO, etc.) n lewis basic functionality Grubbs generation I n amines in particular 2 10 minutes 2 [] unidentified, inactive byproducts Moore, J. S. et. al. Adv. Synth. Catal. 2009, 351, 1817.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts 2 10 minutes 2 [] unidentified, inactive byproducts Bimolecular Catalyst Decomposition R R R R products Moore, J. S. et. al. Adv. Synth. Catal. 2009, 351, 1817.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts P O P O ipr PCy 2 ipr ipr widely studied 2 e spectator ligand sterically and electronically tunable strong σ-donor, weak π-acceptor very tight binding to metal sterically large ligand Crabtree, R.. J. Organomet. Chem. 2005, 690, 5451.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts s s Functional Group Tolerance R O O O R O R O O R R O R R O R O R Trnka, T. M.; Grubbs, R.. Acc. Chem. Res. 2001, 34, 18.

Deactivation Pathways in Transition tal Catalysis Olefin thathesis Catalysts s s s s 2 4 5 EtO 2 C CO 2 Et RCM ROMP Moore, J. S. et. al. Adv. Synth. Catal. 2009, 351, 1817.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts s s s s 2 4 5 EtO 2 C CO 2 Et bulky ROMP small RCM Moore, J. S. et. al. Adv. Synth. Catal. 2009, 351, 1817.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts s s 1 mol% ipro amine (n mol%), 60 ºC, 24 h Ireland, B. J.; Dobigny, B. T.; Fogg, D. E. ACS Catal. 2015, 5, 4690.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts Benzylidene abstraction s s 2 R s s s 2 R R s + s s Ireland, B. J.; Dobigny, B. T.; Fogg, D. E. ACS Catal. 2015, 5, 4690.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts ummiss, J. A. M.' Mcennan, W..; McDonald, R.; Fogg, D. E. Organometallics 2014, 33, 6738.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts Benzylidene abstraction s s 2 R s s s 2 R R s + s s Ireland, B. J.; Dobigny, B. T.; Fogg, D. E. ACS Catal. 2015, 5, 4690.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts Benzylidene abstraction s s 2 R s s s 2 R R s + s s tallacyclobutane deprotonation 2 Is R 2 Is R R 3 2 Is R R 3 + R decomp. Ireland, B. J.; Dobigny, B. T.; Fogg, D. E. ACS Catal. 2015, 5, 4690.

Deactivation Pathways in Transition tal Catalysis Olefin thathesis Catalysts E E metathesis catalyst E E C 2 2, 24 h s s O yield = 0% yield = 76% yield = >95% ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts E E metathesis catalyst E E C 2 2, 24 h s s O yield = 0% yield = 76% yield = >95% ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin thathesis Catalysts 40 ºC C 2 2, 12 h 24% 38% ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin thathesis Catalysts C activation hydride insertion R.E. 40 ºC C 2 2, > 7 days no reaction ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts 1.2 equiv C 2 2, 36 h + quantitative assistance required for second C insertion ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin thathesis Catalysts E E metathesis catalyst E E C 2 2, 24 h s s O yield = 0% yield = 76% yield = >95% ong, S..; Chlenov, A.; Day, M. W.; Grubbs, R.. Angew. Chem. Int. Ed. 2007, 46, 5148.

Deactivation Pathways in Transition tal Catalysis Olefin tathesis Catalysts s s A metathesis catalyst that tolerates free amines has yet to be reported.

Deactivation Pathways in Transition tal Catalysis Outline ydrogenation Cross tathesis otoredox 2+ 2 Ir Cy 3 P 2 Ir Ir 2 2+ Ir III

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis Ir III most organic molecules photoredox catalysts absorb light from ordinary light bulbs UV light Visible light 200 nm 300 nm 400 nm 500 nm 600 nm 700 nm Targeted delivery of energy via selective excitation of photoredox catalyst

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis Ir III otons converted into ~55 kcal/mol chemical potential energy Typical reaction: oxidation or reduction otoredox reaction: oxidation and reduction ew paradigm for reaction development

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O Ir(ppy) 3 (0.375 mol%) CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv 85% Ir III Ir(ppy) 3 Kinetic analysis indicates: (1) substrate or product inhibition, or (2) [Ir(ppy) 3 ] is not constant due to deactivation Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O O Et CO 2 Et Ir IV oxidant O SET Br O Et otoredox Catalytic Cycle SET * Ir III reductant Ir III CO 2 Et + CO 2 Et visible light reference Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O Ir(ppy) 3 (0.375 mol%) CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv 85% Ir III Ir(ppy) 3 Kinetic analysis indicates: (1) substrate or product inhibition, or (2) [Ir(ppy) 3 ] is not constant due to deactivation Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O Ir(ppy) 3 (0.375 mol%) CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv 85% Ir III Ir(ppy) 3 Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O Ir(ppy) 3 (0.375 mol%) CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv 85% tri Ir III di tetra mono penta Ir(ppy) 3 Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis Ir III Br O 3 equiv OEt aoac 3 equiv C 2 2, blue ED Ir III EtO O Ir III 35% 29% 5 O K 2 Pt 4 5 (0.375 mol%) CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv "reaction proceeded efficiently" Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis O photocatalyst CO 2 Et Br OEt aco 3, DMA blue ED 2 3 equiv Ir III Ir III Ir III 0.187 mol%, 18 h 0.187 mol%, 18 h 72% 94% Ir IV/III = +0.77 V 0.187 mol%, 48 h <50% Ir IV/III = +0.49 V Stephenson, C. R. J. et al. Chem. Sci. 2015, 6, 537.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 1 CT 3 CT II λ max = 453 nm (bpy) 3 2+ reference yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 1 CT 3 CT II excitation λ max = 453 nm (bpy) 3 2+ reference yer, T. J. J. Am. Chem. yer, Soc. T. 1982, J. J. Am. 104, Chem. 4803. Soc. Bernhard, 1982, 104, S. Chem. 4803. Eur. J. 2007, 13, 8726.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 1 CT 3 CT II ISC excitation λ max = 453 nm (bpy) 3 2+ reference yer, T. J. J. Am. Chem. yer, Soc. T. 1982, J. J. Am. 104, Chem. 4803. Soc. Bernhard, 1982, 104, S. Chem. 4803. Eur. J. 2007, 13, 8726.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 1 CT II 3 CT ISC thermal activation 3 d-d excitation in absence of quencher, thermal equilibration to 3 d-d state can occur (bpy) 3 2+ reference yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 1 CT II 3 CT ISC thermal activation 3 d-d excitation in 3 d-d state, an antibonding metal-based orbital is populated. (bpy) 3 2+ significant distortion of bonds! reference yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis II II + X X + X II II X X *(bpy) 3 2+ 3 d-d state dissociative mechanism (no entering group dependence for (bpy) 2 (py) 2 2+ ) strong-field d 6 II + 2X II X X X =, Br, CS reference Durham, B.; Caspar, J. V.; agle, K. J.; yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis II II + X X + X II II X X *(bpy) 3 2+ 3 d-d state dissociative mechanism (no entering group dependence for (bpy) 2 (py) 2 2+ ) strong-field d 6 complex φ p (presence of O 2 ) φ p (degassed) [(bpy) 3 ](CS) 2 [(bpy) 3 ]() 2 0.039 0.068 0.062 0.100 reference Durham, B.; Caspar, J. V.; agle, K. J.; yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis II hν II Br Br [(bpy) 3 ]Br 2 (bpy) 2 Br 2 λ max = 453 nm λ max = 548 nm reference Durham, B.; Caspar, J. V.; agle, K. J.; yer, T. J. J. Am. Chem. Soc. 1982, 104, 4803.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis 44 E FSE SO 77 Ir Electronegativity (E) igand Field Stabilization Energy (FSE) Spin-Orbit Coupling (SO) increased ligand field stabilization energy makes it more difficult to populate antibonding 3 d-d state, so Ir complexes are more stable than the corresponding complexes

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis K 2 Pt 4 2 O Ir(ppy) 2 (bpy)pf 6 9:3:1 C: 2 O:TEOA 2 + + Ir III Ir III no d π* ^ 3 MCT state! Tinker,. T.; McDaniel,. D.; Curtin, P..; Smith, C. K.; Ireland, M. J.; Bernhard, S. Chem. Eur. J. 2007, 13, 8726.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis + Ir III reference owry, M. S.; Bernhard, S. Chem. Eur. J. 2006, 12, 7970.

Deactivation Pathways in Transition tal Catalysis otoredox Catalysis + + Ir III Ir III n decomposition by loss of bpy is slow at high quencher concentration n coordinating anions and low dielectric solvents accelerate decomposition n high temperature results in more thermal crossing to 3 d-d state reference

Deactivation Pathways in Transition tal Catalysis Why Study Catalyst Decomposition? decomposition active for catalysis inactive for catalysis "One of the reasons for [the] limited understanding [of catalyst deactivation] is that academic groups usually focus on the more rewarding improvement of activity and/or selectivity of a catalyst, since more or less rational strategies can be followed, rather than investing resources to follow catalyst deactivation along unexplored pathways." Poater, A.; Cavallo,. Theor. Chem. Acc. 2012, 131, 1155.