A PROTOTYPE OF WEB-APPLICATION FOR TSUNAMI DATABASE ALONG SOUTHERN COAST OF JAVA ISLAND

Similar documents
A PROTOTYPE OF WEB-APPLICATION FOR TSUNAMI DATABASE ALONG SOUTHERN JAVA ISLAND COASTLINE

NUMERICAL SIMULATIONS FOR TSUNAMI FORECASTING AT PADANG CITY USING OFFSHORE TSUNAMI SENSORS

REAL-TIME TSUNAMI INUNDATION FORECAST STUDY IN CHIMBOTE CITY, PERU

NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR

Source of the July 2006 West Java tsunami estimated from tide gauge records

TSUNAMI PROPAGATION AND INUNDATION MODELINGS ALONG SOUTH-EAST COAST OF PAPUA NEW GUINEA

Table 1. Tsunami source parameters for scenario earthquakes in and around Andaman Sea. Parameter Case 1 Case 2 Case 3 Case 4

Tsunami waveform inversion of the 2007 Bengkulu, southern Sumatra, earthquake

TSUNAMI HAZARD ASSESSMENT IN NORTHERN EGYPT USING NUMERICAL SIMULATION

SOURCE INVERSION AND INUNDATION MODELING TECHNOLOGIES FOR TSUNAMI HAZARD ASSESSMENT, CASE STUDY: 2001 PERU TSUNAMI

Tsunami Simulation of 2009 Dusky Sound Earthquake in New Zealand

TSUNAMI HAZARD ASSESSMENT FOR THE CENTRAL COAST OF PERU USING NUMERICAL SIMULATIONS FOR THE 1974, 1966 AND 1746 EARTHQUAKES

Predicting of Tsunami Inundation Area based on Propagation and Runup Numerical Model in Pacitan City

NUMERICAL SIMULATION AS GUIDANCE IN MAKING TSUNAMI HAZARD MAP FOR LABUAN ISLAND

SCIENCE OF TSUNAMI HAZARDS

DATA BASE DEVELOPMENT OF ETA (ESTIMATED TIME OF ARRIVAL) FOR TSUNAMI DISASTER MITIGATION AT SOUTHWESTERN CITIES OF ACEH, INDONESIA

STUDY ON TSUNAMIGENIC EARTHQUAKE CRITERIA FOR THE INDONESIAN TSUNAMI EARLY WARNING SYSTEM

Case Study 2: 2014 Iquique Sequence

TSUNAMI CHARACTERISTICS OF OUTER-RISE EARTHQUAKES ALONG THE PACIFIC COAST OF NICARAGUA - A CASE STUDY FOR THE 2016 NICARAGUA EVENT-

Effect of the Emperor seamounts on trans-oceanic propagation of the 2006 Kuril Island earthquake tsunami

Numerical investigation of the November 17, 2015 anomaly in the harbor of Crotone, Ionian Sea

EARTHQUAKE SOURCE PARAMETERS FOR SUBDUCTION ZONE EVENTS CAUSING TSUNAMIS IN AND AROUND THE PHILIPPINES

VALIDATION OF TSUNAMI INUNDATION MODELING FOR THE 2004 SUMATRA-ANDAMAN EARTHQUAKE FOR MAKING HAZARD MAPS IN PENANG AND LANGKAWI, MALAYSIA

A SENSIVITY TEST OF TSUNAMI MODELLING USING VARIOUS DATA: CASE STUDY IN CILACAP INDONESIA

Lab 1: Earthquake Resources & Plotting Epicenters

Numerical Tsunami Propagation of 1703 Kanto Earthquake

Coseismic slip distribution of the 1946 Nankai earthquake and aseismic slips caused by the earthquake

Rupture process of the 2010 M w 7.8 Mentawai tsunami earthquake from joint inversion of near-field hr-gps and

Tsunami and earthquake in Chile Part 2

JMA Tsunami Warning Services. Takeshi KOIZUMI Senior Coordinator for International Earthquake and Tsunami Information Japan Meteorological Agency

DETERMINATION OF SLIP DISTRIBUTION OF THE 28 MARCH 2005 NIAS EARTHQUAKE USING JOINT INVERSION OF TSUNAMI WAVEFORM AND GPS DATA

Tsunami Simulations after the Mw7.5 78km N of Palu, Indonesia September 28, 2018

Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America

Magnitude 7.7 QUEEN CHARLOTTE ISLANDS REGION

What is a Tsunami? Tsu = harbor Nami = wave (Japanese terms)

THE JAVA TSUNAMI MODEL: USING HIGHLY-RESOLVED DATA TO MODEL THE PAST EVENT AND TO ESTIMATE THE FUTURE HAZARD

SCIENCE OF TSUNAMI HAZARDS

Originally published as:

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

Magnitude 7.1 NEAR THE EAST COAST OF HONSHU, JAPAN

27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

Indian Ocean Tsunami Warning System: Example from the 12 th September 2007 Tsunami

Preliminary slip model of M9 Tohoku earthquake from strongmotion stations in Japan - an extreme application of ISOLA code.

Inquiry: Sumatran earthquakes with GPS Earth Science Education

FOCAL MECHANISMS OF SUBDUCTION ZONE EARTHQUAKES ALONG THE JAVA TRENCH: PRELIMINARY STUDY FOR THE PSHA FOR YOGYAKARTA REGION, INDONESIA

Numerical Study of Tsunami Propagation in Mentawai Islands West Sumatra

New Coding System of Grid Squares in the Republic of Indonesia

Activity Plotting Earthquake Epicenters an activity for seismic discovery

REAL-TIME TSUNAMI INUNDATION FORECAST FOR THE PACIFIC COAST OF NICARAGUA

Preliminary Study of Possible Tsunami Hazards in Taiwan Region

TSUNAMI AND EARTHQUAKE ACTIVITY IN INDONESIA *

GPS Strain & Earthquakes Unit 5: 2014 South Napa earthquake GPS strain analysis student exercise

Originally published as:

MODELING OF TSUNAMI GENERATION, PROPAGATION COAST FROM THE AZORES CONVERGENCE ZONE AND REGIONAL IMPACT ALONG THE UPPER U.S. EAST

Magnitude 6.9 GULF OF CALIFORNIA

Coupling of Wave and Hydrodynamic Models for Predicting Coastal Inundation: A case study in Jakarta and Semarang

Updating the GEBCO Grid

Three Dimensional Simulations of Tsunami Generation and Propagation

Seismic and Tsunami Observations of Indonesia

Rupture Characteristics of Major and Great (M w 7.0) Megathrust Earthquakes from : 1. Source Parameter Scaling Relationships

JCR (2 ), JGR- (1 ) (4 ) 11, EPSL GRL BSSA

Topographic Maps and Landforms Geology Lab

Tsunami Chile 27 February 2010

Did a submarine landslide contribute to the 2011 Tohoku tsunami?

Seismic Activity and Tsunami Potential in Bali-Banda Basin

JMA Tsunami Warning Services. Tomoaki OZAKI Senior Coordinator for Tsunami Forecast Modeling Japan Meteorological Agency

Models of tsunami waves at the Institute of Ocean Sciences

Building up Seismsic Models for Ground Motion Prediction of Taiwan: Problems and Challenges

Earth Observation in coastal zone MetOcean design criteria

Tsunami waveform analyses of the 2006 underthrust and 2007 outer-rise Kurile earthquakes

STUDY ON APPROPRIATE MODELING OF TSUNAMIS IN MALAYSIA FOR RISK EVALUATION

Tokyo, Japan,

HIGH RESOLUTION DATA PROCESSING AND TSUNAMI ASSESSMENT AND APPLICATIONS TO PORTS IN THE SEA OF MARMARA

Teleseismic waveform modelling of the 2008 Leonidio event

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

Earthquake Source. Kazuki Koketsu. Special Session: Great East Japan (Tohoku) Earthquake. Earthquake Research Institute, University of Tokyo

Water Stratification under Wave Influence in the Gulf of Thailand

Technical Documentation

Sumatra earthquake from tsunami tide gauge record inversion

W phase inversion and tsunami inundation modeling for tsunami. early warning: case study for the 2011 Tohoku event

SUPPLEMENTARY INFORMATION

Magnitude 8.2 NORTHWEST OF IQUIQUE, CHILE

NAME HOMEWORK ASSIGNMENT #4 MATERIAL COVERS CHAPTERS 19, 20, 21, & 2

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

High-resolution dynamical adaptation of the wind forecast using the non-hydrostatic version of the ALADIN model

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper.

Table S.1 Periods of clean background measurements used in this study

Special feature: Are its lessons being adequately applied? Follow-up on the ten-year anniversary of the Hanshin-Awaji Earthquake

Earthquakes Physical Geology 2017 Part 1: Exploring Earthquake distributions. Home butto California Earthquakes: 1) 2) 3) above

Source Fault Model of the 1771 Yaeyama Tsunami, Southern Ryukyu Islands, Japan, Inferred from Numerical Simulation

Analysis of the Tsunami Generated by the Great 1977 Sumba Earthquake that Occurred in Indonesia

THE TSUNAMI ASSESSMENT MODELLING SYSTEM BY THE JOINT RESEARCH CENTRE

The 2011 Tohoku Earthquake and Tsunami Sequence. Mitchell May, EPSC 330

Groundwater changes related to the 2011 Off the Pacific Coast of Tohoku Earthquake (M9.0)

Predicting Tsunami Inundated Area and Evacuation Road Based On Local Condition Using GIS

Lessons from the 2004 Sumatra earthquake and the Asian tsunami

Effect of Tsunamis Generated in Manila Trench on the South China Sea and the Gulf of Thailand. Current Research on Tsunamis in Thailand

Slip distributions of the 1944 Tonankai and 1946 Nankai earthquakes including the horizontal movement effect on tsunami generation

Introduction After reviewing the classification of continental margins (not plate margins) in your textbook, answer the following questions:

Geophysical Journal International

Transcription:

A PROTOTYPE OF WEB-APPLICATION FOR TSUNAMI DATABASE ALONG SOUTHERN COAST OF JAVA ISLAND By Ariska Rudyanto (Tsunami Course, 2007) Meteorological and Geophysical Agency, Indonesia 1. Fault Parameters of Tsunami Sources Table 1. Fault parameters of the real case used in tsunami simulation (Fujii and Satake, 2006). Sub Longitude Latitude Depth Strike Dip Rake Length Width Slip Faults ( E) ( S) (km) (degree) (degree) (degree) (km) (km) (m) 1 107.274 9.515 3 280 45 90 50.00 50.00 0.53 2 107.42 9.096 11.7 280 45 90 50.00 50.00 0.15 3 107.705 9.661 3 280 45 90 50.00 50.00 0.51 4 107.851 9.242 11.7 280 45 90 50.00 50.00 0.00 5 108.136 9.807 3 280 45 90 50.00 50.00 1.38 6 108.282 9.388 11.7 280 45 90 50.00 50.00 0.79 7 108.568 9.953 3 280 45 90 50.00 50.00 1.43 8 108.714 9.534 11.7 280 45 90 50.00 50.00 0.00 9 109.000 10.10 3 280 45 90 50.00 50.00 2.47 10 109.146 9.681 11.7 280 45 90 50.00 50.00 2.12 Table 2. Fault parameters used in tsunami simulation for the artificial cases. Depth Magnitude Strike Dip Rake Length (L) Width (W) Slip (D) (km) (M) (degree) (degree) (degree) (km) (km) (m) 0 7 285 45 90 50.11872 25.05936 1.58 0 7.5 285 45 90 89.12509 44.56255 2.82 0 8 285 45 90 158.48932 79.24466 5.01 20 7 285 45 90 50.11872 25.05936 1.58 20 7.5 285 45 90 89.12509 44.56255 2.82 20 8 285 45 90 158.48932 79.24466 5.01 40 7 285 45 90 50.11872 25.05936 1.58 40 7.5 285 45 90 89.12509 44.56255 2.82 40 8 285 45 90 158.48932 79.24466 5.01 60 7 285 45 90 50.11872 25.05936 1.58 60 7.5 285 45 90 89.12509 44.56255 2.82 60 8 285 45 90 158.48932 79.24466 5.01 1

REMARKS : Log L = 0.5 M - 1.8 W = L / 2 Log D = 0.5 M - 3.3 Table 3. Source Points for artificial cases used in tsunami simulation. Source Point Longitude ( E) Latitude ( S) A 107.5 9 B 108 9 C 108.5 9 D 109 9 E 109.5 9 F 110 9 G 110.5 9 H 111 9 I 107.5 9.5 J 108 9.5 K 108.5 9.5 L 109 9.5 M 109.5 9.5 N 110 9.5 O 110.5 9.5 P 111 9.5 Q 111.5 9.5 R 112 9.5 S 107.5 10 T 108 10 U 108.5 10 V 109 10 W 109.5 10 X 110 10 Y 110.5 10 Z 111 10 AA 111.5 10 BB 112 10 2

Figure 1. Bathymetry data of study area using GEBCO. Study area in covers region of 5.0 o S-15.0 o S and 102.0 o E-117.0 o E. Red dots show the source points (30 points) and green dots show the forecast points (56 points) and red triangles show coastal points (56 points). Purple star shows the epicenter of the July 2006 Java tsunami Earthquake. Each small colored rectangle (light blue, blue, magenta, yellow, red, orange and green) shows the area of magnified map which indicates coastal block area. Figure 2. Magnified map of study area for coastal block Lampung 1. 3

Figure 3. Magnified map of study area for coastal block Lampung 2. Figure 4. Magnified map of study area for coastal block Jabar 1. 4

Figure 5. Magnified map of study area for coastal block Jabar 2. Figure 6. Magnified map of study area for coastal block Jateng. 5

Figure 7. Magnified map of study area for coastal block Jatim Figure 8. Magnified map of study area for coastal block Bali. 6

2. Forecast and Coastal Points Table 4. Forecast point with different sea depths. TARGET Forecast Point 1 Forecast Point 2 Forecast Point 3 Depth POINT (m) Lon Lat Depth Lon Lat Depth Lon Lat (deg:min:sec) (deg:min:sec) (m) (deg:min:sec) (deg:min:sec) (m) (deg:min:sec) (deg:min:sec) Cilegon1 47 105:36:00-06:20:00 30 105:44:00-06:20:00 19 105:46:00-06:20:00 Sindangbarang 52 107:08:00-07:31:00 34 107:08:00-07:30:00 16 107:08:00-07:29:00 BandarWaru 41 107:24:00-07:35:00 30 107:24:00-07:34:00 20 107:24:00-07:32:00 Sukajaya 54 108:00:00-07:49:00 31 108:00:00-07:47:00 18 108:00:00-07:46:00 Kedungdahen 48 108:38:00-07:49:00 28 108:36:00-07:47:00 20 108:35:00-07:46:00 Cilacap 52 109:08:00-07:51:00 29 109:07:00-07:48:00 20 109:06:00-07:47:00 Pesanggrahan 51 109:15:00-07:50:00 32 109:15:00-07:47:00 18 109:15:00-07:45:00 Adikarta 51 109:38:00-07:55:00 29 109:38:00-07:52:00 19 109:39:00-07:51:00 Jagadayoh 48 110:11:00-08:02:00 31 110:11:00-08:01:00 17 110:11:00-08:00:00 Bandar 53 111:24:00-08:20:00 - - - 13 111:25:00-08:19:00 Kalibawang 54 112:13:00-08:22:00 - - - 24 112:13:00-08:21:00 Kalitekuk 55 112:25:00-08:25:00 - - - 26 112:25:00-08:24:00 Kedungsari 54 113:16:00-08:21:00 - - - 18 113:16:00-08:19:00 RajekIsi 51 114:18:00-08:41:00 30 114:20:00-08:40:00 - - - TanahLot 48 114:57:00-08:41:00 - - - 20 114:59:00-08:41:00 Uluwatu 41 115:05:00-08:52:00 - - - 17 115:05:00-08:51:00 Sanur 57 115:19:00-08:42:00 - - - 16 115:17:00-08:42:00 7

Table 5. List of coastal point and forecast point. COASTAL POINT OF COASTAL POINT FORECAST POINT No BLOCK OBSERVATION LONG LAT Depth LONG LAT Depth ( o E) ( o S) (m) ( o E) ( o S) (m) 1 Lampung 1 Biha 103:48:00 5:03:00 1 103:48:00 5:04:00 68 2 Lampung 1 Kotajawa 104:05:00 5:25:00 1 104:05:00 5:26:00 33 3 Lampung 1 Negeriratu 104:20:00 5:40:00 1 104:17:00 5:40:00 51 4 Lampung 1 Belimbing 104:31:00 5:50:00 1 104:26:00 5:53:00 19 5 Lampung 2 Kotaagung 104:33:00 5:31:00 1 104:36:00 5:33:00 47 6 Lampung 2 Laguna 105:03:00 5:45:00 1 105:03:00 5:47:00 40 7 Lampung 2 Legundi 105:18:00 5:50:00 1 105:18:00 5:51:00 33 8 Jabar 1 Cilegon1 105:49:00 6:20:00 1 105:36:00 6:20:00 47 9 Jabar 1 Cilegon2 105:38:00 6:30:00 1 105:32:00 6:30:00 51 10 Jabar 1 TjPanto 105:25:00 6:52:00 4 105:25:00 7:00:00 49 11 Jabar 1 Cipedang 105:57:00 6:49:00 1 105:57:00 6:52:00 40 12 Jabar 1 Marinjung 106:32:00 7:00:00 2 106:31:00 7:00:00 40 13 Jabar 1 UjungGenteng 106:25:00 7:22:00 1 106:25:00 7:24:00 50 14 Jabar 2 Sindangbarang 107:08:00 7:28:00 1 107:08:00 7:31:00 52 15 Jabar 2 BandarWaru 107:24:00 7:30:00 1 107:24:00 7:35:00 41 16 Jabar 2 Babakan 107:39:00 7:37:00 1 107:37:00 7:39:00 53 17 Jabar 2 Pamengpeuk 107:49:00 7:42:00 1 107:48:00 7:44:00 58 18 Jabar 2 Sukajaya 108:00:00 7:45:00 1 108:00:00 7:49:00 54 19 Jabar 2 Pasirpakadangan 108:12:00 7:48:00 1 108:12:00 7:53:00 53 20 Jabar 2 Kedungdahen 108:30:00 7:44:00 1 108:38:00 7:49:00 48 21 Jateng Cilacap 109:02:00 7:45:00 2 109:08:00 7:51:00 52 22 Jateng Pesanggrahan 109:15:00 7:42:00 1 109:15:00 7:50:00 51 23 Jateng NusaKambangan 108:53:00 7:45:00 1 108:53:00 7:49:00 46 24 Jateng Jetis 109:22:00 7:44:00 1 109:22:00 7:50:00 52 25 Jateng Adikarta 109:41:00 7:48:00 1 109:38:00 7:55:00 51 26 Jateng Aglireja 109:49:00 7:50:00 1 109:48:00 8:00:00 43 27 Jateng PasirPuncu 109:56:00 7:52:00 1 109:56:00 7:58:00 51 28 Jateng Jagadayoh 110:12:00 7:59:00 1 110:11:00 8:02:00 48 8

Table 6. List of coastal point and forecast point. COASTAL POINT OF COASTAL POINT FORECAST POINT No BLOCK OBSERVATION LONG LAT Depth LONG LAT Depth ( o E) ( o S) (m) ( o E) ( o S) (m) 29 Jateng KebonRejo 110:01:00 7:54:00 1 110:00:00 7:58:00 48 30 Jateng ParangTritis 110:18:00 8:01:00 1 110:17:00 8:04:00 52 31 Jateng Kukup 110:32:00 8:08:00 1 110:31:00 8:09:00 43 32 Jateng Wilasa 110:24:00 8:05:00 1 110:22:00 8:07:00 60 33 Jateng Sureng 110:40:00 8:11:00 1 110:39:00 8:12:00 46 34 Jateng Gesik 110:48:00 8:12:00 1 110:47:00 8:13:00 46 35 Jateng Dringo 110:52:00 8:13:00 1 110:52:00 8:14:00 44 36 Jatim Pacitan 111:06:00 8:14:00 1 111:04:00 8:17:00 60 37 Jatim Bandar 111:26:00 8:18:00 1 111:24:00 8:20:00 53 38 Jatim Prigi 111:43:00 8:18:00 1 111:47:00 8:23:00 80 39 Jatim Sine 111:58:00 8:17:00 1 111:58:00 8:19:00 59 40 Jatim Kalibawang 112:13:00 8:20:00 1 112:13:00 8:22:00 54 41 Jatim Kalitekuk 112:25:00 8:23:00 1 112:25:00 8:25:00 55 42 Jatim Ngliyep 112:35:00 8:25:00 1 112:35:00 8:27:00 67 43 Jatim Tempuhrejo 112:58:00 8:20:00 1 112:59:00 8:21:00 54 44 Jatim Kedungsari 113:18:00 8:18:00 1 113:16:00 8:21:00 54 45 Jatim GnBatok 113:29:00 8:25:00 1 113:29:00 8:27:00 96 46 Jatim Sukamade 113:53:00 8:34:00 1 113:53:00 8:36:00 63 47 Jatim Rajekwesi 114:21:00 8:39:00 1 114:18:00 8:41:00 51 48 Bali Negara 114:48:00 8:25:00 1 114:47:00 8:26:00 31 49 Bali Pulukan 114:54:00 8:28:00 1 114:50:00 8:29:00 39 50 Bali Lalang-Linggah 115:02:00 8:34:00 3 114:54:00 8:37:00 49 51 Bali TanahLot 115:07:00 8:40:00 1 114:57:00 8:41:00 48 52 Bali Kuta 115:09:00 8:43:00 2 115:00:00 8:45:00 34 53 Bali Uluwatu 115:05:00 8:50:00 1 115:05:00 8:52:00 41 54 Bali Benoa 115:14:00 8:46:00 3 115:17:00 8:47:00 45 55 Bali Sanur 115:16:00 8:42:00 3 115:19:00 8:42:00 57 56 Bali NusaPenida 115:28:00 8:45:00 1 115:28:00 8:46:00 50 9

3. Results (Tsunami Height) Tsunami Height at CP from different FP 6 5 FP50+GL FP30+GL FP20+GL 4 Height (m) 3 2 1 0 Cilegon1 Sindangbarang BandarWaru Sukajaya Kedungdahen Cilacap Pesanggrahan Adikarta Jagadayoh Bandar Kalibawang Kalitekuk Kedungsari Rajekwesi TanahLot Uluwatu Sanur Target Point Figure 9. Comparison of tsunami heights at coastal points obtained by applying Green s law to the heights at the forecast point with different depths in case of source point C with depth 0 km and magnitude 8.0. 1.2 1 Tsunami Height at CP from different FP FP50+GL FP30+GL FP20+GL 0.8 Height (m) 0.6 0.4 0.2 0 Cilegon1 Sindangbarang BandarWaru Sukajaya Kedungdahen Cilacap Pesanggrahan Adikarta Jagadayoh Bandar Kalibawang Kalitekuk Kedungsari Rajekwesi TanahLot Uluwatu Sanur Target Point Figure 10. Comparison of tsunami heights at coastal points obtained by applying Green s law to the heights at the forecast point with different depths in the real case of the 2006 Pangandaran tsunami (M w 7.7). 10

Figure 11. Comparison of tsunami heights obtained directly from simulation and by applying Green s law to heights at FPs for source point A with the same depth and magnitude. Figure 12. Comparison of tsunami heights obtained directly from simulation and by applying Green s law to heights at FPs for source point R with the same depth and magnitude. 11

Figure 13. Comparison of tsunami heights obtained by using Green s law for different source points with the same depth and magnitude. Figure 14. Comparison of tsunami heights obtained by using Green s law for the source point M (108.5 o E, 10.0 o S) with various depth and magnitude. 12

Figure 15. Comparison of tsunami heights for real earthquake (epicenter :109.2 o E and 9.8 o S, depth 30 km and magnitude 7.25) from retrieving database by simple and interpolation method. 4. Conditions for Computation Tabe 7. Region for computation and data used for simulation. Area 102.0º E-117.0º E / 5.0º S- 15.0 ºS Bathymetry data 1 arc-minute GEBCO t 0.5s 13