Complex Differentials and the Stokes, Goursat and Cauchy Theorems

Similar documents
MATH 162. Midterm 2 ANSWERS November 18, 2005

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

(z 0 ) = lim. = lim. = f. Similarly along a vertical line, we fix x = x 0 and vary y. Setting z = x 0 + iy, we get. = lim. = i f

Math 126: Course Summary

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they?

Review for the Final Exam

MSM120 1M1 First year mathematics for civil engineers Revision notes 4

and likewise fdy = and we have fdx = f((x, g(x))) 1 dx. (0.1)

Topic 4 Notes Jeremy Orloff

Section 5-7 : Green's Theorem

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

Math Homework 2

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Solutions to Complex Analysis Prelims Ben Strasser

ANSWERS TO VARIOUS HOMEWORK PROBLEMS IN MATH 3210, FALL 2015

Review for the First Midterm Exam

= 2 x y 2. (1)

MORE CONSEQUENCES OF CAUCHY S THEOREM

On Cauchy s theorem and Green s theorem

Lecture 7 - Separable Equations

Synopsis of Complex Analysis. Ryan D. Reece

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas

Lecture 10 - Moment of Inertia

Solutions to practice problems for the final

1.4 Techniques of Integration

Calculus I Review Solutions

Electromagnetic Theory Prof. D. K. Ghosh Department of Physics Indian Institute of Technology, Bombay

Electro Magnetic Field Dr. Harishankar Ramachandran Department of Electrical Engineering Indian Institute of Technology Madras

Major Ideas in Calc 3 / Exam Review Topics

3.1 Derivative Formulas for Powers and Polynomials

Math 265 (Butler) Practice Midterm III B (Solutions)

2.2 Graphs of Functions

n=0 ( 1)n /(n + 1) converges, but not

One-Variable Calculus

Math 425 Fall All About Zero

2. Complex Analytic Functions

Differentiation - Quick Review From Calculus

NOTES ON DIFFERENTIAL FORMS. PART 1: FORMS ON R n

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

Rational Functions. Elementary Functions. Algebra with mixed fractions. Algebra with mixed fractions

2t t dt.. So the distance is (t2 +6) 3/2

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

2.2 Separable Equations

2.23 Combining Forces

Selected Solutions To Problems in Complex Analysis

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

Sin, Cos and All That

2 Complex Functions and the Cauchy-Riemann Equations

Chapter 4 Notes, Calculus I with Precalculus 3e Larson/Edwards

Complex number review

Complex Analysis Homework 3

Derivatives and Continuity

Chapter 1 Review of Equations and Inequalities

Definite integrals. We shall study line integrals of f (z). In order to do this we shall need some preliminary definitions.

Math 121 (Lesieutre); 9.1: Polar coordinates; November 22, 2017

Math 115 Spring 11 Written Homework 10 Solutions

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

Final Exam Review Exercise Set A, Math 1551, Fall 2017

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

MAT389 Fall 2016, Problem Set 11

Suggested Homework Solutions

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

MATH 312 Section 2.4: Exact Differential Equations

Second Midterm Exam Name: Practice Problems March 10, 2015

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray. dwm/courses/1pd

f( x) f( y). Functions which are not one-to-one are often called many-to-one. Take the domain and the range to both be all the real numbers:

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Answers for Calculus Review (Extrema and Concavity)

REVIEW OF DIFFERENTIAL CALCULUS

Part IB Complex Methods

PRACTICE FINAL , FALL What will NOT be on the final

Chapter 5 - Differentiating Functions

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK. Summer Examination 2009.

COMPLEX DIFFERENTIAL FORMS. 1. Complex 1-forms, the -operator and the Winding Number

3: Gauss s Law July 7, 2008

f (n) (z 0 ) Theorem [Morera s Theorem] Suppose f is continuous on a domain U, and satisfies that for any closed curve γ in U, γ

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

MATH243 First Semester 2013/14. Exercises 1

13 Definite integrals

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

MATH 103 Pre-Calculus Mathematics Test #3 Fall 2008 Dr. McCloskey Sample Solutions

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

Math 212-Lecture 8. The chain rule with one independent variable

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

Taylor and Laurent Series

(x 3)(x + 5) = (x 3)(x 1) = x + 5. sin 2 x e ax bx 1 = 1 2. lim

Exercises for Part 1

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

1 The Derivative and Differrentiability

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2

Our goal is to solve a general constant coecient linear second order. this way but that will not always happen). Once we have y 1, it will always

WEEK 7 NOTES AND EXERCISES

Integration in the Complex Plane (Zill & Wright Chapter 18)

General Technical Remarks on PDE s and Boundary Conditions Kurt Bryan MA 436

Chapter 5: Integrals

3 Contour integrals and Cauchy s Theorem

Transcription:

Complex Differentials and the Stokes, Goursat and Cauchy Theorems Benjamin McKay June 21, 2001 1 Stokes theorem Theorem 1 (Stokes) f(x, y) dx + g(x, y) dy = U ( g y f ) dx dy x where U is a region of the plane, is the boundary of that region, and f(x, y), g(x, y) are functions (smooth enough we won t worry about that). The main problem is to orient things correctly. It works if we orient the plane according to figure 1 on the following page and orient the curve following the left hand rule: as you travel along the curve, the region U should always be on your left, as in figure 2 on the next page. Exercise 1.1 Draw the arrows to orient the boundary of the region drawn in figure 3 on page 3. Example 1.1 Try f(x, y) = y and g(x, y) = 0. Let U be the square We calculate f(x, y) dx = = bottom x=1 x=0 0 x 1, 0 y 1. f(x, y) dx + f(x, 0) dx + right y=1 y=0 1 f(x, y) dx + f(1, y) dx + top x=0 x=1 f(x, y) dx + f(x, 1) dx + left y=0 y=1 f(x, y) dx f(0, y) dx

y x Figure 1: The standard orientation of the plane Figure 2: The standard orientation of the boundary of a region 2

Figure 3: A region with a hole Along the right and left, x is constant so dx = 0. In other words, if we parameterize these sides any way we like, say moving along them with time t, we get dx/dt = 0. So these drop out: x=1 x=0 f(x, y) dx = f(x, 0) dx + f(x, 1) dx. x=0 Now plug in f(x, y) = y to get the bottom integral (along y = 0) to drop out. We are left with f(x, y) dx = x=0 x=1 x=1 dx = 1. Now let s check the other side of Stokes theorem: ( g x f ) y=1 x=1 dx dy = ( 1) dx dy = 1. y U y=0 Example 1.2 Try f(x, y) = y and g(x, y) = 0. Let U be the unit circle x 2 + y 2 1. Then use polar coordinates x=0 x = r cos θ, y = r sin θ so that dx = dr cos θ + r d cos θ = dr cos θ r sin θ dθ. 3

Similarly Let s calculate: The dx must be dy = dr sin θ + r cos θ dθ. f dx. dx = sin θ dθ because r = 1 is constant. f dx = (r sin θ) ( sin θ) dθ = sin 2 θ dθ = π. What is dx dy in terms of dr, dθ? This is tricky. But the right hand side of Stokes theorem is dx dy = area(u) = π. U So it works. The orientation matters, since reversing the direction of the curve changes the sign. So we have to watch orientations if we swap x and y variables, as in figure 4 on the next page. This leads to the rule dx dy = dy dx (anticommuting!) Strange, but essential. Generalizing to problems with many variables, this rule must hold for any two of the variables, since we could integrate over a plane parameterized by them. In particular so that dx dx = dx dx dx dx = 0. Now we can change coordinates properly: dx = dr cos θ r sin θ dθ dy = dr sin θ + r cos θ dθ 4

y x x y Figure 4: Swapping the orientation of the plane Multiplying out, and using anticommuting, dx dy = rdr dθ. Exercise 1.2 Show that r dr = x dx + y dy. Solution: Differentiate r 2 = x 2 + y 2. Exercise 1.3 Show that x dy y dx 2 = r2 2 dθ. Exercise 1.4 Use the previous exercise to show that the area of a disk of radius r is πr 2. 5

Solution: But in polar coordinates x dy y dx 2 = x dy y dx 2 U dx dy = area(u). = r 2 2 dθ. So if r is constant on, i.e. it is a circle, then this integral becomes r 2 dθ = r2 2 2 2π. 2 Proof of Stokes theorem in a box Exercise 2.1 Take U a box, say Show that a 0 x b 0, a 1 y b 1. g(x, y)dy = U g dx dy. x Hint: this is really just the fundamental theorem of calculus in x direction, integrated in the y variable. Exercise 2.2 Show that the last exercise, when you swap the x and y variables as in figure 4 on the preceding page, gives ( g(y, x)dx = g ) dx dy. y Exercise 2.3 Put the last two exercises together to get Stokes theorem in a box. Exercise 2.4 Why does Stokes theorem hold for the region shown in figure 5 on the next page? U 6

Figure 5: Boxes glued together 3 Coordinate changes Define the differential of any function f(x, y) by the rule df = f f dx + x y dy. Now if we change coordinates, we have to say what happens to the differential. The rule for derivatives in new coordinates X, Y is the chain rule: f X = f x x X + f y y X. Example 3.1 In polar coordinates No matter what f is, we have f r = f x x r + f y y r. x = r cos θ y = r sin θ and so x r = cos θ y = sin θ. r 7

Therefore So if f(x, y) = x 2, then r = cos θ x + sin θ y. Plugging in x = r cos θ gives f r = f x = 2x cos θ. cos θ + f y sin θ f r = 2r cos2 θ. So if we move out radially, fixing our angle θ, then this is how fast f changes. Exercise 3.1 Let f(x, y) = x 2. Calculate f θ. Solution: f θ = 2r2 cos θ sin θ. Exercise 3.2 Let f(x, y) = x 2. Calculate f in terms of r and θ. Now check your answers to the last exercise. Solution: f = r 2 cos 2 θ. Exercise 3.3 Show that under any change of coordinates, for any function f(x, y), the differential transforms as df goes to df, i.e. f f dx + X Y f f dy = dx + x y dy. This is the most confusing part of the story: the differential is automatically matched up by the coordinate change. 8

Solution: df X,Y coordinates = f X = f f dx + Y dy ( ) X X dx + X x y dy + f Y ( f X = X x + f ) Y dx + Y x = f f dx + x y dy = df x,ycoordinates ( Y Y dx + x X x + f Y Y y ( f X ) y dy ) dy Stare carefully at these lines. We call an expression like f(x, y) dx + g(x, y) dy a line element, or 1-form. Now define the derivative of this guy to be ( g d (f(x, y) dx + g(x, y) dy) = x f ) dx dy. y Exercise 3.4 Show that d (F dx + G dy) = df dx + dg dy. Hint: remember that and that Theorem 2 (Stokes) where ϑ is any line element. dx dy = dy dx dx dx = dy dy = 0. ϑ = dϑ U 9

The same works for functions, integrating over any curve C: F (b) F (a) = df where a is the start of C and b the end of C. We will write this as Theorem 3 (Fundamental Theorem of Calculus) F = df. C Here C means the point b with positive orientation (because the curve C goes from a to b), hence the F (b), and the point a with negative orientation, hence the F (a). So the same Stokes theorem handles both cases: ϑ = dϑ where ϑ can be a function or a line element. This will keep working in any number of dimensions. On the plane, we only have dx and dy to build elements out of, so since C U C dx dx = dy dy = 0 we can t multiply three differentials together without getting zero. So the d of an area element H(x, y) dx dy must be d (H(x, y) dx dy) = 0 since there is nothing else for it to be. In higher dimensions we have volume elements like dx dy dz and so on. Exercise 3.5 With these definitions of d, show that dd = 0 on a function, line element or area element. (We will write this as d 2 = 0.) 10

Exercise 3.6 Show that d(fϑ) = dfϑ + fdϑ for any function f and line element ϑ. Exercise 3.7 Show that if δ is any other operation satisfying δ 2 = 0 and agreeing with d on functions: df = δf and satisfying then δ(fϑ) = dfϑ + f(δϑ) δ = d. Solution: We start with the observation that δ 2 f(x, y) = 0 for any function. Write out how δ behaves in coordinates: so that ϑ = F dx + G dy δϑ = df dx + F δ(dx) + dg dy + Gδ(dy) = df dx + F δ 2 x + dg dy + Gδ 2 y = df dx + dg dy = dϑ. So δ = d on functions and on line elements. The same result on area elements is quite easy. Exercise 3.8 Use the last result to show that if you take d and then change coordinates, you get the same result as changing coordinates and then taking d. In other words, d is independent of coordinates. Solution: We know that the result is true for functions: d X,Y coordinates F = d x,y coordinates F. 11

Let δ be δ = d X,Y coordinates i.e. the operation given by changing the coordinates, and then taking d in the new coordinates, and then changing coordinates back again. We see immediately that this satisfies the requirements of the last exercise. Example 3.2 We will take d of ϑ = x 2 dy in both rectangular and polar coordinates. First, in rectangular Now in polar dϑ = 2xdxdy. ϑ = r 2 cos 2 θ (dr sin θ + r cos θ dθ) = r 2 cos 2 θ sin θ dr + r 3 cos 3 θ dθ. Taking d (and recalling that dr dr = 0, etc.) But recalling that dϑ = 2r 2 cos θdr dθ. dx dy = r dr dθ we see that this is the same result in polar coordinates as we found in rectangular coordinates. The operation d is the only coordinate invariant differential operator. 4 Proof of Stokes theorem in more generality 4.1 Regions with smooth boundary Given functions f(x, y) and g(x, y), we take our 1-form ϑ = f(x, y) dx + g(x, y) dy and a region U with smooth boundary. 12

Suppose that the line element ϑ vanishes everywhere except somewhere deep inside U; in particular it vanishes near the boundary. Then certainly 0 = ϑ. Put a big box around U and apply Stokes theorem to the box to conclude that 0 = ϑ = dϑ = dϑ BOX so Stokes theorem holds here too. We only need the result near the boundary. Now suppose that ϑ vanishes everywhere except near a little piece of the boundary. All we have to do is to change coordinates to get that piece of the boundary to straighten out to a piece of a straight line. Then we make a box with that piece of straight line appearing along its bottom side. How do we do this? Suppose that (by rotating the plane if needed) the piece of boundary that we want to handl is the graph of a function y = f(x). Then use the new coordinates X, Y and map x = X, y = Y + f(x). Exercise 4.1 Where does this change of coordinates send the piece of curve y = f(x)? If we have to prove Stokes theorem for any line element on any region with smooth boundary, we just write the line element as a sum BOX U ϑ = i ϑ i where each ϑ i represents the contribution to ϑ coming from near some point; in other words each ϑ i is zero except in some little portion of U which is either entirely inside U or entirely outside U (so irrelevant) or sitting on a little smooth piece of the boundary. This gives Stokes theorem on any region with smooth boundary. 4.2 Corners If the boundary is not so smooth, say it has a corner, just use the same argument but change coordinates near the corner to get it to become the corner of a box. This requires changing the angle of the corner to a right angle, and then straightening out the sides. 13

Figure 6: Turning a sharp corner into a square corner How do we do it? The sequence of operations is shown in figure 6. (1) First, use the trick we worked out above for smooth sides to straighten out one side. (2) Then use a linear change of coordinates to fix the angle to be a right angle. (3) Rotate so that the straight side is the y axis. Then the bent side looks like the graph of a function y = f(x), near the corner. (4) Now straighten out that bent side using the same trick as in (1). Exercise 4.2 Why doesn t the last step, straightening the bent side, bend the already-straightened side? Exercise 4.3 Calculate the coordinate changes this gives you for the region y x, y 0, x 0. Solution: X = y, Y = x y 2. 4.3 Cusps Exercise 4.4 Why is the above reasoning not good enough to prove Stokes theorem on the region 1 x 1, y 3 x 2, y 1 which is drawn in figure 7 on the next page? Hint: consider the slope of the tangent line to the boundary near the origin. Show that this is not a corner. 14

1 0.8 0.6 0.4 0.2 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 x Figure 7: A region whose boundary has a cusp Exercise 4.5 What happens to the cusp from the previous exercise under the change of coordinates x = X 3, y = Y? What happens to the region? Calculate the integral x dy around the boundary of that region, in both x, y and X, Y coordinates. Solution: x dy = 4 5. Exercise 4.6 Does this change of coordinates in the previous exercise prove Stokes theorem for the region in figure 7? If the boundary was as nasty as in figure 8 on the next page, like the graph of y = round(1/x) 1/x, then Stokes theorem would not hold, because the integral of a line element on this curve doesn t always make sense. It is too oscillatory. 15

5 Complex notation Figure 8: Too nasty for Stokes theorem Nothing was said so far about the functions f and g appearing in a line element f(x, y) dx + g(x, y) dy so there is no problem letting them be complex valued instead of real valued. Or vector valued. Or matrix valued. Consider them complex valued for now. Writing z = x + iy, z = x iy we are naturally led to define dz = dx + i dy, d z = dx i dy. This tells us what means: it means C C f(z) dz f(x + iy) dx + i Following this pattern, by analogy with we want to write C df = F F dx + x y dy df = F z f(x + iy) dy. dz + F z d z. 16

Exercise 5.1 Show that to have df be the same line element in both cases forces F z = 1 ( ) F 2 x i F y F z = 1 ( ) F 2 x + i F. y Exercise 5.2 Show that if F = u+iv splits F into real and imaginary parts, then F z = 0 precisely when u and v satisfy the Cauchy Riemann equations u x = v y v x = u y. We will call F (z) holomorphic or analytic if it satisfies these. Exercise 5.3 Show that Exercise 5.4 Show that and the same for z. z z = 1 z z = 0 z z = 0 z z = 1. z F G = F z G + F z Exercise 5.5 Put the last two exercises together to show that z zp z q = pz p 1 z q (differentiation in z leaving z alone), and a similar identity for z. 17

Exercise 5.6 Show that the sum, product, difference and quotient of holomorphic functions is holomorphic (except, for the quotient, when the denominator vanishes just ignore that possibility for now). Exercise 5.7 Show that dz d z = 2i dx dy. Exercise 5.8 Show that dz dz = 0. Theorem 4 (Complex Stokes) F dz + G d z = U ( G z F ) dz d z. z Exercise 5.9 Prove this by rewriting both sides in terms of dx and dy. 6 Goursat s theorem This is a little weaker than Goursat s actual theorem, because he didn t require as much smoothness as we will. But ignoring that: Theorem 5 (Goursat) If F is a holomorphic function on a region U then F (z) dz = 0. Proof Stokes theorem. 7 The Cauchy Integral Theorem Theorem 6 If f(z) is a holomorphic function on a region U then at any point z 0 in U f (z 0 ) = 1 f(z) dz. 2πi z z 0 18

Figure 9: Cut a hole out of the region U to make the region U ɛ Proof Let ϑ = 1 f(z) dz 2πi z z 0 be the line element we are trying to integrate. It looks nasty at z = z 0, because the denominator vanishes there. But away from there dϑ = 1 ( ) f(z) 2πi d dz z z 0 = 0 because f(z)/(z z 0 ) is a quotient of holomorphic functions. We can t apply Stokes theorem here, because the line element ϑ is nasty at z = z 0. As in figure 9, we cut out a small disk, of radius ε, from around z 0 ; call that disk D ε. Let U ε be the whole set U with D ε cut out of it. Then (if the disk is very small) ε = D ε. The minus sign here means that we orient this circle backwards. We now get ϑ = dϑ = 0. ε U ε or ϑ ϑ = 0. D ε 19

Writing this out explicitly, 1 2πi f(z) dz = 1 f(z) dz. z z 0 2πi D ɛ z z 0 We want to take the limit as ε 0. Write out the right hand side in polar coordinates, z = z 0 + εe iθ. You get D ε ϑ = 1 2πi = 1 2πi = 1 2π θ=2π θ=0 2π 0 2π 0 f ( z 0 + εe iθ) d ( z 0 + εe iθ) εe iθ f ( z 0 + εe iθ) εe iθ i dθ εe iθ f ( z 0 + εe iθ) dθ which is just the average value of f(z) along the circle D ε. As ε 0, this obviously approaches f (z 0 ). 20