From unitary dynamics to statistical mechanics in isolated quantum systems

Similar documents
Quantum quenches in the thermodynamic limit

Fluctuation-dissipation theorem in isolated quantum systems out of equilibrium

arxiv: v2 [cond-mat.quant-gas] 17 Jun 2014

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

Under what conditions do quantum systems thermalize?

Correlated Electron Dynamics and Nonequilibrium Dynamical Mean-Field Theory

(Dynamical) quantum typicality: What is it and what are its physical and computational implications?

Dephasing, relaxation and thermalization in one-dimensional quantum systems

What is thermal equilibrium and how do we get there?

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Breakdown and restoration of integrability in the Lieb-Liniger model

General quantum quenches in the transverse field Ising chain

NON-EQUILIBRIUM DYNAMICS IN

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

Separation of relaxation time scales in a quantum Newton s cradle

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

A quantum dynamical simulator Classical digital meets quantum analog

Fabian Essler (Oxford)

arxiv: v4 [cond-mat.stat-mech] 25 Jun 2015

Emergent Fluctuation Theorem for Pure Quantum States

First Problem Set for Physics 847 (Statistical Physics II)

Derivation of Bose-Einstein and Fermi-Dirac statistics from quantum mechanics: Gauge-theoretical structure

Quantum phase transitions and pairing in Strongly Attractive Fermi Atomic Gases

Dynamics of Quantum Many Body Systems Far From Thermal Equilibrium

Non-Equilibrium Physics with Quantum Gases

(De)-localization in mean-field quantum glasses

Quantum Quenches in Chern Insulators

Efficient thermodynamic description of the Gaudin-Yang model

1 Fluctuations of the number of particles in a Bose-Einstein condensate

Non-equilibrium dynamics and effective temperatures of a noisy quantum Ising chain

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

Thermalization in Quantum Systems

The nature of superfluidity in the cold atomic unitary Fermi gas

Entanglement Entropy of Eigenstates of Quadratic Fermionic Hamiltonians

arxiv: v1 [cond-mat.quant-gas] 18 Jul 2017

Field-Driven Quantum Systems, From Transient to Steady State

arxiv: v2 [cond-mat.stat-mech] 5 Apr 2018

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

arxiv: v1 [hep-th] 26 Sep 2017

Typicality paradigm in Quantum Statistical Thermodynamics Barbara Fresch, Giorgio Moro Dipartimento Scienze Chimiche Università di Padova

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations:

Time Evolving Block Decimation Algorithm

High-Temperature Criticality in Strongly Constrained Quantum Systems

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

Many-body localization characterized by entanglement and occupations of natural orbitals

SUPPLEMENTARY INFORMATION

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

arxiv: v1 [cond-mat.quant-gas] 2 Jun 2014

Classical and quantum simulation of dissipative quantum many-body systems

Quantum quenches and thermalization on scale-free graphs

Probing Many Body Quantum Systems by Interference

Second Quantization: Quantum Fields

Taming the non-equilibrium: Equilibration, thermalization and the predictions of quantum simulations

Quantum Simulation with Rydberg Atoms

1 Equal-time and Time-ordered Green Functions

Quantum dynamics in ultracold atoms

The Nuclear Equation of State

Theoretical Statistical Physics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Many-Body Localization. Geoffrey Ji

BEC in one dimension

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

arxiv: v1 [quant-ph] 8 Sep 2010

Statistical physics and light-front quantization. JR and S.J. Brodsky, Phys. Rev. D70, (2004) and hep-th/

Coherent backscattering in Fock space. ultracold bosonic atoms

SECOND QUANTIZATION. Lecture notes with course Quantum Theory

I. BASICS OF STATISTICAL MECHANICS AND QUANTUM MECHANICS

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Squeezing and superposing many-body states of Bose gases in confining potentials

Many-body physics 2: Homework 8

Time evolution of correlations in strongly interacting fermions after a quantum quench

Language of Quantum Mechanics

arxiv: v1 [cond-mat.str-el] 7 Oct 2017

Numerical Studies of Correlated Lattice Systems in One and Two Dimensions

Elements of Statistical Mechanics

Time-dependent DMRG:

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Quantum statistics: properties of the Fermi-Dirac distribution.

Anderson Localization Looking Forward

Symmetry properties, density profiles and momentum distribution of multicomponent mixtures of strongly interacting 1D Fermi gases

Einselection without pointer states -

Fractional exclusion statistics: A generalised Pauli principle

1.1 Creation and Annihilation Operators in Quantum Mechanics

Low-dimensional Bose gases Part 1: BEC and interactions

Thermodynamical cost of accuracy and stability of information processing

Response of quantum pure states. Barbara Fresch 1, Giorgio J. Moro 1

Auxiliary-field quantum Monte Carlo methods for nuclei and cold atoms

arxiv: v1 [cond-mat.stat-mech] 8 Oct 2016

Quantum superpositions and correlations in coupled atomic-molecular BECs

Mean-field theory for extended Bose-Hubbard model with hard-core bosons. Mathias May, Nicolas Gheeraert, Shai Chester, Sebastian Eggert, Axel Pelster

arxiv: v1 [cond-mat.quant-gas] 29 Mar 2016

Two-time correlation functions and the Lee-Yang zeros for an interacting Bose gas

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Mixing Quantum and Classical Mechanics: A Partially Miscible Solution

Quantum quenches in the non-integrable Ising model

Ensembles and incomplete information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Quantum Cluster Methods (CPT/CDMFT)

Transcription:

From unitary dynamics to statistical mechanics in isolated quantum systems Marcos Rigol Department of Physics The Pennsylvania State University The Tony and Pat Houghton Conference on Non-Equilibrium Statistical Mechanics ICERM, Brown University May 4, 2015 Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 1 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 2 / 29

Experiments with ultracold gases in 1D Effective one-dimensional δ potential M. Olshanii, PRL 81, 938 (1998). where U 1D (x) = g 1D δ(x) g 1D = 2 a s ω 1 Ca s mω 2 Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 3 / 29

Experiments with ultracold gases in 1D Effective one-dimensional δ potential M. Olshanii, PRL 81, 938 (1998). where U 1D (x) = g 1D δ(x) g 1D = 2 a s ω 1 Ca s mω 2 Girardeau 60, Lieb and Liniger 63 T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004). T. Kinoshita, T. Wenger, and D. S. Weiss, Phys. Rev. Lett. 95, 190406 (2005). γ eff = mg 1D 2 ρ Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 3 / 29

Absence of thermalization in 1D? Density profile Momentum profile density momentum distribution position momentum T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006). MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 4 / 29

Absence of thermalization in 1D? Density profile Momentum profile τ=0 τ=0 density momentum distribution position momentum T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006). MR, A. Muramatsu, and M. Olshanii, Phys. Rev. A 74, 053616 (2006). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 4 / 29

Absence of thermalization in 1D? n k 0 0 0.2 0.4 0.6 0.8 1 τ 1000 Experiment 2000 Theory 3000 4000 π/2 π/4 0 π/4 π/2 k Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 5 / 29

Absence of thermalization in 1D? T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440, 900 (2006). γ = mg 1D 2 ρ g 1D: Interaction strength ρ: One-dimensional density If γ 1 the system is in the strongly correlated Tonks-Girardeau regime If γ 1 the system is in the weakly interacting regime Gring et al., Science 337, 1318 (2012). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 6 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 7 / 29

Exact results from quantum mechanics If the initial state is not an eigenstate of Ĥ ψ 0 α where Ĥ α = E α α and E 0 = ψ 0 Ĥ ψ 0, then a generic observable O will evolve in time following O(τ) ψ(τ) Ô ψ(τ) where ψ(τ) = e iĥτ ψ 0. Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 8 / 29

Exact results from quantum mechanics If the initial state is not an eigenstate of Ĥ ψ 0 α where Ĥ α = E α α and E 0 = ψ 0 Ĥ ψ 0, then a generic observable O will evolve in time following O(τ) ψ(τ) Ô ψ(τ) where ψ(τ) = e iĥτ ψ 0. What is it that we call thermalization? O(τ) = O(E 0 ) = O(T ) = O(T, µ). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 8 / 29

Exact results from quantum mechanics If the initial state is not an eigenstate of Ĥ ψ 0 α where Ĥ α = E α α and E 0 = ψ 0 Ĥ ψ 0, then a generic observable O will evolve in time following O(τ) ψ(τ) Ô ψ(τ) where ψ(τ) = e iĥτ ψ 0. What is it that we call thermalization? O(τ) = O(E 0 ) = O(T ) = O(T, µ). One can rewrite O(τ) = α,α C α C αe i(e α Eα )τ O α α where ψ 0 = α C α α, Taking the infinite time average (diagonal ensemble ˆρ DE α C α 2 α α ) τ 1 O(τ) = lim dτ Ψ(τ τ τ ) Ô Ψ(τ ) = C α 2 O αα Ô diag, 0 α which depends on the initial conditions through C α = α ψ 0. Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 8 / 29

Width of the energy density after a sudden quench Initial state ψ 0 = α Cα α is an eigenstate of Ĥ0. At τ = 0 Ĥ 0 Ĥ = Ĥ0 + Ŵ with Ŵ = j ŵ(j) and Ĥ α = E α α. MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 9 / 29

Width of the energy density after a sudden quench Initial state ψ 0 = α Cα α is an eigenstate of Ĥ0. At τ = 0 Ĥ 0 Ĥ = Ĥ0 + Ŵ with Ŵ = j ŵ(j) and Ĥ α = E α α. The width of the weighted energy density E is then E = Eα C 2 α 2 ( E α C α 2 ) 2 = ψ 0 Ŵ 2 ψ 0 ψ 0 Ŵ ψ0 2, α α or E = j 1,j 2 σ [ ψ 0 ŵ(j 1)ŵ(j 2) ψ 0 ψ 0 ŵ(j 1) ψ 0 ψ 0 ŵ(j 2) ψ 0 ] N N, where N is the total number of lattice sites. MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 9 / 29

Width of the energy density after a sudden quench Initial state ψ 0 = α Cα α is an eigenstate of Ĥ0. At τ = 0 Ĥ 0 Ĥ = Ĥ0 + Ŵ with Ŵ = j ŵ(j) and Ĥ α = E α α. The width of the weighted energy density E is then E = Eα C 2 α 2 ( E α C α 2 ) 2 = ψ 0 Ŵ 2 ψ 0 ψ 0 Ŵ ψ0 2, α α or E = j 1,j 2 σ [ ψ 0 ŵ(j 1)ŵ(j 2) ψ 0 ψ 0 ŵ(j 1) ψ 0 ψ 0 ŵ(j 2) ψ 0 ] N N, where N is the total number of lattice sites. Since the width W of the full energy spectrum is N ɛ = E W N 1 N, so, as in any thermal ensemble, ɛ vanishes in the thermodynamic limit. MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 9 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 10 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). ˆb 2 i = ˆb 2 i = 0 Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 11 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Nonequilibrium dynamics in 2D ˆb 2 i = ˆb 2 i = 0 Initial Weak n.n. U = 0.1J N b = 5 bosons N = 21 lattice sites Hilbert space: D = 20349 All states are used! Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 11 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). ˆb 2 i = ˆb 2 i = 0 One can rewrite O(τ) = α,α C α C αe i(e α Eα )τ O α α where ψ 0 = α C α α, and taking the infinite time average (diagonal ensemble) 1 O(τ) = lim τ τ τ 0 dτ Ψ(τ ) Ô Ψ(τ ) = α C α 2 O αα Ô diag, which depends on the initial conditions through C α = α ψ 0. Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 11 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Nonequilibrium dynamics in 2D ˆb 2 i = ˆb 2 i = 0 2 Time evolution of n(k x ) time average tj=000 Weak n.n. U = 0.1J n(k x ) 1.5 1 N b = 5 bosons N = 21 lattice sites Hilbert space: D = 20349 All states are used! 0.5 2 1 0 1 2 k x [2π/(L x d)] Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 11 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008). Nonequilibrium dynamics in 2D ˆb 2 i = ˆb 2 i = 0 n(k x =0) 2 1.8 1.6 1.4 1.2 relaxation dynamics time average Weak n.n. U = 0.1J N b = 5 bosons N = 21 lattice sites Hilbert space: D = 20349 All states are used! 1 0 50 100 150 200 tj Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 11 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 12 / 29

Statistical description after relaxation Canonical calculation } O = Tr {Ôˆρ ( ) ˆρ = Z 1 exp Ĥ/k BT { ( )} Z = Tr exp Ĥ/k BT } E 0 = Tr {Ĥ ˆρ T = 1.9J n(k x ) 2 1.5 1 Momentum distribution initial state time average canonical 0.5-2 -1 0 1 2 k x [2π/(L x d)] Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 13 / 29

Statistical description after relaxation Canonical calculation } O = Tr {Ôˆρ ( ) ˆρ = Z 1 exp Ĥ/k BT { ( )} Z = Tr exp Ĥ/k BT } E 0 = Tr {Ĥ ˆρ T = 1.9J Microcanonical calculation 1 O = Ψ α N Ô Ψ α states α with E 0 E < E α < E 0 + E N states : # of states in the window n(k x ) n(k x ) 2 1.5 1 Momentum distribution initial state time average canonical 0.5-2 -1 0 1 2 k x [2π/(L x d)] 2 1.5 1 initial state time average microcanonical 0.5-2 -1 0 1 2 k x [2π/(L x d)] Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 13 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 14 / 29

Eigenstate thermalization hypothesis Paradox? C α 2 O αα = O microcan. (E 0 ) α 1 O αα N E0, E E 0 E α < E Left hand side: Depends on the initial conditions through C α = Ψ α ψ I Right hand side: Depends only on the initial energy Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 15 / 29

Eigenstate thermalization hypothesis Paradox? C α 2 O αα = O microcan. (E 0 ) α 1 O αα N E0, E E 0 E α < E Left hand side: Depends on the initial conditions through C α = Ψ α ψ I Right hand side: Depends only on the initial energy i) For physically relevant initial conditions, C α 2 practically do not fluctuate. ii) Large (and uncorrelated) fluctuations occur in both O αα and C α 2. A physically relevant initial state performs an unbiased sampling of O αα. MR and M. Srednicki, PRL 108, 110601 (2012). K. He and MR, Phys. Rev. A 87, 043615 (2013). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 15 / 29

Eigenstate thermalization hypothesis Paradox? C α 2 O αα = O microcan. (E 0 ) α 1 O αα N E0, E E 0 E α < E Left hand side: Depends on the initial conditions through C α = Ψ α ψ I Right hand side: Depends only on the initial energy MR, PRA 82, 037601 (2010). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 15 / 29

Eigenstate thermalization hypothesis Paradox? C α 2 O αα = O microcan. (E 0 ) α 1 O αα N E0, E E 0 E α < E Left hand side: Depends on the initial conditions through C α = Ψ α ψ I Right hand side: Depends only on the initial energy i) For physically relevant initial conditions, C α 2 practically do not fluctuate. ii) Large (and uncorrelated) fluctuations occur in both O αα and C α 2. A physically relevant initial state performs an unbiased sampling of O αα. MR and M. Srednicki, PRL 108, 110601 (2012). K. He and MR, Phys. Rev. A 87, 043615 (2013). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 15 / 29

Eigenstate thermalization hypothesis Paradox? C α 2 O αα = O microcan. (E 0 ) α 1 O αα N E0, E E 0 E α < E Left hand side: Depends on the initial conditions through C α = Ψ α ψ I Right hand side: Depends only on the initial energy Eigenstate thermalization hypothesis (ETH) [J. M. Deutsch, PRA 43 2046 (1991); M. Srednicki, PRE 50, 888 (1994); MR, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).] iii) The expectation value Ψ α Ô Ψ α of a few-body observable Ô in an eigenstate of the Hamiltonian Ψ α, with energy E α, of a large interacting many-body system equals the thermal average of Ô at the mean energy E α : Ψ α Ô Ψ α = O microcan. (E α ) Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 15 / 29

Eigenstate thermalization hypothesis 2 Momentum distribution Eigenstates a d are the ones with energies closest to E 0 n(k x ) 1.5 1 time average/microcan. eigenstate a eigenstate b eigenstate c eigenstate d 0.5-2 -1 0 1 2 k x [2π/L x a] Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 16 / 29

Eigenstate thermalization hypothesis 2 Momentum distribution Eigenstates a d are the ones with energies closest to E 0 3 n(k x ) 1.5 1 time average/microcan. eigenstate a eigenstate b eigenstate c eigenstate d 0.5-2 -1 0 1 2 k x [2π/L x a] n(k x =0) 2 1 0 ρ(e) exact ρ(e) microcan. ρ(e) canonical 0-10 -8-6 -4-2 0 E[J] 2 1 ρ(e)[j -1 ] n(k x = 0) vs energy ρ(e) = P(E) dens. stat. P (E) exact C α 2 P (E) mic constant P (E) can exp ( E/k B T ) Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 16 / 29

One-dimensional integrable case Similar experiment in one dimension Initial 8 sites 13 sites Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 17 / 29

One-dimensional integrable case Similar experiment in one dimension Initial 8 sites 13 sites 0.6 Time average vs Stat. Mech. 0.4 No thermalization! n(k x ) 0.2 time average microcan. canonical 0-10 -5 0 5 10 k x [2π/L x a] Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 17 / 29

Breakdown of eigenstate thermalization 0.6 Momentum distribution Eigenstates a d are the ones with energies closest to E 0 1.5 n(k x ) 0.4 0.2 eigenstate a eigenstate b eigenstate c eigenstate d 0-10 -5 0 5 10 k x [2π/L x a] n(k x =0) 1 0.5 0 ρ(e) exact ρ(e) microcan. ρ(e) canonical 0-8 -6-4 -2 0 E[J] 1.5 1 0.5 ρ(e)[j -1 ] n(k x = 0) vs energy ρ(e) = P(E) dens. stat. P (E) exact C α 2 P (E) mic constant P (E) can exp ( E/k B T ) Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 18 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 19 / 29

Relaxation dynamics of hard-core bosons in 2D Hard-core boson Hamiltonian Ĥ = J ) (ˆb iˆb j + H.c. + U ˆn iˆn j, i,j i,j ˆb 2 i = ˆb 2 i = 0 Nonequilibrium dynamics in 2D n(k x =0) 2 1.8 1.6 1.4 1.2 relaxation dynamics time average Weak n.n. U = 0.1J N b = 5 bosons N = 21 lattice sites Hilbert space: D = 20349 All states are used! 1 0 50 100 150 200 tj Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 20 / 29

Time fluctuations Are they small because of dephasing? Ô(t) Ô(t) = α,α α α C α C αe i(e α Eα )t O α α α,α α α e i(e α Eα )t O α N α states N 2 states N states O typical α α Otypical α α Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 21 / 29

Time fluctuations Are they small because of dephasing? Ô(t) Ô(t) = α,α α α C α C αe i(e α Eα )t O α α α,α α α e i(e α Eα )t O α N α states N 2 states N states O typical α α Otypical α α Time average of Ô Ô = α C α 2 O αα α 1 O αα Oαα typical N states One needs: O typical α α Otypical αα Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 21 / 29

Time fluctuations Are they small because of dephasing? Ô(t) Ô(t) = α,α α α C α C αe i(e α Eα )t O α α α,α α α e i(e α Eα )t O α N α states N 2 states N states O typical α α Otypical α α Time average of Ô Ô = α C α 2 O αα α 1 O αα Oαα typical N states One needs: O typical α α Otypical αα Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 21 / 29

Time fluctuations Are they small because of dephasing? Ô(t) Ô(t) = α,α α α C α C αe i(e α Eα )t O α α α,α α α e i(e α Eα )t O α N α states N 2 states N states O typical α α Otypical α α Time average of Ô Ô = α C α 2 O αα α 1 O αα Oαα typical N states One needs: O typical α α Otypical αα M. Srednicki, J. Phys. A 29, L75 (1996). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 21 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 22 / 29

Bose-Fermi mapping Hard-core boson Hamiltonian in an external potential Ĥ = J ) (ˆb iˆb i+1 + H.c. + v i ˆn i, constraints i i ˆb 2 i = ˆb 2 i = 0 Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 23 / 29

Bose-Fermi mapping Hard-core boson Hamiltonian in an external potential Ĥ = J ) (ˆb iˆb i+1 + H.c. + 2 v i ˆn i, constraints ˆb i = ˆb 2 i = 0 i i Map to spins and then to fermions (Jordan-Wigner transformation) σ + i = ˆf i i 1 β=1 e iπ ˆf ˆf i 1 β β, σ i = β=1 e iπ ˆf β ˆf β ˆfi Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 23 / 29

Bose-Fermi mapping Hard-core boson Hamiltonian in an external potential Ĥ = J ) (ˆb iˆb i+1 + H.c. + 2 v i ˆn i, constraints ˆb i = ˆb 2 i = 0 i i Map to spins and then to fermions (Jordan-Wigner transformation) σ + i Exact Green s function = ˆf i Computation time L 2 N 3 i 1 β=1 e iπ ˆf ˆf i 1 β β, σ i = β=1 [ (P G ij (τ) = det l (τ) ) ] P r (τ) e iπ ˆf β ˆf β ˆfi 3000 lattice sites, 300 particles MR and A. Muramatsu, PRL 93, 230404 (2004); PRL 94, 240403 (2005). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 23 / 29

Relaxation dynamics in an integrable system Density profile Momentum profile 0.4 0 0 0.2 0.3 n 0.1 n k 0.2 0.1 0 300 150 0 150 300 x/a 0 π π/2 0 π/2 ka π MR, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 24 / 29

Outline 1 Introduction Experiments with ultracold gases Unitary evolution and thermalization 2 Generic (nonintegrable) systems Time evolution vs exact time average Statistical description after relaxation Eigenstate thermalization hypothesis Time fluctuations 3 Integrable systems Time evolution Generalized Gibbs ensemble 4 Summary Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 25 / 29

Statistical description after relaxation Thermal equilibrium [ ) ] ˆρ = Z 1 exp (Ĥ µ ˆNb /k B T { [ ) ]} Z = Tr exp (Ĥ µ ˆNb /k B T } { } E = Tr {Ĥ ˆρ, N b = Tr ˆNb ˆρ MR, PRA 72, 063607 (2005). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 26 / 29

Statistical description after relaxation Thermal equilibrium [ ) ] ˆρ = Z 1 exp (Ĥ µ ˆNb /k B T { [ ) ]} Z = Tr exp (Ĥ µ ˆNb /k B T } { } E = Tr {Ĥ ˆρ, N b = Tr ˆNb ˆρ n k=0 1.5 1 0.5 Evolution of n k=0 Time evolution Thermal MR, PRA 72, 063607 (2005). n k 0 0 1000 2000 3000 4000 0.5 0.25 τ n k after relaxation After relax. (N b =30) After relax. (N b =15) Thermal (N b =30) Thermal (N b =15) 0 -π -π/2 0 π/2 π ka Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 26 / 29

Statistical description after relaxation Thermal equilibrium [ ) ] ˆρ = Z 1 exp (Ĥ µ ˆNb /k B T { [ ) ]} Z = Tr exp (Ĥ µ ˆNb /k B T } { } E = Tr {Ĥ ˆρ, N b = Tr ˆNb ˆρ n k=0 1.5 1 0.5 Evolution of n k=0 Time evolution Thermal MR, PRA 72, 063607 (2005). Integrals of motion (underlying noninteracting fermions) Ĥ F ˆγ m f 0 = E mˆγ m f 0 } } f {Îf m = {ˆγ m ˆγ m f n k 0 0 1000 2000 3000 4000 0.5 0.25 τ n k after relaxation After relax. (N b =30) After relax. (N b =15) Thermal (N b =30) Thermal (N b =15) 0 -π -π/2 0 π/2 π ka Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 26 / 29

Statistical description after relaxation Thermal equilibrium [ ) ] ˆρ = Z 1 exp (Ĥ µ ˆNb /k B T { [ ) ]} Z = Tr exp (Ĥ µ ˆNb /k B T } { } E = Tr {Ĥ ˆρ, N b = Tr ˆNb ˆρ n k=0 1.5 1 0.5 Evolution of n k=0 Time evolution Thermal GGE MR, PRA 72, 063607 (2005). Generalized Gibbs ensemble [ ˆρ c = Zc 1 exp ] λ m Î m m { [ Z c = Tr exp ]} λ m Î m m } Îm τ=0 = Tr {Îm ˆρ c n k 0 0 1000 2000 3000 4000 0.5 0.25 τ n k after relaxation After relaxation Thermal GGE 0 -π -π/2 0 π/2 π ka Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 26 / 29

Summary Thermalization occurs in generic isolated systems Finite size effects Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Summary Thermalization occurs in generic isolated systems Finite size effects Eigenstate thermalization hypothesis Ψ α Ô Ψ α = O microcan. (E α ) Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Summary Thermalization occurs in generic isolated systems Finite size effects Eigenstate thermalization hypothesis Ψ α Ô Ψ α = O microcan. (E α ) Small time fluctuations smallness of off-diagonal elements Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Summary 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 00000 11111 000000 111111 0000000 1111111 00000 11111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 Thermalization occurs in generic isolated systems Finite size effects Eigenstate thermalization hypothesis Ψ α Ô Ψ α = O microcan. (E α ) Small time fluctuations smallness of off-diagonal elements Time plays only an auxiliary role E a E b E c E a E b E c thermal thermal thermal thermal thermal thermal coherence time dephasing coherence Thermal state Initial state EIGENSTATE THERMALIZATION Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Summary 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 00000 11111 000000 111111 0000000 1111111 00000 11111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 Thermalization occurs in generic isolated systems Finite size effects Eigenstate thermalization hypothesis Ψ α Ô Ψ α = O microcan. (E α ) Small time fluctuations smallness of off-diagonal elements Time plays only an auxiliary role Integrable systems are different (Generalized Gibbs ensemble) E a E b E c E a E b E c thermal thermal thermal thermal thermal thermal coherence time dephasing coherence Thermal state Initial state EIGENSTATE THERMALIZATION Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Summary 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 00000 11111 000000 111111 0000000 1111111 00000 11111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 00000 11111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 0000000 1111111 000000000 111111111 00000000000 11111111111 00000000000000 11111111111111 0000000000000000 1111111111111111 000000000000000 111111111111111 0000000000000 1111111111111 00000000000 11111111111 0000000000 1111111111 00000000 11111111 000000 111111 00000 11111 000 111 Thermalization occurs in generic isolated systems Finite size effects Eigenstate thermalization hypothesis Ψ α Ô Ψ α = O microcan. (E α ) Small time fluctuations smallness of off-diagonal elements Time plays only an auxiliary role Integrable systems are different (Generalized Gibbs ensemble) Thermalization and ETH break down close integrability (finite system) Quantum equivalent of KAM? E a E b E c E a E b E c thermal thermal thermal thermal thermal thermal coherence time dephasing coherence EIGENSTATE THERMALIZATION Thermal state Initial state Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 27 / 29

Collaborators Vanja Dunjko (U Mass Boston) Alejandro Muramatsu (Stuttgart U) Maxim Olshanii (U Mass Boston) Anatoli Polkovnikov (Boston U) Lea F. Santos (Yeshiva U) Mark Srednicki (UC Santa Barbara) Current group members: Deepak Iyer, Baoming Tang Former group members: Kai He (NOAA), Ehsan Khatami (SJSU) Supported by: Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 28 / 29

Information entropy (S j = D k=1 ck j 2 ln c k j 2 ) L.F. Santos and MR, PRE 81, 036206 (2010); PRE 82, 031130 (2010). Marcos Rigol (Penn State) Dynamics in quantum systems May 4, 2015 29 / 29