Study on mechanism of mercury oxidation by fly ash from coal combustion

Similar documents
THE ROLE OF UNBURNED CARBON CONCENTRATES FROM FLY ASHES IN THE OXIDATION AND RETENTION OF MERCURY

Worldwide Pollution Control Association

ISSN: STUDY OF MERCURY TRANSFORMATION WITH CHLORINATED SPECIES UNDER HOMOGENEOUS AND HETEROGENEOUS CONDITIONS

RAPID COMMUNICATION. Hyun-Jo Hong*, Sung-Won Ham*,, Moon Hyeon Kim**, Seung-Min Lee***, and Jung-Bin Lee***

Kinetic modelling of homogeneous low temperature multi-pollutant oxidation by ozone: The importance of SO and HCl in predicting oxidation *

Mercury Oxidation Test Program Results

Topsøe Catalysis Forum 2009

Measurement and Modeling of Elemental Mercury Sorption on Various Activated Carbons in a Fixed- Bed Adsorber

Mercury oxidation across SCR catalyst. Karin Madsen on April 14th 2011 At McIlvaine Company Hot Topic Hour

Energy Technology & Innovation Initiative FACULTY OF ENGINEERING. Mercury oxidation. Alastair Clements 13/06/2012

Effect of oxy-combustion flue gas on mercury oxidation

Unburned Carbon from Fly Ash for Mercury Adsorption: II. Adsorption Isotherms and Mechanisms

Kinetic interpretation on mercury oxidation and transformation in simulated flue gases

MERCURY OXIDATION IN CATALYSTS USED FOR SELECTIVE. Nuria Fernández-Miranda, M. Antonia Lopez-Anton*, Mercedes Díaz-Somoano, M. Rosa Martínez-Tarazona

Experimental evaluation of the effects of quench rate and quartz surface area on homogeneous mercury oxidation

Dynamic Data Modeling of SCR De-NOx System Based on NARX Neural Network Wen-jie ZHAO * and Kai ZHANG

Finite Element Modeling: Mercury Capture by Fly Ash Carbon Sorbent in a Fixed Bed

Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas

Adsorption of Hg 0 on the Unburned Carbon with HF Acid Leaching

NO REDUCTION BY GRAPEFRUIT SKIN-BASED CARBON CATALYST. Abstract. Introduction. Experimental

Introduction. Conference paper

AUTOMOTIVE EXHAUST AFTERTREATMENT

Mercury Adsorption Characteristics of Sulphur-Impregnated Activated Carbon Pellets for the Flue Gas Condition of a Cement-Manufacturing Process

A STUDY ON PRODUCTION OF OXIDANT BY DECOMPOSITION OF H 2

IMPACTS OF FLY ASH COMPOSITION AND FLUE GAS COPONENTS ON MERCURY SPECIATION. Xihua Chen

MSWI Flue Gas Two-Stage Dry Treatment: Modeling and Simulation

Microwave catalytic reduction of nitric oxide in activated carbon bed with a new microwave catalytic reactor system

Introduction to basic mechanism of mercury removal from flue gas downstream incineration plants

Effect of KCl on selective catalytic reduction of NO with NH 3 over a V 2 O 5 /AC catalyst

Supporting Information

SO 2 Removal by Using Jordanian Oil Shale Ash

EXECUTIVE SUMMARY. especially in last 50 years. Industries, especially power industry, are the large anthropogenic

A Critical Review on the Heterogeneous Catalytic Oxidation of Elemental Mercury in Flue Gases

Effects of inorganic chlorine source on dioxin formation using fly ash from a fluidized bed incinerator

Apportioning of Fuel and Thermal NO x

FTIR measurement of NH 3, HCN, SO 2, H 2 S and COS in pulverized lignite oxy-fuel flames Daniel Fleig, Stefan Hjärtstam and Daniel Kühnemuth

Hg Reactions in the Presence of Chlorine Species: Homogeneous Gas Phase and Heterogeneous Gas-Solid Phase

GCE O' LEVEL PURE CHEMISTRY (5073/02) Suggested Answers for 2016 O Level Pure Chemistry Paper 2

CHE 611 Advanced Chemical Reaction Engineering

Example Exercise 10.1 Interpreting Chemical Equation Calculations

ADSORPTION ISOTHERM OF VAPOR-PHASE MERCURY CHLORIDE ONTO SPHERICAL ACTIVATED CARBONS VIA THERMOGRAVIMETRIC ANALYSIS

Experimental Study on NO Removal Using Non-thermal Plasma Oxidation-alkali Absorption

The Effect of Cr Addition on Hg 0 Oxidation and NO Reduction over V 2 O 5 /TiO 2 Catalyst

Elements and Their Oxides

Mercury Oxidation by Fly Ash Constituents and Flue Gases and Its Optimization for the Development of Mercury Control Technologies

Unit 7: Stoichiometry Homework Packet (85 points)

SCR Catalyst Layer Addition Specification and Management

BAE 820 Physical Principles of Environmental Systems

(for tutoring, homework help, or help with online classes)

SCR Catalyst Selection and Management for Improved Hg Oxidation Performance

AE 205 Materials and Energy Balances Asst. Prof. Dr. Tippabust Eksangsri. Chapter 4 Stoichiometry and MB with Reactions

Deactivation of V 2 O 5 /Sulfated TiO 2 Catalyst Used in Diesel Engine for NO X Reduction with Urea

CHEMICAL REACTIONS. Types of Reactions. Steps to Writing Reactions

Reduction of SO 2 Emission Using CuO/γ-Al 2 O 3 Adsorbent: Case Study on Combustion of Algae Biomass Having High Sulfur Content

Reactors. Reaction Classifications

RSC Advances.

CoalGen 2009 Dynamic Control of SCR Minimum Operating Temperature

Study of mercury adsorption by low-cost sorbents. using kinetic modeling

Kinetic enhancement of adsorbent for CO2 capture from atmosphere by porous material

Technologies and Approaches of CO 2 Capture

CO 2 ADSORPTION BY SURFACE MODIFIED CARBON SORBENTS

State how a catalyst speeds up a chemical reaction. ...

ADSORPTION OF NO ON LIGNIN-BASED ACTIVATED CARBONS WITH DIFFERENT POROUS STRUCTURE.

Catalysis Science & Technology

Fuel Processing Technology

Dynamic cyclic performance of phenol-formaldehyde resinderived carbons for pre-combustion CO 2 capture: An experimental study

Experimental research of technology activating catalysts for SCR DeNOx in boiler

Research on Control Mechanism Model of Grate Cooler Based on Seepage Heat Transfer Theory

Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO 2

Steady-State Molecular Diffusion

Introduction. Mathematical model and experimental

Identify the reaction type, predict the products, and balance the equations. If it is a special decomposition or synthesis, identify which kind.

Experimental analysis of removal of SO 2 and NOx for nano Mg-Al composite oxides

Carbonaceous Materials Obtained from Sewage Sludge for NO 2 Removal under Wet Conditions at Room Temperature

Stoichiometry study of the relationships in a

Environmental Aspects of Oil Shale Development: A Review

Highly doped and exposed Cu(I)-N active sites within graphene towards. efficient oxygen reduction for zinc-air battery

Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

Ammonia Selective Catalytic Reduction of NO in a Monolithic Reverse Flow Reactor

Chem 5 Fall This reaction is a (circle ONE) (2) Acid-Base Reaction Precipitation Reaction Redox Reaction

RDF-LIGNITE CO-COMBUSTION IN A CFB BOILER

General Synthesis of Graphene-Supported. Bicomponent Metal Monoxides as Alternative High- Performance Li-Ion Anodes to Binary Spinel Oxides

CHAPTER 1: Chemistry, An Introduction

School of Physical Science and Technology, ShanghaiTech University, Shanghai

A presentation to SEIMA. Activated carbon, the world s most powerful adsorbent

FDE 211-MATERIAL AND ENERGY BALANCES: MATERIAL BALANCES ON REACTIVE SYSTEMS. Dr. Ilgın PakerYıkıcı Fall 2015

Kinetic, Thermodynamic and Regeneration Studies for CO 2 Adsorption onto Activated Carbon

Simultaneous Control of Elemental Mercury/Sulfur Dioxide/Nitrogen Monoxide from Coal-Fired Flue Gases with Metal Oxide-Impregnated Activated Carbon

Simultaneous Removal of COS and H 2 S at Low Temperatures over Nanoparticle α-feooh Based Catalysts

Manufacture and uses includes sulfur dioxide questions

THE APPLICATION OF PROCESS MASS SPECTROMETRY TO FUMED SILICA PRODUCTION

PREPARATION OF ACTIVATED CARBON FROM THE BY-PRODUCTS OF AGRICULTURAL INDUSTRY

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing , China

This exam will be given over 2 days. Part 1: Objectives 1-13 Part 2: Objectives 14-24

Catalysts Applied in Low-Temperature Methane Oxidation

Doctor of Philosophy (Ph.D.)

The Atmosphere Exam questions

Biogas Clean-up and Upgrading by Adsorption on Commercial Molecular Sieves

Reference pg and in Textbook

Adsorbents Evaluation by a Circulating Fluidized Bed System

Transcription:

Articles Engineering Thermophysics January 2010 Vol.55 No.2: 163 167 doi: 10.1007/s11434-009-0567-7 SPECIAL TOPICS: Study on mechanism of mercury oxidation by fly ash from coal combustion ZHAO YongChun 1, ZHANG JunYing 1*, LIU Jing 1, DIAZ-SOMOANO Mercedes 2, MARTINEZ-TARAZONA M. Rosa 2 & ZHENG ChuGuang 1 1 State Key Laboratory of Coal Combustion, Huazhong University of Science & Technology, Wuhan 430074, China; 2 Instituto Nacional del Carbón (CSIC), Francisco Pintado Fe 26, 33011, Oviedo, Spain Received July 5, 2009; accepted July 28, 2009 To understand the interaction of fly ash and mercury, systematic experiments on mercury oxidation in single flue gas composition are conducted on a fixed bed reactor system, the desorption rate and speciation of mercury are valuated. The results indicate that fly ash itself can significantly promote elemental mercury oxidation. A classification of fly ash activated sites is developed according to the speciation of mercury during adsorption-desorption tests, the reaction mechanism of mercury oxidation by fly ash is proposed. Acid gas can promote mercury oxidation and improve the stability of oxidation product. Lattice oxygen is an important oxidant of mercury oxidation. mercury, fly ash, oxidation, adsorption-desorption, flue gas Citation: Zhao Y C, Zhang J Y, Liu J, et al. Study on mechanism of mercury oxidation by fly ash from coal combustion. Chinese Sci Bull, 2010, 55: 163 167, doi: 10.1007/s11434-009-0567-7 Study on emission and control of mercury is one of the hot issues recently [1 10]. The partition and interaction of mercury and flue gas, as well as fly ash particles during coal combustion have significant influence on its distribution, emission and control [1]. The characters of fly ash and interaction with flue gas have an important impact on mercury heterogeneous oxidation [2]. The heterogeneous interaction of fly ash-flue gas-mercury is complex because of the complexity of flue gas compositions and fly ash components. Previous studies investigated the effect of acid gas including Cl 2, HCl, SO x, NO x, etc. on mercury catalytic removal [2 5], but less concerned about other components such as O 2, CO 2, and H 2 O, which were generally considered to have little effect or no effect on Hg 0 oxidation [3]. Besides, the report about intrinsic properties of fly ash on mercury oxidation is rare. Considering the characteristic of fly ash, the contained unburned carbon and activated inorganic components are the key factors of mercury adsorption and oxidation [6 9]. *Corresponding author (email: jyzhang@mail.hust.edu.cn) However, the interaction of fly ash and mercury is still not clear until now. Presto et al. suggest that there are two types of activated sites on the surface of sorbent for mercury: One is stable activated site with higher binding energy between mercury and sorbent, mainly used to capture mercury; the other is catalytic activated sites that can also capture mercury, but its binding energy is low and mercury is easy to re-release from the sorbent, this type of activated sites is just for catalytic oxidation of Hg 0 [11]. This concept explains the difference between adsorption activated site and oxidation activated site, however, this classification is not comprehensive. To understand the detailed interaction mechanism of mercury and fly ash, systematic mercury adsorption-desorption experiments are carried out on a fixed bed reaction system, the interaction between fly ash and mercury with common flue gas components is discussed, and the distribution of mercury species during adsorptiondesorption process is investigated, which provide the basis for clarifying the mechanism of mercury oxidation by fly ash. Science China Press and Springer-Verlag Berlin Heidelberg 2010 csb.scichina.com www.springerlink.com

164 ZHAO YongChun, et al. Chinese Sci Bull January (2010) Vol.55 No.2 1 Experimental section The experimental device used for the mercury capture experiments at the laboratory scale consisted of a glass reactor fitted with an internal tube and external tube, and heated by a furnace (Figure 1). The mercury permeation tube was put into a U-tube inside the constant temperature water tank to generate gaseous mercury. The gaseous mercury was carried by nitrogen and then mixed with air before passing the sorbent bed. The flow was 0.5 1 L/min. The sorbent was composed by 0.5 g fly ash mixed with 1.5 g sand, and then was put into the internal tube. The height of the sorbent bed was about 3 mm, and the temperature was 120 C. A continuous emission monitor (UT3000) was used to measure mercury concentration at the outlet of the reactor, and the Ontario Hydro impinger was used to analyze mercury speciation, the waste gas was adsorbed by chemical solutions. Fly ash samples were collected from electrostatic precipitator ash bucket of power plant which burns typical bituminous coal in Spain (SPA). Duplicate tests were conducted in different atmospheres and conditions to get the average value. 2 Results and discussions 2.1 Homogeneous oxidation in different atmospheres The fly ash-flue gas-mercury gas solid reactions are complex. To exclude the effects of flue gas compositions, know the detailed mechanism of mercury oxidation by fly ash, the systematic homogeneous oxidation of mercury in different flue gas compositions was conducted, the results are shown in Figure 2. There is no obvious homogeneous oxidation for Hg 0 at 120 C in different atmospheres, even with 33 ppm HCl. Widmer investigated the influence of HCl on Hg 0 oxidation, and they found that high mercury oxidation rate only obtained at high temperature and high HCl concentration [12]. Laudal et al. suggested that Cl 2 was the main oxidant of Hg 0 in low temperature flue gas [3]. Therefore, there is no homogeneous oxidation of mercury under all kinds of atmospheres in this experimental system. 2.2 Heterogeneous oxidation of mercury by fly ash Mercury oxidation tests by SPA fly ash in three typical atmospheres (N 2, Air, and HCl) were conducted and lasted for 20 h. As shown in Figure 3, fly ash promoted Hg 0 oxidation during the capture process of mercury. The Hg 0 oxidation rate of SPA fly ash ranges from 3.1% to 18.6% in three atmospheres. HCl is the most important factor of Hg 0 oxidation, however, the influence of O 2 should not be ignored. Hall et al. found O 2 promoted Hg 0 oxidation in their early study [13]. It is worth to mention that SPA fly ash also showed a certain degree of Hg 0 oxidation in the N 2 atmosphere. To validate the oxidation of Hg 0 by fly ash, the fly ashes after adsorbing mercury in these three atmospheres were used to conduct desorption tests. Desorption tests were carried out in an inert atmosphere lasted for 3 h, and the temperature was set as 180 C. The desorption amount of mercury from these three fly ashes ranges from 15% to 25% (Figure 4), which is less than that from activated carbon sorbent [14], this indicates that mercury on fly ash has relatively good stability. Comparing these fly ashes got in different atmospheres, the desorption rate from fly ash in N 2 is similar to that in Air, and both of them are more than that from fly ash in HCl, which illustrates that the interaction between fly ash and mercury is more stable with the occurrence of HCl. The desorption mercury species vary from fly ashes in Figure 1 Schematic diagram of mercury adsorption fixed bed system.

ZHAO YongChun, et al. Chinese Sci Bull January (2010) Vol.55 No.2 165 Figure 2 Homogeneous oxidation of mercury in different atmospheres. Figure 5 Percent of desorption mercury species in different atmospheres (180 C). Figure 3 Mercury oxidation by fresh SPA fly ash in different atmospheres. Figure 4 Desorption rates of fly ashes in N 2 (180 C). three atmospheres. Almost all of the mercury released from the fly ash in Air and HCl are Hg 2+, while mercury released from the fly ash in N 2 contains about 50% Hg 0 and Hg 2+ (Figure 5). Although the Hg 2+ concentration in flue gas after passing the sorbent is not so high in N 2, the released Hg 2+ during desorption of this fly ash occupied about 7% of the total mercury in the inlet, which validates that fly ash itself can oxidize Hg 0, even in N 2. 2.3 Interaction mechanism of fly ash and mercury The oxidation of mercury happened simultaneously with the capture of mercury by fly ash. To understand the detailed interaction mechanism of mercury and fly ash, mercury species generated during adsorption-desorption process were classified as follows: (i) Hg 2+ in adsorption process: similar to the Hg 2+ from the oxidation by catalytic activated sites proposed by Presto et al. [15]. This kind of activated sites is called low binding energy catalytic oxidation active sites FA1; (ii) Hg 2+ released during desorption process: the active sites that generate this Hg 2+ can oxidize Hg 0, and the binding energy is higher. So this type of active sites is called catalytic oxidation active sites FA2; (iii) Hg 0 released during desorption process: the active site combined with this Hg 0 only adsorbed Hg 0, no catalytic oxidation happened on this site. So this type of active sites is called adsorption active sites FA3; (iv) Residual mercury in fly ash after desorption: this kind of active sites is similar to the high binding energy active sites described by Presto et al., which can be called high binding energy adsorption active sites FA4. Distribution of mercury species during adsorptiondesorption process in different atmospheres is listed in Table 1. The contents of mercury species vary in different atmospheres, and the total Hg 2+ in flue gas during adsorption-desorption process in three atmospheres is N 2, 10.3%; Air, 16.8%; and HCl, 27.5%, respectively. The content of type (I) mercury in HCl is the highest, which means the key point of Hg 0 oxidation is the oxidant adsorbed on the surface of sorbent. This indicates that the interaction between low binding energy catalytic oxidation active sites FA1 and mercury is according to Langmuir-Hinshelwood mechanism. Specific reactions are shown in the following eqs. (1) (4). As the oxidant of Hg 0, the adsorption capacity of HCl on FA1 is the strongest, then follows O 2, while N 2 has no oxidation capacity. So the content of Hg 2+ is the highest in HCl atmosphere.

166 ZHAO YongChun, et al. Chinese Sci Bull January (2010) Vol.55 No.2 Table 1 Mercury speciation during adsorption-desorption process in different atmospheres Hg 2+ in adsorption process Hg 2+ released during desorption process Hg 0 released during desorption process Residual mercury in fly ash after desorption N 2 3.0% 7.3% 6.0% 39.4% Air 6.1% 10.7% 0.4% 36% HCl 18.6% 8.9% 0.1% 47.4% Hg 0 (g)+fa1 Hg 0 (ads)+fa1 (1) B(g)+FA1 B(ads)+FA1 (2) Hg 0 (ads)+b(ads)+fa1 Hg 2+ B(ads)+FA1 (3) Hg 2+ B(ads)+FA1 Hg 2+ B(g)+FA1 (4) The contents of type (II) mercury in three atmospheres are similar. But it should be mentioned that a considerable amount of Hg 2+ was generated in N 2 atmosphere, even N 2 is not the oxidant of mercury. This implies that the oxidant comes from fly ash itself, and fly ash components can oxidize Hg 0 directly. This oxidation reaction is according to Mars-Maessen reaction mechanism. Oxygen atom in fly ash components was the same as the oxidant of mercury, when gaseous mercury passing the sorbent bed, it was captured by active site FA2, then oxidized by active oxygen atom to form Hg 2+ (eq. (6)). Previous studies have indicated inorganic metal oxides in fly ash have significant mercury oxidation capacity [16,17]. And the sorbent itself can be oxidized with the occurrence of oxygen in flue gas (eq. (7)), then combines with HgO to form stable binary oxides (eq. (8)). Hg + FA Hg (5) (g) (FA) Hg + M O HgO + M O (6) (FA) x y (FA) x y 1 HgO(FA) + M 1 xo y 1 + O2( ) HgO(FA) O 2 g + M x y (7) HgO + M O HgM O (8) (FA) x y x y+ 1 Type (III) mercury is only found in N 2 atmosphere, while there is almost no Hg 0 released from fly ash in O 2 and HCl atmosphere. This implies that the adsorbed Hg 0 was oxidized to Hg 2+ in O 2 and HCl atmosphere, and the oxidation reaction followed Eley-Rideal mechanism (eqs. (9)) [15]. The adsorption active sites FA3 can also adsorb O 2 and HCl easily as oxidant, and then oxidize Hg 0 which has been adsorbed following Langmuir-Hinshelwood mechanism. The adsorption active site FA3 is similar to low binding energy catalytic oxidation active site FA1, but has a higher binding energy with mercury. Hg 0 (g)+ FA3 Hg 0 (ads)+ FA3 (9) 2Hg 0 (ads)+o 2 2HgO (ads) (10) Hg 0 (ads)+2hcl HgCl 2 (ads)+2h + (11) Type (IV) mercury remained in fly ash has a high binding energy with FA4. It can be speculated that this mercury mainly occurs as Hg 2+ in fly ash, even no direct evidence was found. The content of type (IV) mercury is higher in fly ash from HCl atmosphere than that from N 2 and air atmospheres, which implies that the interaction of fly ash, HCl, and mercury can be easily combined to form stable Hg 2+. Comparing with the fly ash from air, the fly ash from N 2 has more residual mercury. This is because the oxidant in N 2 is lattice oxygen atom which has a higher binding energy with Hg than that of O 2 the oxidant in air. 3 Summary The mercury oxidation rate by fly ash in three typical atmospheres (N 2, Air, HCl) ranges from 10.3% to 27.5%, and all of them are heterogeneous oxidation. The heterogeneous oxidation of mercury mainly includes adsorption oxidation and direct heterogeneous oxidation. The oxidant of adsorption oxidation can be flue gas composition or lattice oxygen atom. While the direct heterogeneous oxidation process is the reaction between the adsorbed mercury and flue gas component on fly ash surface. The active sites on fly ash surface can be classified into four types: low binding energy catalytic oxidation active sites, catalytic oxidation active sites, adsorption active sites, and high binding energy adsorption active sites. Three reaction mechanisms of fly ash and mercury are proposed, the lattice oxygen atom is an important oxidant for mercury, and the oxidation of mercury by fly ash itself is according to Mars-Maessen mechanism. This work was supported by the National Natural Science Foundation of China (Grant Nos. 50906031, 50721005, 20877030), National Basic Research Program of China (Grant No. 2006CB200304) and China Postdoctoral Science Foundation Funded Project. 1 Gale T K, Lani B W, Offen G R. Mechanisms governing the fate of mercury in coal-fired power systems. Fuel Process Technol, 2008, 89: 139 151 2 Agarwal H, Stenger H G, Wu S, et al. Effects of H 2 O, SO 2, and NO on Homogeneous Hg oxidation by Cl 2. Energy Fuels, 2006, 20: 1068 1075 3 Laudal D L, Brown T D, Nott B R. Effects of flue gas constituents on mercury speciation. Fuel Process Technol, 2000, 65 66: 157 165

ZHAO YongChun, et al. Chinese Sci Bull January (2010) Vol.55 No.2 167 4 Agarwal H, Romero C E, Stenger H G. Comparing and interpreting laboratory results of Hg oxidation by a chlorine species. Fuel Process Technol, 2007, 88: 723 730 5 Zhao Y, Mann M D, Olson E S, et al. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions. J Air Waste Manag Assoc, 2006, 56: 628 635 6 Lopez-Anton M A, Abad-Valle P, Diaz-Somoano M, et al. The influence of carbon particle type in fly ashes on mercury adsorption. Fuel, 2009, 88: 1194 1200 7 Lu Y, Rostam-Abadi M, Chang R, et al. Characteristics of fly ashes from full-scale coal-fired power plants and their relationship to mercury adsorption. Energy Fuels, 2007, 21: 2112 2120 8 Dunham G E, DeWall R A, Senior C L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Process Technol, 2003, 82: 197 213 9 Galbreath K C, Zygarlicke C J, Tibbetts J E, et al. Effects of NO x, α-fe 2 O 3, γ-fe 2 O 3, and HCl on mercury transformations in a 7 kw coal combustion system. Fuel Process Technol, 2005, 86: 429 448 10 Feng X, Tang S, Li Z, et al. Landfill is an important atmospheric mercury emission source. Chinese Sci Bull, 2004, 49: 2068 2072 11 Presto A A, Granite E J, Karash A. further investigation of the impact of sulfur oxides on mercury capture by activated carbon. Ind Eng Chem Res, 2007, 46: 8273 8276 12 Widmer N C, Cole J A, Seeker W R, et al. Practical limitation of mercury speciation in simulated municipal waste incinerator flue gas. Combust Sci Technol, 1998, 134: 315 326 13 Hall B, Schager P, Weesmaa J. The homogeneous gas phase reaction of mercury with oxygen, and the corresponding heterogeneous reactions in the presence of activated carbon and fly ash. Chemosphere, 1995, 30: 611 627 14 Luo Z, Hu C, Zhou J, et al. Stability of mercury on three activated carbon sorbents. Fuel Process Technol, 2006, 87: 679 685 15 Presto A A, Granite E J. Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol, 2006, 40: 5601 5609 16 He S, Zhou J, Zhu Y, et al. Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy Fuels, 2009, 23: 253 259 17 Granite E J, Pennline H W, Hargis R A. Novel sorbents for mercury removal from flue gas. Ind Eng Chem Res, 2000, 39: 1020 1029