S. Mangin 1, Y. Henry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5

Similar documents
A brief history with Ivan. Happy Birthday Ivan. You are now closer to 70!

SPIN TRANSFER TORQUES IN HIGH ANISOTROPY MAGNETIC NANOSTRUCTURES

MSE 7025 Magnetic Materials (and Spintronics)

Anisotropy Distributions in Patterned Magnetic Media

Spin Torque and Magnetic Tunnel Junctions

Enhanced spin orbit torques by oxygen incorporation in tungsten films

Microwave Assisted Magnetic Recording

Focused-ion-beam milling based nanostencil mask fabrication for spin transfer torque studies. Güntherodt

Spin-torque nano-oscillators trends and challenging

SUPPLEMENTARY INFORMATION

GMR Read head. Eric Fullerton ECE, CMRR. Introduction to recording Basic GMR sensor Next generation heads TMR, CPP-GMR UCT) Challenges ATE

arxiv:cond-mat/ v1 4 Oct 2002

Bits of the Future: Emergent Physics for Advanced Magnetic Information Technologies

Enhancement in spin-torque efficiency by nonuniform spin current generated within a tapered nanopillar spin valve

Micromagnetic simulations of current-induced magnetization switching in Co/ Cu/ Co nanopillars

Supplementary material for : Spindomain-wall transfer induced domain. perpendicular current injection. 1 ave A. Fresnel, Palaiseau, France

Magnetic domain theory in dynamics

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 11, NOVEMBER

Page 1. A portion of this study was supported by NEDO.

Spin-transfer-torque efficiency enhanced by edge-damage. of perpendicular magnetic random access memories

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Large-amplitude coherent spin waves excited by spin-polarized current in nanoscale spin valves

arxiv: v1 [cond-mat.mtrl-sci] 28 Jul 2008

ANGULAR DEPENDENCE OF MAGNETIC PROPERTIES IN Co/Pt MULTILAYERS WITH PERPENDICULAR MAGNETIC ANISOTROPY

Spin-transfer switching and thermal stability in an FePt/Au/FePt nanopillar prepared by alternate monatomic layer deposition

Time resolved transport studies of magnetization reversal in orthogonal spin transfer magnetic tunnel junction devices

Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction. devices. Cornell University, Ithaca, NY 14853

arxiv: v1 [cond-mat.mtrl-sci] 5 Oct 2018

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Influence of Size on the Properties of Materials

Mesoscopic Spintronics

Large-amplitude coherent spin waves exited by spin-polarized current in nanoscale spin valves

Low Energy Spin Transfer Torque RAM (STT-RAM / SPRAM) Zach Foresta April 23, 2009

Spin transfer torque devices utilizing the giant spin Hall effect of tungsten

Field dependence of magnetization reversal by spin transfer

Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices

Non-uniform switching of the perpendicular magnetization in a spin-torque driven magnetic nanopillar

7. Basics of Magnetization Switching

Switching Properties in Magnetic Tunnel Junctions with Interfacial Perpendicular Anisotropy: Micromagnetic Study

CURRENT-INDUCED MAGNETIC DYNAMICS IN NANOSYSTEMS

High-frequency measurements of spin-valve films and devices invited

SUPPLEMENTARY INFORMATION

Torque magnetometry of perpendicular anisotropy exchange spring heterostructures

arxiv: v1 [cond-mat.mes-hall] 2 Dec 2013

Current-induced Domain Wall Dynamics

9. Spin Torque Majority Gate

Reversal mode instability and magnetoresistance in perpendicular (Co/Pd)/Cu/(Co/Ni) pseudo spin valves. Abstract

MRAM: Device Basics and Emerging Technologies

Gianluca Gubbiotti. CNR-Istituto Officina dei Materiali (IOM) -Unità di Perugia. Italian School on Magnetism, Pavia 8 th February 2011

SUPPLEMENTARY INFORMATION

arxiv: v1 [cond-mat.mtrl-sci] 7 Nov 2012

Shape anisotropy revisited in single-digit

Imprinting domain/spin configurations in antiferromagnets. A way to tailor hysteresis loops in ferromagnetic-antiferromagnetic systems

introduction: what is spin-electronics?

Wouldn t it be great if

Injection locking at zero field in two free layer spin-valves

Manipulation of the magnetization of Perpendicular magnetized Rare-earth-transition metal alloys using polarized light

Optical studies of current-induced magnetization

Phase Coherent Precessional Magnetization Reversal in Microscopic Spin Valve Elements

Current-Induced Magnetization Switching in MgO Barrier Based Magnetic Tunnel. Junctions with CoFeB/Ru/CoFeB Synthetic Ferrimagnetic Free Layer

Spin orbit torques and Dzyaloshinskii-Moriya interaction in dualinterfaced

SUPPLEMENTARY INFORMATION

Micromagnetic Modeling of Soft Underlayer Magnetization Processes and Fields in Perpendicular Magnetic Recording

Enhanced Magnetic Properties of Bit Patterned Magnetic Recording Media by Trench-Filled Nanostructure

Theory of Spin Diode Effect

10. Magnetoelectric Switching

MAGNETO-RESISTANCE AND INDUCED DOMAIN STRUCTURE IN TUNNEL JUNCTIONS

Magnetization Dynamics in Spintronic Structures and Devices

Micromagnetic Modeling

Two-terminal spin orbit torque magnetoresistive random access memory

Spin wave assisted current induced magnetic. domain wall motion

Magnetic recording technology

Spin pumping and spin transport in magne0c metal and insulator heterostructures. Eric Montoya Surface Science Laboratory Simon Fraser University

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Skyrmions in symmetric bilayers

Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin-current pulse

Magnetoresistance due to Domain Walls in Micron Scale Fe Wires. with Stripe Domains arxiv:cond-mat/ v1 [cond-mat.mes-hall] 9 Mar 1998.

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Scanning Probe Microscopy. L. J. Heyderman

SUPPLEMENTARY INFORMATION

Room temperature chiral magnetic skyrmions in ultrathin Pt/Co/MgO nanostructures

Magnetization reversal in the presence of thermal agitation and spin-transfer torques

voltage measurement for spin-orbit torques"

Strong linewidth variation for spin-torque nano-oscillators as a function of in-plane magnetic field angle

Gate voltage modulation of spin-hall-torque-driven magnetic switching. Cornell University, Ithaca, NY 14853

Current-Induced Domain-Wall Dynamics in Ferromagnetic Nanowires

Planar Hall Effect in Magnetite (100) Films

SUPPLEMENTARY INFORMATION

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Dispersion and Scaling Law of Dynamic Hysteresis Based on the Landau-Lifshitz-Gilbert Model

Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks.

Fokker-Planck calculation of spintorque switching rates: comparison with telegraph-noise data

Spin Torque Oscillator from micromagnetic point of view

Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer torque random access memory

Gauge Concepts in Theoretical Applied Physics

Physics in Quasi-2D Materials for Spintronics Applications

arxiv: v3 [cond-mat.mtrl-sci] 21 May 2008

Spin electronics at the nanoscale. Michel Viret Service de Physique de l Etat Condensé CEA Saclay France

Magnetic bubblecade memory based on chiral domain walls

Current-induced vortex displacement and annihilation in a single permalloy disk

Transcription:

Spin transfer torques in high anisotropy magnetic nanostructures S. Mangin 1, Y. enry 2, D. Ravelosona 3, J.A. Katine 4, and S. Moyerman 5, I. Tudosa 5, E. E. Fullerton 5 1) Laboratoire de Physique des Matériaux Vandoeuvre-les-Nancy 2) Institut de Physique et chimie des Matériaux de Strasbourg 3) Institut d'electronique Fondamentale - Orsay 4) itachi GST San Jose research center - San Jose 5) University of California, San Diego

Spin transfer torques in high anisotropy magnetic nanostructures Motivation Co/Ni multilayers 2 layer results ( - ) switching currents angular dependence (SW astroid) Conclusions

Spin transfer torques in heterostructures Γ p Angular momentum conservation spin transfer torques m Γ = m d e L dt see J. Magn. Magn. Mater. 32 (28) articles on spin torque edited by M. Stiles and D. Ralph I

Spin torque dynamics (LLG) dm dt = γ m Field torque (precession) + α m dm dt Damping torque (dissipation) eff m IPg i μ em t s B ( ( )) m x m x p Spin torque (negative friction ) J. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996) L. Berger, Phys. Rev. B 54, 9353 (1996) I α C eff

Spin transfer torque nanotechnologies Noise in read heads STT MRAM Bit Line MTJ Source Gate Drain Oscillators Domain wall devices MTJ e- e- MTJ 1 Rippard et al., PRL 92, 2721 (24) Chappert, Fert, and Van Dau, Nature Mater. 6, 813 (27). Katine and Fullerton, J. Magn. Magn. Mater. 32, 1217 (28). Parkin et al., Science 32, 19 (28).

Perpendicular anisotropy devices Less sensitive to structure/lithography igher thermal stability More efficient reversal igher frequency oscillations Narrow domain walls New functionality e- Mangin et al., Nature Mater. 5, 21 (26) e- Burrowes et al., APL 93, 172513 (28). Mihai et al, Nature Phys. (in press)

Stability analysis of the LLG equations F1 F2 e- in-plane magnetization Demagnetization field suppresses out-of-plane precessions I C 2e h αm g S ( θ ) V p ( + + 2πM ) dip + K // : in-plane applied fied, dip : dipole field, k// in-plane anisotropy field S Stability U K = M S V K// / 2 Critical current must overcome 2πM S ~ 5-1 koe

Stability analysis of the LLG equations F1 e- out-of-plane magnetization ( K > 4πM S ) F2 K,eff I C 2e h αm g S ( θ ) V p k out of plane anisotropy field ( + + 4πM ) dip K S U = K ( M V )/ 2 S K,eff

Stability analysis of the LLG equations F1 e- out-of-plane magnetization ( K > 4πM S ) F2 I C 2e h g 2α θ U ( ) K p Zero applied field Critical current directly proportional to thermal stability More efficient reversal assuming low α and high p

Magnetic layers Films grown on 5 inch Si wafers by e-beam and sputtering (111) - Co(1Å)/Ni(6Å) Pd or Pt [Co/Ni]x4 Cu [Co/Ni]x2 [Co/Pd] or [Co/Pt] Pt K u 4x1 6 erg/cm 3 M s = 65 emu/cm 3 Normalized Kerr signal 1..5. -.5-1. (daalderop et al, Phys. Rev. Lett 68 (1992)) -4-2 2 4 (koe) C1 =.7 koe C2 = 2.7 koe

Co/Ni multilayers MBE grown (111) - Co(X)/Ni(3 ML) REED Intensity (a.u) 28 26 24 22 2 18 5 1 15 2 25 Time (s) Co / Ni(111) T cell =147 C K 1 (1 5 J/m 3 ) 1 5 Magnetometry) FMR 1 2 3 4 5 Co thickness (ML) S. Girod et al., Appl. Phys. Lett. 94, 26254 (29)

Nanopillars fabrication - Use of negative SQ resist as a high fidelity mask - 1 devices/5 inch wafer: circles and hexagons from 45nm to 15nm Au 1 nm Au I< Ta Cu Pt [Co/Ni]x4 Cu [Co/Ni]x2 [Co/Pt]x4 Pt > Ta (5 nm) Cu (15nm) Pt (3nm) [Co/Ni] (3 nm) Cu (4nm) [Co/Pt]/[Co/Ni] (4nm Pt (3nm) Cu Ta Cu (35nm) 5-1 nm 1-2 nm 45 nm Ta (5 nm)

Field switching in 5x1nm 2 nanopillars dv/di (Ohms) 12.95 12.9 12.85 AP a) P c free = 2.65 koe c ref = 1 koe d = 65 Oe -1-5 5 1 (koe)

Current induced switching in 5x1nm 2 nanopillars dv/di (Ohms) dv/di (Ohms) 12.95 12.9 12.85 13.1 13. 12.9 AP -1-5 5 1 (koe) a) P b) AP P c free = 2.65 koe c ref = 1 koe d = 65 Oe I C AP-P = -2.6x1 7 A/cm 2 I C P-AP = 7x1 7 A/cm 2 I c (Co/Pt) 4xI c (Co/Ni) 12.8-3 -2-1 1 2 3 I B (ma) Mangin et al., Nature Materials 5, 21 (26) Ravelosona et al., Phys. Rev. Lett. 96, 18664 (26)

Lower anisotropy free layer 31.2 45 nm circle dv/di (ohms) 31.1 31 31.2 31.1 Pt [Co/Ni]x4 Cu [Co/Ni]x2 [Co/Pt]x4 Pt 3.9-1 -5 5 1 (Oe) dv/di (ohms) 31.1 31 3.9 31 c ~ 4 Oe d ~ 8 Oe I C ~11 μa 6x1 6 A/cm 2 3.8 3.9-2 -.6 -.4-1 -.2.2 1.4 2.6 I (ma) (Oe)

Critical currents I C 2e h g 2α θ U ( ) K p sample 1 sample 2 ratio I C (ma) 145 11 13 V (1-18 cm 3 ) 11.25 5.8 2 C (Oe) 265 42 6.5 Mangin et al., Appl. Phys. Lett. 94, 1252 (29)

AF-coupled pinned layer 7.4 Resistance R ac (Ohms) 7.39 7.38 7.37 CoNix2/CoPd Cu CoPdx2/CoNix2 Ru CoPdx4-4.k -2.k. 2.k 4.k Magnetic Field (Oe)

AF-coupled pinned layer 7.4 Resistance R ac (Ohms) 7.39 7.38 7.37 major loop AF layer free layer.5 koe CoNix2/CoPd Cu CoPdx2/CoNix2 Ru CoPdx4-4.k -2.k. 2.k 4.k Magnetic Field (Oe) 2.5 koe

Stoner-Wohlfarth astroid M 1 M θ SW K = ( 2/3 2/3 sin θ + cos θ ) K 1.8.6.4.2 45 3 7 3/ 2 easy axis 33 3 hard axis 27 9 7 45 1 3-1 -1.5-1 -.5.5 1 1.5 12 15 18 21 24 K

Angle-dependent field switching 1x2nm 2 I θ 2.86 +87 +86 2.67-2 P dv/di (Ω) +85 +8 +6 +4-4 -6-8 -85 27 9 +2-86 AP 18-87 2.64 2.46-1 1-1 1 (T) (T) enry et al., Phys. Rev. B, 79, 214422 (29).

4 Comparison theory-experiment experiment I=+3mA I=+4.5mA I=+6mA I=+9mA z (mt) -4-5 5-5 5-5 5-5 5 y (mt) Field torque Damping torque Spin torque dm dt = γ m eff +α ( m m ) eff ( m m ) + β I u z

4 Comparison theory-experiment experiment I=+3mA I=+4.5mA I=+6mA I=+9mA z (mt) z (mt) -4 3-5 5-5 5-5 5-5 5 I= y (mt) -3-3 3-3 3-3 3-3 3 J.Z. Sun, PRB 62, 56 (2). y (mt)

Angular dependence of the spin torque Current has large effect // K +2 x 1 7 A/cm 2 K Threshold current for K I onset α eff on the SW astroid eff = K sin 2 (θ M ) 18 Y. enry et al., Phys. Rev. B, 79, 214422 (29).

r m t where r r r * r m = γ ( m eff ) + α m t r * eff Analytic solution r β = eff + I γ m r * r Equilibrium conditions: magnetization parallel to r r ( m z) eff x z θ m ϕ e r θ y e r ϕ Stability condition: total damping positive Linear stability analysis in the small current limit (2D problem) θ r [ αγ ( e ) β I sin θ] eff r θ θ=θ N. Smith et al, IEEE Trans Mag. 41,2935 (25) Y. enry et al., Phys. Rev. B, 79, 214422 (29).

Analytic expression for the astroid h h y z = sinθ [sin = cosθ [cos 2 2 θ θ C( θ )] + C( θ )] with C( θ ) = 1 αγ K ( β I sin θ ) θ θ=θ 1 Analytical Numerical Z / K - -1-1 -1-1 y / K in the small current limit

Conclusions Demonstration of efficient spin transfer in Nano-pillars with perpendicular anisotropy I c scales with thermal stability (Co/Ni multilayers: : higher p and lower α compared to Co/Pt) Role of current on the SW astroid. Mangin et al., Nature Materials 5, 21 (26) Ravelosona et al., Phys. Rev. Lett. 96, 18664 (26) Mangin et al., Appl. Phys. Lett. 94, 1252 (29) Cucchiara et al., Appl. Phys. Lett. 94, 1253 (29) enry et al., Phys. Rev. B, 79, 214422 (29). S. Girod, et al, Appl. Phys. Lett. 94, 26254 (29).