arxiv:astro-ph/ v1 15 May 2003

Similar documents
The Vela pulsar in the near-infrared

Spectral index map of the Crab Nebula in the optical range

Fermi-Large Area Telescope Observations of Pulsar Wind Nebulae and their associated pulsars

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

A Detailed Study of. the Pulsar Wind Nebula 3C 58

Extended X- ray emission from PSR B /LS 2883 and other gamma- ray binaries

Cooling Limits for the

Radio Observations of TeV and GeV emitting Supernova Remnants

Chapter 5: Telescopes

Optical identification of the 3C 58 pulsar wind nebula

Discovery of TeV Gamma-ray Emission Towards Supernova Remnant SNR G Last Updated Tuesday, 30 July :01

H.E.S.S. Unidentified Gamma-ray Sources in a Pulsar Wind Nebula Scenario And HESS J

XMM observations of three middle-aged pulsars

Collecting Light. In a dark-adapted eye, the iris is fully open and the pupil has a diameter of about 7 mm. pupil

Observations of. Pulsar Wind Nebulae

Ay Fall 2012 Imaging and Photometry Part I

Infrared-Optical observations of magnetars

X-ray emission properties vary with spin-down age. Crab-like pulsars (< 10 4 yrs)

Sources of GeV Photons and the Fermi Results

Recent NIR-optical-UV Observations. of Rotation-powered

Sgr A : from 10 0 to m in 3000 seconds

Progress in Pulsar detection

Particle acceleration and pulsars

Pulsar Wind Nebulae: A Multiwavelength Perspective

FERMI. YOUNG PULSAR SPECTRA WITH THE LAT FERMI TELESCOPE Ateliers pulsars. 25 novembre 2008 Damien Parent. Gamma-ray Large Area Space Telescope

Fermi Large Area Telescope:

A pulsar wind nebula associated with PSR J as the powering source of TeV J

astro-ph/ Dec 94

Fermi: Highlights of GeV Gamma-ray Astronomy

Pulsar Wind Nebulae. Pennsylvania State University. General outlook Chandra results Polarization in radio and optical X-ray polarization

The Vela and Geminga pulsars in the mid-infrared

Millimeter{Interferometer Observations of Flares in. Dept. of Astronomy, Univ. of Maryland, College Park MD 20742

X-ray Observations of Rotation Powered Pulsars

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

Fermi-LAT and WMAP observations of the SNR Puppis A

X-ray and Gamma-ray. Emission Pulsars and Pulsar Wind Nebulae. K.S. Cheng Department of Physics University of Hong Kong Hong Kong, China

Pulsar Observations with the Fermi Large Area Telescope

Recent Observations of Supernova Remnants

PERSPECTIVES of HIGH ENERGY NEUTRINO ASTRONOMY. Paolo Lipari Vulcano 27 may 2006

Extreme high-energy variability of Markarian 421

Pulsar Wind and pulsar wind nebulae

arxiv: v1 [astro-ph.sr] 30 Apr 2013

AST 102 chapter 5. Radiation and Spectra. Radiation and Spectra. Radiation and Spectra. What is light? What is radiation?

H.E.S.S. High Energy Stereoscopic System

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

High Redshift Universe

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

Search for Pulsed Emission in Archival VERITAS Data

The Crab Nebula in the infrared: a review

The Magnificent Seven Similarities and Differences

Search for pulsar wind nebula associations with unidentified TeV gamma-ray sources

Discovery of a New Gamma-Ray Binary: 1FGL J

summary of last lecture

arxiv: v1 [astro-ph.he] 3 Nov 2009

PoS(extremesky2009)103

Particle acceleration during the gamma-ray flares of the Crab Nebular

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Pulsars and Pulsar-Wind Nebulae: TeV to X-Ray Connection. Oleg Kargaltsev (University of Florida) George Pavlov (Penn State University)

arxiv: v1 [astro-ph.sr] 6 Aug 2013

Hughes et al., 1998 ApJ, 505, 732 : ASCA. Westerlund, 1990 A&ARv, 2, 29 : Distance to LMC 1 ) ) (ergs s F X L X. 2 s 1. ) (ergs cm

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Probing Pulsar Winds With X-rays!

Pulsar Polarimetry. Roberto P. Mignani. INAF-Istituto di Astrofisica Spaziale, Milan (Italy) Kepler Institute of Astronomy, Zielona Gora (Poland)

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Galactic sources in GeV/TeV Astronomy and the new HESS Results

X-ray and multiwavelength observations of pulsarwind

VERITAS Observations of Supernova Remnants

(Anomalous) X-Ray Pulsars. Vicky Kaspi. Montreal, Canada. Stanford December 16, 2004

PoS(extremesky2009)018

On the complex X-ray structure tracing the motion of Geminga ABSTRACT

Status of the MAGIC telescopes

CTB 37A & CTB 37B - The fake twins SNRs

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Remnants and Pulsar Wind

Observations of supernova remnants

Exploring the Depths of the Universe

Thermal Radiation from Isolated Neutron Stars

Today in Astronomy 142: observations of stars

Spatial Profile of the Emission from Pulsar Wind Nebulae with steady-state 1D Modeling

Future Gamma-Ray Observations of Pulsars and their Environments

Gamma-Ray Astronomy. Astro 129: Chapter 1a

EXPOSURE TIME ESTIMATION

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

OBSERVATIONS OF VERY HIGH ENERGY GAMMA RAYS FROM M87 BY VERITAS

X-ray Properties of Rotation Powered Pulsars and Thermally Emitting Neutron Stars

Relativistic jets from XRBs with LOFAR. Stéphane Corbel (University Paris 7 & CEA Saclay)

Gamma-ray Astrophysics

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Radio timing observations of the pulsar by Kaspi et al. (1994) have

Radio infrared correlation for galaxies: from today's instruments to SKA

Recent Results from VERITAS

Universe Now. 2. Astronomical observations

Objectives. HR Diagram

Gamma-ray Astrophysics with VERITAS: Exploring the violent Universe

Cross-Talk in the ACS WFC Detectors. I: Description of the Effect

e - -e + pair production in pulsar magnetospheres

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

K. McNaron-Brown. George Mason University, Fairfax VA J.D. Kurfess, and M.S. Strickman

Transcription:

Astronomy& Astrophysicsmanuscriptno.h4279 (DOI:willbeinsertedbyhandlater) November14,216 TheVelaPulsarin thenearinfrared? Yu.A.Shibanov 1,A.B.Koptsevich 1,J.Sollerman 2,andP.Lundqvist 2 1 IoePhysicalTechnicalInstitute,Politekhnicheskaya26,St.Petersburg,19421,Russia 2 Stockholm Observatory,AlbaNova,DepartmentofAstronomy,SE1691Stockholm,Sweden arxiv:astroph/35273v1 15 May 23 Received 3January23/Accepted 25April23 Abstract.W ereporton therstdetection ofthevelapulsarin thenearinfrared with thevlt/isaac in thej s and H bands.thepulsarmagnitudesarej s= 22:71 :1and H = 22:4 :16.W ecompareourresultswith the available m ultiwavelength data and show that the dereddened phaseaveraged opticalspectrum ofthe pulsar canbettedwithapowerlaw F / with = :12 :5,assumingthecolorexcessE B V = :55 :5 based on recentspectraltsofthe em ission ofthe Vela pulsarand its supernova rem nantin Xrays.T he negative slope ofthe pulsar spectrum is dierent from the positive slope observed over a w ide opticalrange in the young Crab pulsarspectrum.thenearinfrared partofthevelaspectrum appearstohavethesameslopeasthephaseaveraged spectrum in thehigh energy Xray tail,obtained in the2 1 kev range with therxte.both of thesespectracan betted with asinglepowerlaw suggestingtheircommon origin.becausethephaseaveraged RXTE spectrum in thisrangeisdominated by thesecond Xray peak ofthepulsarlightcurve,coincidingwith the second m ain peak ofits opticalpulse prole,we suggest that this opticalpeak can be redder than the rst one.w ealsodetecttwofaintextendedstructuresinthe1: 5 3: 1vicinityofthepulsar,projectedonandaligned withthesoutheastjetandtheinnerarcofthepulsarwindnebula,detectedinxrayswithchandra.w ediscuss their possible association w ith the nebula. K ey w ords.infrared:general{ pulsars:individual:vela pulsar{ stars:neutron 1.Introduction TheVelapulsarwasrmlyidentiedintheopticalrange by the detection ofopticalpulsations w ith the radio pulsar period (W allace et al.1977; M anchester et al.1978). Theidenticationhasbeenfurtherconrmedbymeasuring theproperm otion and parallax ofthe radio pulsarand its opticalcounterpart(legge 2;C araveo et al.21), by broadband photom etry revealing peculiarcolorsofthe counterpart typical for the optical em ission of rotation powered pulsars (Lasker 1976; M ignani& C araveo 21 and refs.therein),and by the high polarization ofthe opticalem ission(w agner& Seifert 2).T hevela pulsaris anintermediateage, 1 4 yr,isolatedneutronstar(ns). Its param etersare listed in Table 1. In comparison with olderpulsarsdetected in theopticalrange(see, e.g., M ignaniet al.2), the Vela pulsarwith V= 23: m 6 isbrighterby atleast1 2 stellar m agnitudes.h owever,availablespectralinform ation on its opticalemission hasbeen limited tobroadband UBVRI photom etry(m ignani& C araveo 21),w hich suggests a at opticalspectrum typicalfor young C rablike pulsars. Send oprint requests to:yurishibanov, shib@astro.ioffe.rssi.ru? Based on observationscollected attheeuropean Southern O bservatory,paranal,c hile(eso Program m e 66.D568). This isin contrastto the middleaged, 1 5 yr,pulsarspsr B656+14andGemingawhosebroadbandspectraarelessmonotonous,and tothestrongexcessin the nearinfrared(ir)partofthe spectrum ofpsr B 656+ 14 (K optsevich et al.21).t hism ay bean evidenceofspectralevolution ofthe opticalem ission w ith pulsarage.t he youngcrab pulsarshowsnoexcessin their.thus,the extension ofthe spectrum ofthe Vela pulsar towards the IR is usefulto determ ine w hether the opticalproperties ofthispulsararecloserto thoseofyoungerormiddleaged N Ss,and to get additionalconstraintson the pulsar spectralevolution w ith age. T he Vela pulsar has also been studied in the high energy range, from soft Xrays to rays (e.g., Pavlov et al.21b; H arding et al.22 and refs. therein). Its m ultiwavelength spectrum is presumably nontherm al w ith dierent slopes in dierent high energy ranges.a n exception isthe softxray range w here astrongexcessoverapowerlaw 1 backgroundisbelieved to be due to the thermal emission from the surface of the NS ( Ogelmanetal.1993; Pavlovetal.21b). D ierent slopes im ply dierent nontherm al radiation mechanismsatwork in themagnetosphereofthepulsar (e.g., synchrotron, curvature, inverse C om pton scat 1 HereafterPL,F /.

2 Shibanov et al.:t he Vela Pulsar in the N earinfrared Table 1.Param etersofthe Vela pulsar(psr B 833 45;Taylor et al.1993,unless specied otherw ise). Observed Derived P P _ cos(), a a l,b b DM c d B E _ d a ms 1 15 masyr 1 mas cm 3 pc M yr G ergs 1 pc 89 125 37:2 1:2 28:2 1:3 3:4 :7 263: 6 2: 8 68:2.11 3:38 1 12 6:9 1 36 294 + 76 5 a Propermotion,parallax,and parallaxbased distance(caraveoetal.21) c Dispersion measure b Galacticcoordinates d Dynamicalage tering radiation, etc.). T hese m echanism s are involved in dierent waysin the two competing models forthe nonthermalemission ofpulsars,the\polarcap" model (e.g.,daugherty& Harding1996) and the \outer gap" m odel(e.g.,c heng et al.1986;r om ani1996). Itisnotyetclearw hich ofthesecom peting m odelsbest represents the observations,and w hich radiation m echanism sareactually responsibleforthe observed em ission in each band.in this respect,observations in the IR are importantto getadditionalconstraintson these m echanism s and m odels.for instance,in the polarcap m odelir photons,as wellas opticalones,can be produced by inverse C om pton scattering ofsofter photons by prim ary and/or pair cascade relativistic particles in the m agnetosphere. A symmetricalcrablikepulsarwind nebula (PW N) with a torus and jet structure has recently been detected in Xrayswith the Chandra observatory around the Vela pulsar(h elfand et al.21;pavlov et al.21b; Pavlovetal.21a).Being fainterthan thecrab PW N, thevelanebulahasnotyetbeen detected in theoptical range,perhapsbecausethepulsareld iscrow ded by background stars.someofthestructuresofthecrab PW N, identied in the optical, appear brighter in the nearir range(sollerm an& Flyckt 22),show ing a PL spectrum with a negative slope close to thatobserved in Xrays. ThereareindicationsthattheXrayVelaPW N hasapl spectrum ofa sim ilar slope(g otthelf& O lbert 22).In this context,deep im aging ofthe Vela pulsar eld in the nearir mightbemorepromisingthanimaginginthevisualrangefordetection ofthe Vela PW N and forstudying the m echanism softhe interaction between the relativistic pulsarwindandtheambientmatter. H ere we reporton the rstdetection ofthe Vela pulsar in thenearir J s and H bands,obtained with thevlt. T he observations, data reduction, astrom etry, and photom etry are described in Sect.2.T he resultsare discussed in Sect.3in conjunction with thedataavailablein other spectralbands,and sum m arized in Sect.4. 2.O bservations and data analysis 2.1.ISAAC observations and data reduction The eld ofthe Vela pulsarwasobserved during three nights,december14 and 15,2,and January 5,21 with the Infrared Spectrometer And Array Camera 2 (ISAAC)attached to the Antu Telescope (UT1)ofthe European Southern O bservatory s Very Large Telescope (ESO VLT). A log of the observations is given in Table2.In the SW (ShortW avelength)imaging mode, the RockwellHawaiiHgCdTe 124124 array detectorwasused.the pixelsizeon the sky was: 147 and theeldofview was2: 52: 5.Theobservationswereperformed in the J s and H bands in jitter mode,with a jitterbox size of2.the J s lterisbeing established as the new standard broadband lter at 1:24m by m ost m ajor observatories(k eck,g em ini,subaru,eso), and is photom etrically m ore accurate than the classical J because it is not cut o by atmospheric absorption (Simons& Tokunaga 22;Labbeetal.23).The detectorintegrationtimes(dits)were45sand13sin the J s and H bands,respectively.eachobservation wasbuilt upbyanumberofditsperexposure(ndits),wherewe used 4 NDITsforthe J s band and 6 NDITsforthe H band.thenumberofexposures(nexp)ineachobservationalblock(obsid)was13inj s andvariedfrom 12to26 intheh band.totalexposuretimes(nditditnexp summed overallobsids)werethus72sand 8268sin thej s andh bands,respectively. 2 Seehttp://www.eso.org/instruments/isaac/ fordetailson the instrum ent,lters and observationaltechnique. Table 2.Log ofvlt/isaac observationsofthe Vela pulsar. Band Date Time a Exposure Airmass Seeing b UT UT s arcsec J s 14.12. 7:45 234 1.72.7 15.12. 6:33 234 1.84.6 7:18 234 1.69.5 H 15.12. 8:3 114 1.76.5 8:29 192 1.94.5 8:54 936 1.118.7 5.1.1 6:2 228 1.73.5 7:5 228 1.13.4 7:51 117 1.15.4 a ReferstotherstimageoftheObsID. b Fullwidth athalfmaximum ofthestellarprole.

Shibanov et al.:t he Vela Pulsar in the N earinfrared 3 2 Js 25 1" 2 3 E N 6" 35 45:1:4 Js 2 45 2 21.6 2.8 8:35:2. Fig.1.Large panel:3 3 overview ofthevela pulsareld extracted from the2: 5 2: 5 frameofthe VLT/ISAAC imageinthej s band.theregionbounded bythe6 boxisenlargedinthesmallpanels.thesame regionindierentbandsisshowninfigs.3and4.the regionboundedbythe1 boxisshowninfig.2.sm all panelsshow the6 6 eldofview centeredatthepulsarpositioninthej s andh bands.imageswiththepulsar counterpart subtracted are also show n in the lower panels for each band, and the corresponding contour plotsaregiven.referenceframeforthecontourplots showstheimagescaleonly.thepulsarand nearbyobjectso1,o2and o3aremarked in theh band contour plot.thecrossesinthej s contourplotsshow thepulsar positionasderivedfrom thehst/w FPC2/F555W image(c araveo et al.21) w ith an uncertainty negligible forthisimagescale.thearrow in thej s contourplot show s the pulsar proper m otion direction,see Sect 2.2 for details. H H 2 2 2 PSR o1 o2 2 2 o3 The data were reduced with the Eclipse 3 and NOAO IRAF software.dark and ateld images were prepared using standard Eclipse recipes. T hen each O bsid was considered separately. Im age osets were determ ined using the geomap routine and four eld stars. T he sky background level was determ ined and the im ages were sum m ed using the routine jitter w ith the param eters RejectHalfWidth = 7, RejectMin = 2, RejectMax = 4,whichwerechosenbasedontheresulting imagestatistics.theparametersofthefully reducedimagesforeachobsid aresummarizedintable2. Finally,osetsbetween these im agesweredeterm ined and theimageswerecombined.partsoftheresultingimages 4 containingthepulsarareshown in Fig.1.Contourmaps ofthese im agesare also presented in thisgure.isophotes 3 Seehttp://www.eso.org/projects/aot/eclipse/. 4 Images are available in FITS format at http://w w w.ioe.ru/astro/n SG/obs/velair/. ofthe contour m aps correspond to the levels(in counts) abovethebackgroundl n = S + n,wheres isthemean sky value nearthe pulsar, isthe sky standard deviation perpixel,andn= 1;2;:::;6. 2.2.Astrom etry and m orphology ofthe pulsareld For astrom etricalreferencing ofthe V LT im ages we used the HST/W FPC2 image obtained on January 15,2 (Caraveoetal.21).The pulsar is clearly detected in thisimage.positionsof11 referencestarsfrom the image were used to constructthe coordinate transform ation betweenthehst andvlt imageswiththeirafroutines geom ap/geoxytran.t he rm s errors ofthe transform ation werelessthan onethird oftheisaac pixelsizein both RA anddec.thepulsarpositionintheisaac imagesat the epoch of the V LT observations was calculated using the pulsarpixelcoordinatesin the HST imageand the

4 Shibanov et al.:t he Vela Pulsar in the N earinfrared vicinity of the pulsar. H owever, visual inspection of the 2 vicinityofthepulsarinthechandra/hrc imagedoes notrevealany such structure.itmay be hidden in the complicatedpulsarpsf proleofthehrc image. PSR Fig.2.1 1 vicinityofthevelapulsarinthej s band. Objectso2,o3,and fourstarsin theupperleftcornerof the imagearesubtracted (cf.fig.1).the arrow shows the pulsarproperm otion direction.a faintthin elongated objectoriented approxim ately perpendicularto theproper motion isseen within theregion bounded by theellipse. It coincides w ith the centralpart ofthe inner arc ofthe PW N detectedinxrays(seesect.3.4fordetails). pulsarproperm otion(c araveo et al.21).t hisposition ismarked by a crossin thecontourplotsofthej s images in Fig.1.T he pulsar counterpart is clearly detected withtheosets : 1(5) 5 and: 1(2)inRA anddec,respectively,from this position.t he errors account for the centering uncertainties in the ISA A C im ages,coordinate transform ation and the pulsar proper m otion uncertainties. T hreepointlikeobjects,o1,o2,and o3,aredetected in the6 6 vicinityofthepulsar.theyaremarkedinthe Hband contour plot in Fig.1,and their osets from the pulsar position are listed in Table 3.T he faintest object o1isdetectedonlyintheh band. Anextendedstructureisseeninthe1: 5vicinitysouth ofthepulsar.thestructureismorepronouncedintheh band,butcanalsobemarginallydetectedinthej s image, although w ith a dierent shape.t he exam ination ofthe structureineachobsid showsthatitsshapevariesfrom oneobsid to another.to discriminatethe pulsarfrom the extended structure, the IRAF/DAOPHOT software was used to construct a point spread function (PSF) in both bands using 1 eld stars.t he pulsar spatialprole was ttedwiththispsf andsubtractedfrom theimages.the subtracted im ages are presented in Fig.1. The extension of the structure in the J s band is aligned w ith the southeast counterjet from the pulsar detected in Xrays w ith the C handra observatory(h elfand et al.21;pavlov et al.21a).t he Xray counterjet is directed opposite to the pulsar proper m o tionmarkedbyanarrow inthej s contourplotinfig.1.it extendsupto 1 from thepulsar.theisaac structurecanbeanearir signatureofthexrayjetinthe2 5 Hereafter the numbers in parentheses are uncertainties referring to the last signicant digit quoted, for exam ple, :1(5)= :1 :5,22:4(18)= 22:4 :18. W efound in theisaac imagesalsoahintofafaint thin elongated structure,overlapping w ith thecentralpart oftheinnerarcofthevelapw N in thechandra/acis im ages(pavlov et al.21a).t he structure isseen w ithin the ellipse in Fig.2.It is aligned approxim ately perpendicularto the pulsarpropermotion direction,asisthe Xrayarc,anditsosetfrom thepulsaris3: 1alongthis direction.t he structure isdetected atonly 2 leveland only in thej s band (seesect.2.3 fordetails).however, inspection ofeach separate ObsID image (see Table 2) showsthatthestructureisabsentonlyintherstj s image,which hastheworstseeing,butitispresentin the twootherimages. To search for the detected extended structures in the imagesin adjacentbandsweexamined also thearchival RIband images ofthe pulsar eld,obtained with the VLT/FORS 6 on April12,1999(W agner& Seifert2), and in thef675w (overlapswith R)and F814W (overlaps with I) bands,obtained with the HST/W FPC2 7 on M arch 19, 2 and on M arch 15, 2, respectively(m ignani& C araveo 21).T hereduced im agesare shown in Figs.3 and 4.The pulsarisreliably detected in allbands,while the extended structuresand o1 are notseen in any ofthem.the extended structure near thepulsarcould notbeseen even afterthepulsarpsf wassubtracted in theribands(fig.3).theobjecto2 is seen in both HST bands (integrated exposure time 26 s),butitisonly barely visiblein the V LT Iband and notdetected in theshortr band exposure(3s).this object and the extended structures are also not visible inthehst/w FPC2/F555W image(caraveoetal.21). This means that the detected extended structures,as wellaso1,are red objects.to conclude whetherthese objects are associated with the pulsar nebula or they are background objects, additional observations are required. A change in brightness of these objects would strongly support their association w ith the highly variablestructureofthepw N,ashasbeen observed in X rays(pavlov et al.21a).n ote thatw isp structureshave been detected and studied closetothecrabpulsarin X raysand in the optical(h ester et al.22),and in the IR (Sollerman& Flyckt22).In Xraysand in theoptical, the observationsshow thatthe wispsvary in ux on a timescaleofaboutoneday. 6 Based on ESO programme63.p2. 7 Based on observationsmadewith thenasa/esa Hubble Space Telescope,obtained from the data archive at the Space Telescope Institute. ST ScI is operated by the association of UniversitiesforResearch in Astronomy,Inc.undertheNASA contractnas 526555.

R I Fig.3.6 6 vicinityofthepulsar,asinsmallpanelsof Fig.1,obtained with thevlt/fors1in R and Ibands (W agner& Seifert 2). Left panels show originalimages.rightpanelsshow imageswiththemodeledpulsar prole subtracted. F675W Shibanov et al.:t he Vela Pulsar in the N earinfrared 5 F814W Fig.4.6 6 vicinityofthepulsar,asinsmallpanelsof Figs.1,andinFig.3,obtainedwiththeHST/W FPC2in thef675w and F814W bands(m ignani& C araveo 21). 2.3.Photom etry ThephotometriczeropointsfortheISAAC observations, J s = 24:81(4) and H = 24:56(7),were derived using im ages of the standard star FS13, observed on December 15,2.The J band catalog magnitude of FS13 (Hawardenetal.2)wasused forthe J s band. D ierences in zeropoints between dierent O bsid s were estimatedcomparingmagnitudesof6eldstars.thedifferencesproved to be no largerthan 1% in the J s and 2% in theh bands,and wereaccounted foronly in the resulting photom etric error budget.t he average Paranal atmosphericextinctionof.6magairmass 1 wasusedin both bands 8.Theuxesofpointlikeobjectsweremeasured in apertureswith diametersclosestto mean seeingvalues(seetable2),i.e.,4pix in J s and 3pix in H. 8 Seehttp://www.eso.org/instruments/isaac/imaging stan dards.html (Landolt 1992). A perture correctionsforthe m agnitudes were determ ined using 3 eld stars.these stars,aswellasthe aperture diameters,werechosen to minimizetheuncertaintiesof aperture corrected m agnitudesofthe faintpulsar,in both lters sim ultaneously. A n additionalcheck ofthe photom etry wasperform ed using the IRsurvey 2M ASS 9.Since the region ofthe Vela pulsar is not yet released in the archive catalog, we performed photometry of1 starspresentin the J and H bandsofthe2m ASS \Quicklook Images" and in ourisaac images.theircomparison showsthatmagnitudediscrepanciesare(j s ) ISAAC J 2M ASS = :15(12)and H ISAAC H 2M ASS = :3(1).Thediscrepancy in thej band can bepartly attributed to thedierencein throughputofthej and J s lters.although photometry on the 2M ASS\QuicklookImages"isnotrecommendedbecause oftheir poor quality,we regard the obtained coincidence atthe1 levelasa conrmation oftheaccuracy ofour photom etric referencing ofthe ISA A C data. T hepulsarm agnitudes,determ ined w ith aperturephotometry,arej s = 22:61(9)and H = 21:9(13).In addition,thepulsarprolewastted w ith thepsf constructed usingiraf/daophot.thepsfttedmagnitudesarej s = 22:71(1)and H = 22:4(16).They dier by 1 from the aperture photom etry m agnitudes.t hisdierence m ay be attributed to the contam ination of the pulsar counts measuredwith theaperturephotometrybytheextended structure nearthe pulsar.w e therefore considerthe PSF tted m agnitudes m ore reliable.u sing these m agnitudes and the ux zeropointsby van der B liek et al.(1996),the measured uxesfrom thepulsararef Js = 1:39(12)Jy andf H = 1:64(25)Jy.W eperformedaperturephotometry ofthe nearby objectso1,o2,and o3,w hich arem arked in Fig.1.Theresultsofthephotometryaresummarized intable3. W e also measured the surface brightnessofthe extendedsourceinthe1: 5vicinityofthepulsar.Itwasmeasured on theimageswith thepulsarsubtracted overthe area(2.4 arcsec 2,thesamein both bands)which covers the brightest parts of the structure. T he surface brightnessesare22.98(5)magarcsec 2 or1.8(5)jyarcsec 2, and 21.51(7)mag arcsec 2 or2.66(16)jy arcsec 2,in thej s and H bands,respectively.thesurfacebrightness ofthesecond structureprojected atthepw N innerarc (see Fig.2)in the J s band is25.8(7)mag arcsec 2 or.8(4)jy arcsec 2,and the respectiveupperlimitin theh bandis24.44magarcsec 2 or.18jyarcsec 2. Since no photom etric standards were observed during thenightofthevlt observationsin theribands,the photom etric equations were determ ined from the Landolt standards 1,observedonthenightbefore: R r = 26:583(9)+ :52(17)(r i) I i= 25:664(13) :68(23)(r i) 9 http://irsa.ipac.caltech.edu/ 1 Fields ofpg1323 85,PG1633+99,and PG1657+78

6 Shibanov et al.:t he Vela Pulsar in the N earinfrared Table 3.Photom etry ofthe Vela pulsar(psr) and the nearby objects o1,o2,and o3,m arked in Fig.1.T he osets oftheobjectsfrom thepulsarposition aregiven in thesecond column.each spectralband cellforthepsr and o1 consistsoftwo pairsofmagnitude/ux values,divided by lines:upperpairaremeasured values,lowerpairare dereddened values.dereddeningwasperformed with E B V = :55(5).Each pairconsistsofthemagnitude(upper value)and the ux in Jy(lowervalue).O nly m easured m agnitudes/uxesarepresented foro2 and o3.a llm agnitudes aremeasuredviaaperturephotometry,exceptforthepulsarmagnitudesin thej s andh bands,whicharemeasured with PSF tting(seesect.2.3fordetails).nomagnitudesforhst bandsarecalculated.emptycellsmeanthatthe objectisnotmeasurableinthisband. Object Oset H J s I HST/F814W R HST/F675W PSR 22.4(18) 1.64(25) 22.(18) 1.69(26) 22.71(1) 1.39(12) 22.66(1) 1.45(13) 22.95(13) 1.57(18) 22.86(13) 1.71(19) 1.367(34) 1.497(38) 23.42(11) 1.29(12) 23.29(11) 1.46(14) 1.279(36) 1.456(45) o1 : 31W 1: 19N 22.64(22).94(17) 22.61(22).97(18) 24.1.386 24.5.43.131.144.13.148 o2 1: 18W : 29N 2.81(11) 5.7(47) 21.94(7) 2.83(18).685(35).241(2) o3 1: 14W 1: 67S 18.85(1) 3.8(2.6) 19.92(5) 18.17(87) 21.53(4) 5.84(21) 5.361(59) 22.7(7) 2.52(16) 2.522(48) HereR andiarethecousinsmagnitudes,randiarethe instrum entalm agnitudes.t he am bient conditions m onitor 11 showsthattheaverageatmosphericextinctioncoef cientduring the observationsofthe standardswasin the range.14.155mag/airmass,and atthetimeofthe pulsar eld observations it was.15 m ag/airm ass.since the dierence between them is negligible com pared to the uncertainties of the equations presented above, we used these equationsforthe photom etric referencing ofourobservationsw ithoutcorrectionsfortheextinction variations between the nights. T he aperture corrections were done usingapsf constructedfrom 4eldstars.Themeasured pulsarm agnitudes,r = 23:46(11)and I = 22:9(13),correspondtotheuxesF R = 1:24(12)JyandF I = 1:65(19) Jy,using the m agnitudeux conversion zeropointsprovided by Fukugita et al.(1995). T he ux/m agnitudes of thepulsarando3areshownintable3. Pipelineprovided zeropoints and pivot wavelengths were used forthe ux calibration ofthe HST observations (2:51 1 18 erg cm 2 s 1 A 1 / 7995 A and 2:9 1 18 ergcm 2 s 1 A 1 /6717A in thef814w and F675W bands, respectively). A perture photom etry wasperformed forthepulsarand theobjectso2and o3. A perture corrections were derived from a nearby relatively brightstar.t he m easured pulsar ux(see Table 3) in thef814w band isconsistentwith thepublished one (M ignani& Caraveo21),whiletheux in thef675w band isapparently 25% higher.b oth uxesare com patiblewiththelessaccuratevlt uxesintheribandsdescribed above.w e m easured also the uxes ofthe nearby objectso2 and o3 and estimated 3 upperlimitsofthe objecto1inthehst bands. 11 Availableathttp://archive.eso.org/asm/ambientserver In Table 3 we also present dereddened m agnitudes and uxesforthepulsarand o1usinge B V = :55(5) (A V :18,R = 3:1).Thiscorrespondsto thecolumn densityn H = 3:3(3) 1 2 cm 2,derivedfrom thecombined PL + NSatmospherespectraltoftheVela pulsarxray data obtained with the Chandra observatory (Pavlov et al.21b). T he extinction value is consistent with the new distance to the Vela supernova remnant (SNR)of253pc(Chaetal.1999),andwiththehighestvalueovertheVelaSNR N H 6 1 2 cm 2 (A V :32)found foritssouthern part(lu& A schenbach 2). T he colors ofthe brightest stellar object in the pulsar vicinity,o3,suggestthat it could be a m ain sequence K 5 K7staratadistanceof 9kpc,assumingA V 2.This isamuchhigherextinctionthanwehaveadoptedforthe pulsar,butitisconsistentwith the maximum possible Galacticextinction in theveladirection,a V 4(N H 7:5 1 21 cm 2 ;e.g.,schlegeletal.1998).thecolorsof thefainterobjecto2areroughlyconsistentwith acooler and even m oredistantm ain sequencestar(ofspectraltype M )at 1 11kpc(A V 3).Theobjecto1istoored tobeconsistentwith any ordinarygalacticstar.itmay be associated with the pulsarnebula.itmay also be a background extragalactic object,ascould also the objects o2ando3.w ediscussthisfurtherinsect.3.4. 3.D iscussion 3.1.M ultiwavelength spectrum ofthe Vela pulsar InFig.5wehavecombinedourIR datawiththeavailable phaseaveraged m ultiwavelength uxes ofthe Vela pulsar

Shibanov et al.:t he Vela Pulsar in the N earinfrared 7 Log E [ kev ] 8 4 4 6 PSR B83345 4 Log F ν [ µjy ] 2 VLT+HST+NTT Chandra atm+pl 2 RXTE OSSE COMPTEL EGRET 4 1 15 2 25 Log ν [ Hz ] F ig.5.d ereddened m ultiwavelength spectrum ofthe Vela pulsar obtained w ith dierent telescopes as m arked in the plot.d iam ondshaped llings represent1 condence regionsofthe N Satm osphere + PL t(dotdashed line) ofthe C handra data;doubledotdashed and dotted lines show the contributionsofnontherm alpl and therm alatm osphere components,respectively.thedashedlineshowsthepltofthenearir andrxte dataandthesolidlinerepresents thesum ofthispl componentwiththeatmospherecomponent.theopticalandrxte rangesareshownenlargedin Fig.6. including the radio (EPN 12 ;S.Johnston,22,private com m unications),the optical(m ignani& C araveo 21), Xrays from the C handra (Pavlov et al.21b), hard Xrays from the RXTE (Hardingetal.22) and O SSE (Strickm an et al.1996), and rays from the COM PTEL (Sch onfelderetal.2) and the EGRET (K anbach et al.1994).h ere we presentunabsorbed uxes dereddened with thecolorexcesse B V = :55(5)applied to both the opticaland Xray regions.the VLT datain theribandsareomitted sincetheyarecompatiblewith themoreaccuratehst uxesin therespective F675W and F814W bands(cf.table 3). W hile the pulsarux generally decreasesw ith increasing frequency, one can resolve several nontherm al spectral com ponents w ith dierent slopes in dierent spectralranges.they are presumably ofthe pulsarmagnetospheric origin.an excessin softxraysisattributed to the thermal emission from the surface of the NS ( Ogelmanetal.1993;Pavlovetal.21b). 12 European Pulsar Network (EPN) archive available at http://w w w.m pifrbonn.m pg.de/div/pulsar/data. 3.2.Phase averaged spectra ofthe pulsarin the opticaland Xrays A swasnoted by Pavlov etal.(21b),m ignani& C araveo (21),H arding et al.(22),and seen from Fig. 5, the opticalem ission ofthe Vela pulsar is likely to be ofnontherm alorigin and the opticaldata are roughly com patiblewiththelow energyextensionofthexrayplspectral componentdominatinginthe2 1keV range.thismay suggesta sim ilarnature ofthe opticaland the high energy Xray em ission.h owever,as seen from Fig.5,because of thelimitedstatisticsoftheavailablechandradatainthe 2 1keV range,theextensionofthepl componentinferred from thec handra Xray tism uch lesscertain than the nearir and opticaldata. Atthe same time,the RXTE data,being compatible with the Chandra results,appearto be lessuncertain.a dierence in normalization ofthe PL componentsdetected with Chandraand RXTE can beseen in Fig.5.Itmay be due to the factthatonly the pulsed componentisdetected by RXTE (Hardingetal.22). B utthe C handra observations,representing the totalux

8 Shibanov et al.:t he Vela Pulsar in the N earinfrared Log E [ kev ] Log F ν [ µjy ].6.4.2 H 3 2.5 2 Vela pulsar J F814W F675W F555W B U.5 1 1.5 Atm (Chandra) + PL (Chandra) Atm (Chandra) PL (Chandra), α ν =.5 PL (IRRXTE), α ν =.42 Atm (Chandra) + PL (IRRXTE) PL (IROptical), α ν =.12 1 1.2 1.4 14.5 15 15.5 18 18.5 19 Log ν [ Hz ] Fig.6.Blowup oftheopticaland Xray partsofthevela pulsarspectrum presented in Fig.5.Thescalein both panelsisthesame.left panel:iruv partofthepulsarspectrum.ir and opticalbandsaremarked.diamondshaped,stripeshaped and solid llings represent 1 condence regions ofthe N Satm osphere + PL,IRR X T E,and IRO pticalts,respectively.t he best ts and contributions ofdierent spectralcom ponents are show n by dierent typesoflinesexplainedintherightpanel.rightpanel:xraypartofthespectrum.fluxesintherxte bandsare markedbycrosses.theuxinthehardestrxte bandlikelybelongstoaatspectralcomponentdetectedwiththe OSSE/COM PTEL andwasnotusedintheirrxte t.linetypesarethesameasintheleftpanelandfig.5. from the pulsarincluding an\opulse" com ponent,show thatthe pulsed fraction in the RXTE range can be as high as 8% (Sanwalet al.21) and the contribution oftheopulsed componentmay notstrongly aectthe spectralshape.excluding the 5th m ost energetic R X T E band,which islikely related to a atterspectralcomponentdominatingin theosse and COM PTEL ranges (see Fig.5),the RXTE spectrum can be tted with a PL with thespectralindex RXTE :41(9). A lthough thistisstatistically inconsistent( 2 = 3:7perdof),it reectsthespectralslopein therxte range:thebest tline lieswithin a narrow stripeshaped region shown atthe rightpaneloffig.6.itsextension to the opticalrangeoverlapswith the opticalspectrum.a similar behavior was observed for the m iddleaged pulsar PSR B656+14(Koptsevichetal.21).Buttheslopeofthe opticalbroadband spectrum asa w holeappearsto be signicantlyatter, opt = :12(5)( 2 = :7perdof,seethe leftpaneloffig.6),and itisnotpossible to talloptical andrxte datawithasinglepl.w enotealsodeviations from the single powerlaw IRO pticaltatabout1 level seeninthej s andu bands. Such behavior ofthe phaseaveraged opticalspectrum suggeststhat it can be a combination ofseveralspectralcomponents dominating at dierent phases ofthe pulsar light curve,as it is seen in the RXTE range (Hardingetal.22).Thiscan only be proven by deep timeresolved photometry.to our knowledge,no such data have been obtained yet for the Vela pulsar.the m ost recent\w hitelight" tim eresolved photom etry revealsthree peaksin the pulsarlightcurve in the opticalrange (Gouies1998).In contrastto that,up to 5 peakswereregistered in therxte bands,and theirpl spectra have signicantly dierentindicesand intensities. ThesecondRXTE peakconsistsoftwocomponents,soft and hard,and coincides with the second opticalpeak (Hardingetal.22).The second hard peak dominates the w hole phaseaveraged spectralux,exceptforthe 5th RXTE band,wheretherstpeakwithapositivespectral slopecontributessignicantly,providing a sm ooth connec

tion to the spectraldata in the O SSE range(cf.fig.5). TherstRXTE peakcoincideswiththerstraypeak. ThemeasureduxesintheJ s andh bandsmayimply thatthepulsarspectrum could besteeperin their than in the optical,as was also observed for the m iddleaged pulsarpsr B656+14(Koptsevichetal.21).DeeperobservationsofVelain theh band areneeded tostatethis possiblesimilaritywith greatercondence.w hatismore obviousisthatthespectralslopein thenearir iscom patiblewiththerxte slope.combiningtherstfourrxte bandswith thej s and H bandsgivesaconsistentpl t IR RXTE with = :417(6)( 2 = 1:3perdof)shown by adashed linein Figs.5and 6.Theopticalbandsshow a uxexcessoverthist. To better match the whole opticalrange we combined this nonthermal component with the thermal NS atmosphere component describing the soft Xray part ofthe C handra data(pavlov et al.21b,com bined HRC+ASIC t).thecombinedmodelspectrum isshown by solid lines in Figs.5 and 6.H owever,the atm osphere com ponentdecreasesthe residualssignicantly only in the U and the softestrxte bands,by contributionsfrom therayleighjeansand W ien tailsofthethermalemission,respectively.t he rest ofthe opticalbands stillshow asignicantexcessoverthecombined atmosphere+ PL m odel.b ased on that,we can speculate thatthe 2nd peak isresponsible forthe phase averaged em ission in both the RXTE and nearir ranges,whiletheexcessin BVRIis m ainly produced by another phase and/or spectralcomponent. D eeperc handra observationsofthe Vela pulsarin the high energytailofitsxrayemission areneeded toperform m ore accurate phase averaged spectral analysis of the opticaland Xray data.the high spatialresolution of C handra should avoid the possible uncertainty of the RXTE uxeswhich do notproperly accountfortheopulsed com ponent ofthe pulsar em ission.in this context, wecan assumethatthecontribution ofthiscomponent justincreasestherxte uxesbyafactorof 1:6(+.2 in Logscale)in allbandstomatchthechandrabestpl tline(doubledotdashesin the rightpaneloffig.6).in thiscase,thelow energyextensionoftherxte PL componentwould only overlap with theupperpartoftheb band errorbar,and would suggesta spectralbreak ofthe nonthermalcomponentneartheub bands.ontheother hand,ifthecurrentchandrabestpl tisclosertoreality,the break between the opticaland Xray slopesofthe nonthermalcomponentwould benear5ev,i.e.,in the EU V range.w e consider these as alternative hypotheses to be tested by future observations. 3.3.O pticalspectrum ofthe Vela pulsarand spectral evolution ofthe pulsaropticalem ission T he nearir data extend signicantly the broadband optical spectrum of the Vela pulsar towards longer wavelengths.t hisallow sa detailed com parison w ith the prop Shibanov et al.:t he Vela Pulsar in the N earinfrared 9 Log Flux [ µjy ] 3.8 Crab 3.6 3.4 3.2.4.2.2.2.4.6.6.8 1 Vela PSR B656+14.4 Geminga 14 14.5 15 Log ν [ Hz ] F ig.7.c om parison ofthe opticalspectra offour pulsars. TheyoungestCrab (Sollerman 23)isatthetop,the oldestgeminga(komarovaetal.22)isatthebottom. erties ofother pulsars observed in the nearir.in Fig.7 we comparethe opticalir partofthe spectrum ofthe Vela pulsar w ith the available phaseaveraged opticaland nearir spectra ofother pulsars ofdierent ages. O urphotom etry ofthevela pulsarin theh ST/F675W and VLT/R bandsdoesnotconrm a dip in thisrange (M ignani& Caraveo21).M oreover,changing the extinction from A V = :4 (M anchesteretal.1978) to the most recent value A V = :18 changes the average spectralindex in the opticalfrom = :2(2) (M ignani& Caraveo21)to opt = :12(5).Thisisdifferent from the m ost recently estim ated positive slope of thespectrum oftheyounger( 1 3 yr)crab pulsar, which showsa monotonousux increasefrom their to the FU V range(sollerm an et al.2;sollerm an 23).

1 Shibanov et al.:t he Vela Pulsar in the N earinfrared Spectra ofthem iddleaged pulsarspsr B 656+ 14and GemingahavedipsneararoundUB bands,andthespectrum ofpsr B656+14hasastrongincreaseinthenear IR.W eseesignsofthesefeaturesalsoin thevela spectrum,although at a low signicance level.t he spectrum ofpsr B 656+ 14 increases signicantly towards the IR (K optsevich et al.21),contrary to the spectrum ofthe C rab pulsar. 3.4.Extended structures O ur IR observations allowed us to detect faint extended structures 1: 5SE and 3: 1NW ofthepulsar.these are projected on the SE counterjet and on the inner arcofthepw N detected in Xrays(Helfandetal.21; Pavlovetal.21a).W e also see a pointlike objecto1 1: 2NW ofthepulsar,projectedonthenw XrayPW N jet.alltheseobjectsarered and haveno reliablecounterparts in the optical bands. It is dicult to conclude whetherthesefeaturesareassociated with thepw N or they are background objects. Observationsofthemuch moreenergeticcrab PW N show thatsomeofitsstructuresarebrighterin the IR than in theopticalrange.forinstance,theknotstructure, whichisonly: 6SE ofthecrabpulsar,ismoreluminous intheir andhasamuchsteeperspectrum ( knot :8) than the C rab pulsaritself(sollerm an 23).T hisisconsistent w ith the spatially averaged PL Xray spectrum ofthecrabpw N (Gotthelf& Olbert22).Someofthe Crab wispsarealso betterresolved in their.based on that,andonthefaintnessofthevelapw N ascompared with thecrab one,itwould notbetoo surprisingifthe VelaPW N could bedetected moreeasily in thenearir than in the optical. In this context,the measured ux in the H band, and our3 detection limitsin thej s,hst/f814w and H ST/F675W bandsofthe pointlike objecto1 resem bling thecrab knot,suggest o1 > 1:8.Thus,itsspectrum is m uch steeperthan thatofthe C rab knotand also steeper than a spatially averaged Xray spectrum ofthe Vela PW N with PW N :5(Gotthelf& Olbert22).W eare not aware ofany reasonable physicalm echanism for such a strong change ofthe spectralindex from Xrays to the opticalrange,and we therefore believe that o1 islikely to be a distant highly absorbed extragalactic object. O n thecontrary,asseen from Fig.8,thesurfacebrightnessin J s and itsupperlimitin H oftheir innerarc showninfig.2arecompatiblewiththelow energyextension ofthetimeand spatially averaged Xray spectrum ofthe VelaPW N inner and outerarcs.the Xray arc spectrum can betted with apl with (:3 :5) and unabsorbed energy integrated brightness (3 6) 1 14 ergss 1 cm 2 arcsec 2 in the:1 1keV range (K argaltsev et al.22;m ignaniet al.23).w econsider this,and the positionalcoincidence ofthe innerir and X ray arcsasargumentsin favoroftherstdetection ofa counterpartofthevelapw N in thenearir range.the Log F ν [ µjy arcsec 2 ] 1 1 2 3 8 6 4 2 Radio ATCA Vela PWN Log E [ kev ] 8 1 12 14 16 18 Log ν [ Hz ] SE counterjet? Inner Outer Arcs Inner arc? nearir optical VLT and HST H, J S, F555W α ν =.3.5 Xrays Chandra Fig.8.Time and spatially averaged unabsorbed spectrum of the surface brightness of the Vela PW N inner and outer arc regions in Xrays tted by a PL (Kargaltsevetal.22) together with optical (M ignaniet al.23) and radio(lew is et al.22) upper lim its,and the brightnessofthe suggested innerarc counterpartin thej s band and itsupperlimitin theh band m arked by a box.filled regions show uncertainties ofthe Xray t(dashed line)and itsextension intotheoptical range.t he ellipse outlines the brightness ofthe nearir extended structure projected at the SE Xray counterjet in 1: 5vicinityoftheVelapulsar. IR brightness ofthe structure is also consistent w ith the deepestopticalupperlim itof.57 Jy obtained recently in thehst/f555w band (M ignanietal.23).ifitisa realcounterpart of the inner arc w ith the spectralslope described above, only slightly deeper observations, presum ably at longer wavelengths,would allow a detection ofthis PW N structure. TheextendedIR sourceclosesttothepulsar,andapparently projected on these Xray counterjet,isan order ofm agnitude brighter than expected from an extrapolation ofthe Xray spectrum into the nearir/opticalrange (Fig.8).ItsIR spectrum isalsomuch steeper, 2:5, thanthespectrum ofthepw N furtherawayfrom thepulsar.asin thecaseofo1,thisdoesnotarguein favorof it being associated w ith the PW N.It could,however,be thattheinnerjetstructureisbrighterand hasasteeper spectrum,because ofpossible instabilitiesofthe relativistic particle ow from the pulsaraswellashigherradiative losses at shorter distances from the pulsar.a lthough the upperlimiton theopticaluxfrom their sourceagrees with an extrapolation oftheux in thej s and H bands (seefig.8),weem phasizethattheopticaland nearir imagesare from dierentepochs.a s m entioned in Sect.2.2, the em ission ofthe regionsclose to the C rab pulsarvaries on a shorttim e scale,and future com parison between opticaland nearir em ission in the vicinity ofthe Vela pul

Shibanov et al.:t he Vela Pulsar in the N earinfrared 11 sarwould benetfrom sim ultaneousobservationsin these wavelength ranges. In XraystheVelaPW N showshigh variabilityofits jetand arclikestructuresin position,intensity,and hardnessratio(pavlov et al.21a).t hus,furtherdeep observationsofthe pulsareld in the nearir and in the optical would be usefulto search for the variability and to prove or reject the association of the detected extended structuresse and NW ofthepulsarand o1 with thepw N. ObservationsoftheVela pulsarin thekl bandswould be valuable to investigate the possible increase ofits ux towards the IR range.finally,tim e resolved photom etry and spectralinform ation on the em ission ofdierent opticalpeaks ofthe pulsar pulse prole would be crucialto understand to w hich extent nontherm alopticalradiation ofthevela pulsarisofthesameorigin asthenontherm alspectralcom ponentseen in the high energy tailofits Xray spectrum,orwhetheritisgenerated by dierent radiation m echanism s. 4.Summary H ereweprovidea sum m ary ofourm ostim portantresults. 1. W e have,forthe rsttim e,detected the Vela pulsarin thenearir inthej s andh bands. 2.Our IR uxes combined with the available broadband optical data conrm the nontherm al origin of the pulsarem ission in IRopticalrange.T he com bined phaseaveraged unabsorbed IRopticalspectrum is tted with asinglepl with anegativeslope.thisisin contrast to a positive slope of the unabsorbed spectrum ofthe younger C rab pulsar. 3. T he IRopticalspectrum and the phaseaveraged PL spectralcom ponentdetected in the high energy tailof thepulsarxray em ission cannotbetted w ith a single PL.ThissuggestseitheraspectralbreakintheNUV EU V range,or the presence ofan additionalspectral componentwith aatterspectrum dominatingin the opticalrange.in the lattercase,the IR and the X rayspectrum canbettedwithasinglepl suggesting thesameorigin ofthenonthermalpulsaremission in the second pulse ofthe pulsarpulse prole in both the XrayandIR ranges. 4.W edetectedtwofaintobjectsinthe1: 5vicinityofthe pulsar.t hey are projected on the SE counterjet and thenw jetofthevelapw N detectedinxrays.both ofthem areextremely red and haveno counterparts in the opticalrange.t heirir uxesare apparently inconsistentw ith theexpected IR brightnessofthepw N obtained by extrapolation ofits Xray spectrum into the IR range.finding variability ofthe objects would strongly supporttheirassociation w ith the highly variablepw N. 5.A thin extended structurealigned with theinnerarc ofthexraypw N ismarginallyseen in thej s band. ItsbrightnessisconsistentwiththeXrayPW N spectrum.however,its reality and association with the PW N structure need to be conrmed athighersignicance levelby deeper observations. Acknow ledgem ents. W e are gratefulto Soroush N asoudishoar forinitialhelp with data reductions,to Simon Johnston for providing us w ith unpublished data on the radio spectrum ofthevelapulsar,to AliceHardingand M ark Strickman for tabulated resultsoftherxte observationsofthevela pulsar,tostefan W agnerforprovidinguswith unpublishedvlt data in the Iband,to George Pavlov and Roberto M ignani fordiscussionsand foraccessto thepaperon thesearch for the opticalcounterpart ofthe Vela PW N prior to publication, and to the referee Stephen Eikenberry for comments which allowed usto clarify betterseveralpointsin text.abk and YAS are gratefulto Stockholm Observatory and the Royal Swedish Academy ofsciences,and ABK to the University of W ashington, for hospitality. T his work has been partially supported by the R FB R grants 2217668,3217423,and 3792, the R oyalswedish A cadem y ofsciences and the Swedish Research Council.PL is a Research Fellow at the R oyalswedish A cadem y ofsciencessupported by a grantfrom the W allenberg Foundation. References C araveo,p.a.,d e Luca,A.,M ignani,r.p.,et al.21,a pj, 561,93 C ha,a.n.,senbach,k.r.,& D anks,a.c.1999,a pj,499, L45 Cheng,K.S.,Ho,C.,& Ruderman,M.A.1986,ApJ,3,5 D augherty,j.k.& H arding,a.k.1996,a pj,458,278 Fomalont,E.B.,Goss,W.M.,Lyne,A.G.,et al.1992, M NRAS,258,497 Fukugita,M.,Shim asaku,k.,& Ichikawa,T.1995,PA SP,17, 945 Gotthelf, E.V.& Olbert,C.M.22, in Proceedings of the27.w EHeraeusSeminaron Neutron Stars,Pulsars and Supernova R em nants, Physikzentrum B ad H onnef, Germany, Jan. 22, eds. W. Becker, H. Lesch, & J. Tr umper,m PE Report278,159(astroph/285169) Gouies, C. 1998, in Neutron Stars and Pulsars, eds. N. Shibazaki,N.K awai,s.shibata& T.K ifune(u niv.a cad. Press:Tokyo),363 Harding,A.,Strickman,M.S.,Gwinn,C.,etal.22 ApJ, 576,376 H awarden,t.g.,leggett,s.k.,letaw sky,m.b.,et al.2, M NRAS,325,563 Helfand,D.J.,Gotthelf,E.V.,& Halpern,J.P.21,ApJ, 556,38 H ester,j.j.,m ori,k.,b urrow s,d.,etal.22,a pj,557,l49 K anbach,g.,a rzoum anian,z.,b ertsch,d.,etal.1994,a& A, 289,855 Kargaltsev,O.,Pavlov,G.G.,Sanwal,D.et al.22,in Neutron Starsin Supernova Remnants,ASP Conf.Ser., 271, eds. P. O. Slane & B. M. Gaensler (ASP: San Francisco),181 Komarova,V.N.,Shibanov,Yu.A.,Zharikov,S.V.,etal. 22,in Proc.oftheW orkshop Pulsars,AXPsand SGRs observed w ith B epposa X and otherobservatories,in press K optsevich,a.b.,pavlov,g.g.,zharikov S.V.,et al.21, A&A,37,34 Labbe,I.,Franx,M.,R udnick,g.,et al.23,a J,125,117 Landolt,A.1992,A J,14,34

12 Shibanov et al.:t he Vela Pulsar in the N earinfrared Lasker,B.M.1976,A pj,23,193 Legge,D.2,inPulsarAstronomy{2andBeyond,eds. M.Kramer,N.W ex,& N.W elebinski,asp Conference Series,22,141 Lew is,d.,d odson,r.,m cc onnell,d.,et al.22,in N eutron Stars and Supernova R em nants,a SP C onf.ser.,271,eds. P.O.Slane& B.M.Gaensler(ASP:San Francisco),191 Lu,F.J.& A schenbach,b.2,a& A,362,183 M anchester,r.n.,lyne,a.g.,goss,w.m.,etal.1978, M NRAS,184,159 M ignani,r.p.& C araveo,p.a.21,a& A,376,213 M ignani,r.p.,c araveo,p.a.,& B ignam i,g.f.2,eso M essenger,99,22 M ignani,r.,deluca,a.,kargaltsev,o.,etal.23,a&a, subm itted Ogelman,H.,Finley,J.R.,& Zimmerman,H.U.1993,Nature, 361,136 Pavlov,G.G.,Karagaltsev,O.Y.,Sanwal,D.,etal.21a, A pjl,554,l189 Pavlov,G.G,Zavlin,V.E.,Sanwal,D.,etal.21b,ApJL, 552,L129 R om ani,r.w.1996,a pj,47,469 Sanwal,D.,Pavlov,G.G.,K aragaltsev,o.y.,et al.21.in Neutron StarsinSNRs,ASP ConferenceSeries,eds.P.O. Slane& B.M.G aensler(astroph/112164) Schlegel,D.J.,Finkbeiner,D.P.,Davis,M.1998,ApJ,5, 525 Sch onfelder,v.,bennett,k.,blom,j.j.,etal.2,a&as, 143,145 Sim ons,d.a.& Tokunaga,A.22,PA SP,114,169 Sollerm an,j.23,a& A,subm itted Sollerm an,j.& Flyckt,V.22,ESO M essenger,17,32 Sollerm an,j.,lundqvist,p.lindler,d.,et al.2,a pj,537, 861 Strickman,M.S.,Grove,J.E.,Johnson,W.N.,etal.1996, A pj,46,735 Taylor,J.H.,M anchester,r.n.,& Lyne,A.G.1993,A pjs, 88,529 van derb liek,n.s.,m anfroid,j.,& B ouchet,p.1996,a& A SS, 119,547 W agner,s.j.& Seifert,W.2,in Pulsar A stronom y{ 2 and beyond,asp Conferenceseries,eds.M.Kramerr,N. W ex,& N.W elebinski,a SP C onference Series,22,315 W allace,p.t.,peterson,b.a.,m urdin,p.g.,etal.1977, N ature,266,692