Estimation of Parameters of Arrhenius Equation for Ethyl Acetate Saponification Reaction

Similar documents
Experimental Study of the Influence of Process Conditions on Tubular Reactor Performance

Chemical Kinetics. Reaction rate and activation energy of the acid hydrolysis of ethyl acetate LEC 05. What you need: What you can learn about

EXPERIMENT 7- SAPONIFICATION RATE OF TERT- BUTYL CHLORIDE

Aspen Plus Simulation of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor

Simulation and Optimization of Saponification of Ethyl Acetate in the Presence of Sodium Hydroxide in a Plug Flow Reactor Using Aspen Plus

Experimental Determination of Kinetic Rate Constants Using Batch and CSTR Reactors

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Chapter 13 - Chemical Kinetics II. Integrated Rate Laws Reaction Rates and Temperature

CHE 611 Advanced Chemical Reaction Engineering

SAMPLE CHEMISTRY QUESTIONS MIXTURE OF UNIT 3 & 4 MATERIALS

Physical Pharmacy. Chemical Kinetics and Stability

C H E M I C N E S C I

Chapter 17. Equilibrium

All reversible reactions reach an dynamic equilibrium state.

concentrations (molarity) rate constant, (k), depends on size, speed, kind of molecule, temperature, etc.

CHEMICAL ENGINEERING LABORATORY CHEG 4137W/4139W. Reaction Kinetics Saponification of Isopropyl Acetate with Sodium Hydroxide

Plug flow Steady-state flow. Mixed flow

Available online Journal of Scientific and Engineering Research, 2018, 5(3): Research Article

BT 47L. Enzyme Technology and Biokinetics Lab Manual

Ch 13 Rates of Reaction (Chemical Kinetics)

13. Chemical Equilibria

Synthesis of 2-Ethylhydroanthraquinone for the Production of Hydrogen Peroxide in a Catalytic Slurry Reactor: Design Case

No. 6. Reaction Rate Constant in CSTR Reaction. 1. Introduction


ALE 9. Equilibrium Problems: ICE Practice!

Reactors. Reaction Classifications

CHEMISTRY NOTES CHEMICAL KINETICS

CHEM 254 EXP 10 Chemical Equilibrium - Homogeneous and Heterogeneous Equilibrium

v AB + C à AC + B Ø Bonds breaking

AQA A2 CHEMISTRY TOPIC 4.2 EQUILIBRIA BOOKLET OF PAST EXAMINATION QUESTIONS

BAE 820 Physical Principles of Environmental Systems

Chapter 13 Lecture Lecture Presentation. Chapter 13. Chemical Kinetics. Sherril Soman Grand Valley State University Pearson Education, Inc.

Lecture 12 Elementary Chemical Kinetics: Concepts

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GCSE TWENTY FIRST CENTURY SCIENCE A173/01

with increased Lecture Summary #33 Wednesday, December 3, 2014

CHE 611 Advanced Chemical Reaction Engineering

RESEARCH ARTICLE The Kinetics of Oxidation of Iodide ion by Dichromate Ion in an Acidic Medium

Chapter 14 Chemical Kinetics

Elementary Reactions

UNIT-4 CHEMICAL KINETICS CONCEPT

5.1.2 How Far? Equilibrium

Chemical Kinetics. Reaction Mechanisms

CHAPTER FIVE REACTION ENGINEERING

(Refer Slide Time: 00:10)

CHAPTER 12 CHEMICAL KINETICS

OXFORD CAMBRIDGE AND RSA EXAMINATIONS GCSE TWENTY FIRST CENTURY SCIENCE A173/02. CHEMISTRY A / FURTHER ADDITIONAL SCIENCE A Module C7 (Higher Tier)

Reaction Mechanisms. Chemical Kinetics. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms. Reaction Mechanisms

Chemical Kinetics. Rate = [B] t. Rate = [A] t. Chapter 12. Reaction Rates 01. Reaction Rates 02. Reaction Rates 03

IB Chemistry Solutions Gasses and Energy

Chapter 14 Chemical Kinetics

EXPERIMENT 3 THE IODINE CLOCK

CHEMISTRY. Chapter 13. Chapter Outline. Factors Affecting Rate

It must be determined from experimental data, which is presented in table form.

Schools Analyst Competition

CHEM Chemical Kinetics. & Transition State Theory

Student Notes. Chemical Reactions LINK

Lesmahagow High School CfE Higher Chemistry. Chemical Changes & Structure Controlling the Rate

GCSE Chemistry. Module C7 Further Chemistry: What you should know. Name: Science Group: Teacher:

CFC: chlorofluorocarbons

Chemical Reactions and Chemical Reactors

Chapter 13 Kinetics: Rates and Mechanisms of Chemical Reactions

TITRATION. Exercise 0. n c (mol dm V. m c (1) MV

CFD ANALYSIS OF TURBULENCE EFFECT ON REACTION IN STIRRED TANK REACTORS

Examples of fast and slow reactions

CLASS 12th. Chemical Kinetics

KINETICS II - THE IODINATION OF ACETONE Determining the Activation Energy for a Chemical Reaction

Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates. Factors That Affect Rates

Brown et al, Chemistry, 2nd ed (AUS), Ch. 12:

CHE 611 Advanced Chemical Reaction Engineering

Chapter 14. Chemical Kinetics

EXPERIMENT 1 REACTION RATE, RATE LAW, AND ACTIVATION ENERGY THE IODINE CLOCK REACTION

Chemical Kinetics -- Chapter 14

All reversible reactions reach an dynamic equilibrium state. H 2 O+ CO H 2 +CO 2. Rate of reverse reaction (H 2 + CO 2 )

Equilibrium and Reaction Rate

Chapter 12. Chemical Kinetics

Investigation of adiabatic batch reactor

Chapter 11 Rate of Reaction

ALE 4. Effect of Temperature and Catalysts on the Rate of a Chemical Reaction

Homework #4 Chapter 15 Chemical Kinetics. Therefore, k depends only on temperature. The rate of the reaction depends on all of these items (a d).

Unit 1: Kinetics and Equilibrium Name Kinetics

Chapter 14: Chemical Kinetics II. Chem 102 Dr. Eloranta

3: Chemical Kinetics Name: HW 6: Review for Unit Test KEY Class: Date: A Products

Exp.3 Determination of the Thermodynamic functions for the Borax Solution

Determining Rate Order

Chapter 14. Chemical Kinetics

Mechanism and Kinetics of the Synthesis of 1,7-Dibromoheptane

OH(l) CH 3 COOCH 2. (ii) An equilibrium was reached when the amounts of substances shown in the table below were used.

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Properties of Solutions and Kinetics. Unit 8 Chapters 4.5, 13 and 14

Take home Exam due Wednesday, Aug 26. In class Exam will be the that morning class multiple choice questions.

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chapter 12 - Chemical Kinetics

Phase Transfer Catalysis in Micro Channels, Milli Channels and Fine Droplets Column: Effective Interfacial Area

Chemistry SPA Experiment Planning. Scientific Experiments

(a) What name is given to this method? (1) (b) Which piece of apparatus should be used to measure the 25.0cm 3 of KOH?

The Adsorption Isotherms of the Bleaching of Sunflower-Seed Oil

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chapter Chemical Kinetics

2013, 2011, 2009, 2008 AP

Coimisiún na Scrúduithe Stáit State Examinations Commission

Transcription:

Abstract Research Journal of Chemical Sciences ISSN 2231-606X Estimation of Parameters of Arrhenius Equation for Ethyl Acetate Saponification Reaction Ahmad Mukhtar, Umar Shafiq, Ali Feroz Khan, Hafiz Abdul Qadir and Masooma Qizilbash Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research Faisalabad, PAKISTAN Available online at: www.isca.in, www.isca.me Received 19 th September 2015, revised 13 th October 2015, accepted 16 th November 2015 In this scientific research a Saponification Reaction between Ethyl Acetate and caustic soda is carried out in a Batch Reactor at STP Conditions. The aim of this scientific research is to estimate the parameters of Arrhenius equation which are rate constant and activation energy for ethyl acetate saponification. For this purpose the reaction is experimentally performed in a Batch Reactor and change in Concentration (in terms of Electrical Conductivity) is measured with time at different temperatures of 25 o C, 30 o C, 35 o C, 40 o C, 45 o C and 50 o C. at each temperature different values of rate constant are obtained at various time and concentration data. Finally to analyze our experimental data graphical method is used and a graph is plotted between ln(k) and 1/T and finally results shows that the value of rate constant is find out from the graph intercept which is 2.314 10 10 and the activation energy is calculated from the slope of graph which is 43.094KJmole -1. Keywords: Saponification, arrhenius equation, activation energy, rate constant. Introduction Saponification reaction is the hydrolysis of a carboxylic acid ester in a basic medium. The role of alkali in the saponification reaction is that it breaks the ester bond and releases the fatty acid salt and glycerol. Esters are usually present in the form of tri-glycerides. Industrial importance of the reaction product sodium acetate demands for process improvements in terms of maximum conversion and economical and environmental friendly usage of raw materials 1. Arrhenius Equation is now eighty years old continues to play a dominant role in classical studies of chemical kinetics it makes experimentally possible to express the dependence of temperature over rate constant in terms of only two variables. Activation energy is strictly combined with the kinetics of chemical reaction. The relationship is described by. k=ae (1) Where K is the rate constant A is the frequency factor a temperature independent term Ea is the activation energy T is the temperature and R is general gas constant. Activation energy is the amount of energy that ensures to make the reaction happen. Usually common sense is that higher temperature causes the two molecules to collide with each other more fastly. So usually the concept is that the rate of a chemical reaction is directly proportional to the temperature and the effect of the temperature on the rate of chemical reaction is calculated by the Arrhenius equation 2,3. Previous study shows that Specific rate constant and conversion increase almost linearly with temperature. Conversion increases from 50.2 % to 58.8 % corresponding to a temperature change from 25C o to 30C o. But for a reaction temperature more than 30 0C, behavior of conversion change became more sluggish 4. Further reaction rate is increased by the catalysis. Catalyst is the material that increases the rate of a chemical reaction, and for equilibrium system it increases the rate of which a chemical system approaches equilibrium without being consumed in the process 5. If the value of activation energy is greater than 20KJmole -1 it is possible that the process is involve in the breaking of primary chemical bond may occur 6. Reaction Kinetics: Saponification Reaction of Ethyl Acetate and Sodium Hydroxide is an irreversible 2 nd order overall, 1 st order with respect to reactants furthermore reaction order decreases and become sequential rather than 2 nd order when equimolecular concentrations of both reactants are used 7-10. This reaction is non-catalytic and carried out in a constant density system. This is a homogeneous phase (liquid/liquid) reaction and mild exothermic in nature. CH 3 COOC 2 H 5 + NaOH CH 3 COONa + C 2 H 5 OH The rate of a chemical reaction is usually depend upon the two terms 1 st is temperature dependent and 2 nd is composition dependent and the temperature dependent term is measured by using the Arrhenius Equation 11. So we may write as. r=f (Temperature) f (Composition) (2) r=k f (Composition) Where: k is rate constant and described by using the Arrhenius equation. International Science Congress Association 1

k=k e Rate constant and activation energy can be calculated by solving the above equation. lnk=lnk +lne (3) lnk=lnk E RT lne lnk= E R 1 T +lnk Now compare the above equation with the equation of straight line we get. y=mx+c (4) Hence by plotting the graph between 1/T on x-axis and lnk on y- axis then antilog of intercept gives the value of rate constant and the slope of straight-line will give the value of E a /R. Experimental Details: The reaction is carried out in a batch apparatus at STP conditions and the change in concentration (in terms of Electrical Conductivity) with time is measured. The experimental setup is shown in figure-1. Apparatus: Thermostatted Bath, Volumetric Flask, Stopwatch, Conductivity Meter, reaction Vessel, Jacketed Beaker, Graduated Cylinder, Pipettes of Assorted Sizes and Burette. Chemicals: Sodium Hydroxide (NaOH), Ethyl Acetate (CH 3 COOC 2 H 5 ) Procedure: For batch experimental equal volume of both reactants is used. Concentrations of both reactants are taken to be 0.1M. Reactants should be as close to same temperature as possible before starting the experiment. Note down the conductivity meter readings (Conductivity in µs) of the reaction mixture after equal intervals of time. The procedure is continued until no change in the value of conductivity meter reading is observed. Repeat the experiment without agitation at different temperatures of 25C o, 30 C o, 35 C o, 40 C o, 45 C o and 50 C o. Observations and Calculations: The observations and calculation which are given below are without agitation. Because previous research shows that At STP Conditions in a Bath Reactor we got high conversion without agitation as compared to with agitation 7. The value of rate constant at a given time-concentration data can be calculated by using this relationship. [11] k=. ( ) (5) Figure-1 Experimental Setup International Science Congress Association 2

The different values of rate constant at different temperatures for different time and concentration date are given below in tables for temperatures of 25C o, 30 C o, 35 C o, 40 C o, 45 C o and 50 C o. Table-1 At Temperature 25C o 1 0 C o = 1001 0 2 1 480 336.12 3 2 443 236.44 4 3 417 211.59 5 4 398 206.50 6 5 383 213.10 7 6 366 258.13 8 7 356 297.23 9 8 350 325.50 10 9 346 346.56 11 10 341 412.50 12 11 338 463.63 13 12 335 555.00 14 13 333 642.30 15 14 330 958.57 16 15 328 1495.56 17 16 327 2106.25 18 17 325 Table-2 At Temperature 30C o 1 0 C o = 974 0 2 1 529 505.68 3 2 486 542.22 4 3 473 521.87 5 4 463 580.68 6 5 455 741.42 7 6 450 970.37 8 7 445 1889.28 9 8 442 6650.00 10 9 441 Table-3 At Temperature 35C o 1 0 C o = 971 0 2 1 590 253.33 3 2 518 289.74 4 3 474 487.25 5 4 462 578.40 6 5 453 795.38 7 6 450 868.33 8 7 446 1250.00 9 8 445 1315.00 10 9 443 1955.55 11 10 442 2645.00 12 11 441 4818.18 13 12 440 Table-4 At Temperature 40C o 1 0 C o = 905 0 2 1 661 117.308 3 2 579 129.36 4 3 538 143.29 5 4 491 272.36 6 5 463 884.00 7 6 456 2494.44 8 7 453 Table-5 At Temperature 45C o 1 0 C o = 982 0 2 1 623 208.721 3 2 498 514.894 4 3 479 598.80 5 4 172 607.14 6 5 462 945.45 7 6 457 1458.33 8 7 453 3778.57 9 8 451 International Science Congress Association 3

Table-6 At Temperature 50C o 1 0 C o = 962 0 2 1 532 741.37 3 2 479 9660 4 3 474 Table-7 At each temperature the average value of rate constant is given Sr. No. T k Units (C o ) min -1 1 25 566.56 2 30 1550.19 3 35 1386.92 4 40 673.56 5 45 1157.5 6 50 5200.68 Table-8 Values of 1/T and Ink Sr. No. T T 1/T K avg. ln(k) Units (C o ) (K) T (K -1 ) min -1 1 25 298.15 0.003 566.56 6.33 2 30 303.15 0.0033 1550.19 7.34 3 35 308.15 0.0032 1386.92 7.23 4 40 313.15 0.0032 673.56 6.51 5 45 318.15 0.0031 1157.5 7.05 6 50 323.15 0.0031 5200.68 8.55 Results and Discussions Hence by plotting the graph between 1/T on x-axis and lnk on y- axis by using above data then antilog of intercept gives the value of rate constant and the slope of straight-line will give the value of E a /R. 9 8 7 6 5 4 3 2 1 0 0.003 0.0031 0.0032 0.0033 0.0034 The result shows that. y= 5183.4x+23.865 Figure-1 At Temperature 50C o Compare above equation with the equation of straight line we get. y=mx+c m= E R = 5183.4 E = 5183.4 8.314=43.094KJmole And lnk=23.865 k=e. =2.314 10 min Conclusion In this research paper a saponification reaction of ethyl acetate and sodium hydroxide is carried out in a Batch Reactor and change in Concentration (in terms of Electrical Conductivity) is measured with time at different temperatures of 25C o, 30 C o, 35 C o, 40 C o, 45 C o and 50 C o. at each temperature different values of rate constant are obtained at various time and concentration data in order to estimate the parameters of Arrhenius equation which are rate constant and activation energy. The results show that the value of rate constant is 2.314 10 10 and the value of activation energy is 43.094KJmole -1. International Science Congress Association 4

C o : A Frequency Factor C t : Initial Concentration Nomenclature C : Concentration at any Time t E a : Final Concentration k o : Activation Energy k : Pre Exponential Term in Arrhenius Equation R : Constant t : Rate General Gas Constant T : Time References : Temperature 1. Afzal Ahmad, Muhammad Imran Ahmad, Muhammad Younas, Hayat Khan and Mansoor ul Hassan Shah, A Comparative Study of Alkaline Hydrolysis of Ethyl Acetate Using Design of Experiments, Iranian Journal of Chemistry and Chemical Engineering, 32(4), 33-47 (2013) 2. Espenson J.H., Chemical Kinetics and Reaction Mechanism, 2 nd Edition, New York, McGraw-Hill (1981) 3. Katakis D. and Gordon G., Mechanism of Inorganic Reactions, New York: Wiley-Interscience, 100(4), 607-608 (1988) 4. Mohd Danish, Mohammad K. Al Mesfer and Md Mamoon Rashid, Effect of Operating Conditions on CSTR Performance, An Experimental Study, International Journal of Engineering Research and Applications, 5(2), 74-78 (2015) 5. Bond G.C., Heterogeneous Catalysis, Principles and Applications, 2 nd Edition, Oxford Clarendon Press, (1987) 6. Laidler K.J., Unconventional Applications of the Arrhenius Law, Journal of Chemical Education, 49, 343-344 (1972) 7. Shahid Raza Malik, Bilal Ahmed Awan, Umar Shafiq and Ahmad Mukhtar, Investigation of Agitation Effect on the Conversion of Saponification Reaction in a Batch Reactor at STP Conditions, International Journal of Applied Science and Engineering Research, 4(4), 461-466 (2015) 8. Tsujikawa H. and Inone H., The Reaction Rate of Alkaline Hydrolysis of Ethyl Acetate, Bulletin of Chemical Society of Japan, 39(9), 1837-1842 (1966) 9. Walker J.A., Method for Determining the Velocities of Saponification, Proceedings of the Royal Society of London,78(522), 157-160 (1906) 10. Wijayarathne UPL and Wasalathilake KC, Aspen Plus Simulation of Ethyl Acetate in the presence of Sodium Hydroxide in a Plug Flow Reactor, Journal of Chemical Engineering and Process Technology, 5(6), 1062-1069 (2014) 11. Octave Levenspiel, Chemical Reaction Engineering, 3 rd edition, Willey India Pvt. Ltd, 13, August (1998) International Science Congress Association 5