Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration

Similar documents
The Fermi Gamma-ray Space Telescope

First results on the high energy cosmic ray electron spectrum with the Fermi-LAT

Cosmic Ray panorama. Pamela.roma2.infn.it PAMELA (2012) Experimental challenges : e + /p ~ 10-3 e + /e - ~ 10-1

arxiv: v1 [astro-ph.he] 2 Jul 2009

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

A Search for Cosmic-ray Proton Anisotropy with the Fermi Large Area Telescope

Experimental review of high-energy e e + and p p spectra

Gamma Ray Physics in the Fermi era. F.Longo University of Trieste and INFN

The new event analysis of the Fermi Large Area Telescope

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

A New Look at the Galactic Diffuse GeV Excess

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

Current and Future balloon and space experiments L. Derome (LPSC Grenoble) Tango, May 4-6th, 2009

1 Introduction STATUS OF THE GLAST LARGE AREA TELESCOPE. SLAC-PUB December Richard Dubois. Abstract

Measurement of absolute energy scale of ECAL of DAMPE with geomagnetic rigidity cutoff

GLAST Large Area Telescope:

Sep. 13, JPS meeting

PAMELA satellite: fragmentation in the instrument

arxiv: v1 [physics.ins-det] 3 Feb 2014

Gamma-ray emission at the base of the Fermi bubbles. Dmitry Malyshev, Laura Herold Erlangen Center for Astroparticle Physics

arxiv: v1 [astro-ph.he] 28 Aug 2015

Highlights from the ARGO-YBJ Experiment

Measurement of the CR e+/e- ratio with ground-based instruments

SUPPLEMENTARY INFORMATION

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

EBL Studies with the Fermi Gamma-ray Space Telescope

Astrophysics with GLAST: dark matter, black holes and other astronomical exotica

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics. PAMELA MissioN 17 December 2010 Prepared by FatiH KAYA

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Measurement of a Cosmic-ray Electron Spectrum with VERITAS

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

The Sun and the Solar System in Gamma Rays

Primary Cosmic Rays : what are we learning from AMS

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Science of Compact X-Ray and Gamma-ray Objects: MAXI and GLAST

SUPPLEMENTARY INFORMATION

PoS(ICRC2017)775. The performance of DAMPE for γ-ray detection

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Limits on Antiprotons in Space from the Shadowing of Cosmic Rays by the Moon

Update on the Two Smoking Gun" Fermi LAT Searches for Dark Matter- Milky Way Dwarfs and Lines

Cosmic Ray Physics with the Alpha Magnetic Spectrometer

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

GLAST Large Area Telescope:

Indirect Dark Matter Detection

Kathrin Egberts Max-Planck-Institut für Kernphysik, Heidelberg for the H.E.S.S. Collaboration

Liquid Argon TPC for Next Generation of MeV Gamma-ray Satellite

Galactic Sources with Milagro and HAWC. Jordan Goodman for the HAWC and Milagro Collaborations

The PAMELA Satellite Experiment: An Observatory in Space for Particles, Antiparticles and Nuclei in the Cosmic Rays

Dark Matter Particle Explorer: The First Chinese Cosmic Ray and Hard γ-ray Detector in Space

Cosmic Ray Excess From Multi-Component Dark Matter

Indirect Dark Matter search in cosmic rays. F.S. Cafagna, INFN Bari

The Fermi Gamma-ray Space Telescope

The Gamma Large Area Space Telescope: GLAST

Introduction to Cosmic Rays Data Analysis Issues. Nicola De Simone INFN and University of Rome Tor Vergata

Calibrating Atmospheric Cherenkov Telescopes with the LAT

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Cosmic Rays and the need for heavy payloads

arxiv: v2 [astro-ph.he] 26 Mar 2010

Gamma-ray Astrophysics

Nikolay Topchiev for the GAMMA-400 Collaboration High-energy gamma-ray studying with GAMMA-400

Gamma rays, electrons and positrons up to 3 TeV with the Fermi Gamma-ray Space Telescope

The H.E.S.S. Standard Analysis Technique

PoS(IDM2010)013. Antiproton and Electron Measurements and Dark Matter Searches in Cosmic Rays. Piergiorgio Picozza.

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope

1. Motivation & Detector concept 2. Performance 3. Confirmation experiments 4. Summary

1. Motivation & Detector concept 2. Performance 3. Applications 4. Summary

The LHAASO-KM2A detector array and physical expectations. Reporter:Sha Wu Mentor: Huihai He and Songzhan Chen

THE ELECTROMAGNETIC CALORIMETER OF THE AMS-02 EXPERIMENT

GLAST - Exploring the high- energy gamma-ray Universe

Non-thermal emission from pulsars experimental status and prospects

GLAST LAT Overview and Status

Calibration of the AGILE Gamma Ray Imaging Detector

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

GLAST and beyond GLAST: TeV Astrophysics

MoonCal An electromagnetic calorimeter on the lunar surface. R.Battiston, M.T.Brunetti, F. Cervelli, C.Fidani, F.Pilo

Results from the PAMELA Space Experiment

Fluxes of Galactic Cosmic Rays

A. Takada (Kyoto Univ.)

New results from Fermi-LAT and their implications for the nature of dark matter and the origin of cosmic rays

HAWC Observation of Supernova Remnants and Pulsar Wind Nebulae

Fermi: Highlights of GeV Gamma-ray Astronomy

PoS(ICRC2017)1076. Studies of Cosmic-Ray Proton Flux with the DAMPE Experiment

Dark matter searches with GLAST

HAWC and the cosmic ray quest

Cosmic Ray Electrons and GC Observations with H.E.S.S.

DARK MATTER SEARCHES WITH AMS-02 EXPERIMENT

Development of a 3D-Imaging Calorimeter in LaBr 3 for Gamma-Ray Space Astronomy

Towards Direction Dependent Fluxes With AMS-02

Multimessenger test of Hadronic model for Fermi Bubbles Soebur Razzaque! University of Johannesburg

New results from the AMS experiment on the International Space Station. Henning Gast RWTH Aachen

Antimatter in Space. Mirko Boezio INFN Trieste, Italy. PPC Torino July 14 th 2010

PAMELA: a Satellite Experiment for Antiparticles Measurement in Cosmic Rays

GeV to Multi-TeV Cosmic Rays: AMS-02 Status and Future Prospects

Dark Matter in the Galactic Center

Indirect Dark Matter Searches in the Milky Way Center with the LAT on board Fermi

Mass Composition Study at the Pierre Auger Observatory

Transcription:

Measurement of the cosmic ray positron spectrum with the Fermi LAT using the Earth s magnetic field Justin Vandenbroucke (KIPAC, Stanford / SLAC) for the Fermi LAT collaboration International Cosmic Ray Conference, Beijing August 15, 2011

Outline 1. Motivation 2. The Fermi Large Area Telescope 3. Charge identification with the geomagnetic field 4. Background subtraction 5. Results ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 1

Motivation: PAMELA measurement of increasing positron fraction, 10-100 GeV Nature 458, 607 (2009) GALPROP diffuse secondary production model (Moskalenko & Strong 1998) Possible explanations: primary astrophysical sources, dark matter, nonstandard secondary production, ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 2

Fermi LAT measurement of combined cosmic ray electron + positron spectrum from 7 GeV to 1 TeV see A. Moiseev talk Abdo et al., PRL 102, 181101 (2009) Ackermann et al., PRD 82, 092004 (2010) Next: can we identify positrons to check the PAMELA rising fraction? 2 challenges: 1) Suppress p + flux which is 3-4 order of magnitude larger than e + : same cuts as e + e - analysis and estimate residual background 2) Distinguish e + from e - : geomagnetic field ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 3

The Fermi Large Area Telescope (LAT): a pair-conversion telescope with ~1 m 2 effective area Anti-Coincidence Detector: charged particle veto surrounding Tracker, 89 plastic scintillator tiles + 8 ribbons, 0.9997 efficiency for tagging singly charged particles ~1.8 m γ Tracker Tracker: 16 modules: tungsten conversion foils + 80 m 2 of silicon strip detectors in 36 layers, 1.5 radiation lengths on-axis Calorimeter: 16 modules: 96 Cesium Iodide crystals per module, 8.6 radiation lengths on-axis, segmented for 3D energy deposition distribution ACD e - e + Calorimeter Atwood et al., ApJ 697, 1071 (2009) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 4

Geomagnetic field + Earth shadow = directions from which only electrons or only positrons are allowed events arriving from West: e + allowed, e - blocked For some directions, e - or e + forbidden Pure e + region looking West and pure e - region looking East Regions vary with particle energy and spacecraft position events arriving from East: e - allowed, e + blocked To determine regions, use code by Don Smart and Peggy Shea (numerically traces trajectory in geomagnetic field) Using International Geomagnetic Reference Field for the 2010 epoch ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 5

Time-dependent region selection Deflected horizon = boundary between allowed and shadowed trajectories Use instantaneous spacecraft position to determine two horizons for each energy Three regions: positron-only, electron-only, both-allowed e - deflected horizon (e - forbidden inside) e + deflected horizon (e + forbidden inside) e + only region e - only region both-allowed region ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 6

Validation of magnetic field model + tracer code 1. Geographical distribution of geomagnetic cutoffs predicted from code matches LAT data (arxiv:1108.0201) 2. Atmospheric positrons (and electrons) detected precisely from deflected direction expected from code: ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 7

Exposure maps: 2 example energy bins for all 3 regions 32-40 GeV e + e - 32-40 GeV e + 32-40 GeV e - 63-80 GeV e + e - 63-80 GeV e + 63-80 GeV e - Exposure units: m 2 s ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 8

Two background subtraction methods: (1) Monte Carlo (2) fit transverse shower size in flight data e + + e - region e - region e + region One example energy bin Fit with sum of two Gaussians Wide hadronic + narrow electromagnetic showers ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 9

Two background subtraction methods produce consistent results Fit-based background subtraction MC-based background subtraction Three cross checks: Two background subtraction methods consistent Summed flux from e - and e + regions matches flux from both-allowed region Flux from both-allowed region matches previously published e + e - total flux ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 10

Effect Systematic uncertainties in spectra MC-based method Fit-based method Effective area ±5% ±5% Onboard filter efficiency ±5% ±5% Atmospheric e ± (<100 GeV) +0%, -3% +0%, -3% Atmospheric e ± (>100 GeV) +0%, -10% +0%, -10% Data-MC p + rate agreement 8% NA Background proton index 2-10% NA Fit parameterization NA 5% Reference θ distribution NA 2-4% Total 8-19% 6-13% Uncertainty of positron fraction is smaller (A eff uncertainty cancels) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 11

Final results: electron-only, positron-only, and both-allowed spectra Use fit-based result (lower uncertainty than MC-based) except for highest energy bin, where statistics insufficient for fitting ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 12

Final results: positron fraction Fraction = ϕ(e + ) / [ϕ(e + ) + ϕ(e - )] We don t use the both-allowed region except as a cross check Positron fraction increases with energy from 20 to 200 GeV ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 13

extra slides ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 14

Angular distribution of events above 100 GeV (with respect to deflected positron horizon, for events below deflected electron horizon) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 15

The Fermi Gamma-ray Space Telescope Launched by NASA at Cape Canaveral June 11, 2008 Routine science began August 2008 Two instruments Large Area Telescope: 20 MeV 300 GeV Gamma-ray Burst Monitor: 8 kev 40 MeV Data publicly available since August 2009 Orbit: 565 km, 25.6 o inclination, circular Field of view = 2.4 sr (38% of 2π) Observe entire sky every 2 orbits = 3 hrs Expect thousands of sources, with spectra for hundreds ~0.1 resolution at 10 GeV, ~0.5 at 1 GeV, ~4 at 100 MeV ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 16

ATIC (Advanced Thin Ionization Calorimeter): bump in combined electron + positron spectrum at 300-800 GeV Nature 456:362, 2008 ATIC AMS-01 BETS, PPB-BETS PPB-BETS x PPB-BETS - GALPROP --- GALPROP with solar modulation 3 balloon flights in Antarctica, 2000-2008 70 events between 300 and 800 GeV ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 17

Recently updated PAMELA electron + positron analysis PRL 106, 201101 (May 20, 2011) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 18

Recently updated PAMELA electron + positron analysis e - spectrum positron fraction PRL 106, 201101 (May 20, 2011) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 19

PAMELA proton and alpha spectra Science 332 (6025): 69-72 (2011) protons alphas ~E -2.7 power law Proton flux an order of magnitude larger than alpha flux ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 20

PAMELA antiproton fraction PRL 102, 051101 (2009) Consistent with diffuse model, unlike positron spectrum ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 21

Fermi LAT orbits and exposure Nearly uniform exposure every two orbits Typical point on sky viewed for 30 minutes every 3 hours Atwood et al., ApJ 697, 1071 (2009) Rocking: alternate North-pointing orbit with South-pointing orbit This survey mode has been used exclusively except for an initial pointed-mode commissioning period and several pointed-mode observations of a few days each (Crab Nebula twice, Cyg X-3 once, and very bright blazar flare 3C 454.3 once) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 22

Fermi LAT data taking Launched June 11, 2008 (3 years old!) Normal data taking since August 4, 2008 Data are publicly available, along with analysis software, from the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc) 175 billion events at trigger level as of May 10, 2011 (~2 khz) 40 billion events sent from satellite to ground (after onboard filtering) Photons available for download, few hours after being detected As of May 2011, ~600 million photon events available, collected since August 4, 2008 Detecting 6.3 gamma rays per second ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 23

Separating electrons and positrons from gammas and protons Anti-coincidence detector (ACD = set of scintillator tiles surrounding instrument) usually required to not fire, to reject charged particles and keep gamma rays Here we require the ACD to fire, to select charged particles and reject the gamma ray background Proton rejection: require broader, clumpier shower in CAL, TKR, and ACD: Increasing cut level and background rejection: required ~10 3 to 10 4 proton rejection achieved ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 24

Hadron-lepton separation and data Monte Carlo comparison after calorimeter cuts after tracker cuts after anti-coincidence cuts after classification tree cuts ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 25

Acceptance and residual background contamination Acceptance ( geometric factor) = 1-3 m2sr in 20 GeV to 1 TeV range Residual hadron contamination = 5 to 20 % ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 26

Low-energy and high-energy data streams LE: minimum bias set, 1 of every 250 triggered events sent to ground HE: any event that deposits 20 GeV in calorimeter sent to ground Two parallel analyses for two streams, with good consistency in overlap region ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 27

Energy resolution, measured with beam test: ~15% ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 28

e + e - interpretation 1: conventional diffuse model Black: electron + positron, blue: electron only Dashed: without solar modulation ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 29

e + e - interpretation 2: softer diffuse secondary model, plus additional source at high energy Tuned to the data: softer diffuse injection spectrum, plus an additional component at high energy (pulsar? dark matter?) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 30

Search for anisotropy in cosmic ray electron + positron flux upper limits Ackermann et al, PRD 82, 092003 (2010) 1.6 M candidate electrons above 60 GeV in first year Entire sky searched for anisotropy with range of angular scales (10 to 90 ) and energies Dipole upper limits: 0.5% to 10% (comparable to expectation for single nearby source: models are not constrained) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 31

Cosmic ray electron/positron separation at ~ TeV with MAGIC and the Moon shadow? e+ shadow e- shadow MAGIC, arxiv:0907.1026 Measure electrons/positrons using imaging atmospheric Cherenkov telescopes like HESS, but use the Moon shadow to separate electrons and positrons (two shadows separated by ~1 at ~1 TeV) Moon phase must be < ~50% to avoid damaging PMTs They have made observations and are analyzing ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 32

Geomagnetic cutoff rigidities Below 20 GeV, we need to consider the shielding effect of the geomagnetic field Determine geomagnetic cutoff energy as a function of geomagnetic orbital coordinates (higher McIlwainL lower cutoff energy) in each McIlwainL interval, measure spectrum for primary component above the cutoff, then recombine different spectra in the global spectrum BONUS: this can be used to measure the absolute energy scale of the LAT ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 33

Spectra: p +, e + e -, e +, p-bar From A. Strong cosmic ray database and M. Pesce-Rollins PhD thesis ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 34

Proton flux 3-4 orders of magnitude larger than positron flux From A. Strong cosmic ray database and M. Pesce-Rollins PhD thesis ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 35

Example interpretation with modified secondary production Diffuse Galactic gammas pair produce on stellar photon field Requires high starlight and gas densities Both could be high near primary sources (e.g. SNRs) Stawarz et al., ApJ 710:236 (2010) ICRC 2011, Beijing Justin Vandenbroucke: Fermi LAT positron spectrum 36