Post-Keplerian effects in binary systems

Similar documents
Probing Relativistic Gravity with the Double Pulsar

SPIN PRECESSION IN A 2 BODY SYSTEM: A NEW TEST OF GENERAL RELATIVITY R. F. O CONNELL DEPT. OF PHYSICS & ASTRONOMY LOUISIANA STATE UNIVERSITY

Gravity Tests with Radio Pulsars

Gravity with the SKA

Testing General Relativity with Relativistic Binary Pulsars

imin...

General Relativity Tests with Pulsars

Testing Gravity and Extreme Physics with Pulsars

Binary Pulsars and Evidence for Gravitational Radiation

Collaborators: N. Wex, R. Eatough, M. Kramer, J. M. Cordes, J. Lazio

Measurements of Neutron Star Masses with a strong emphasis on millisecond binary radio pulsar timing

General Relativity Tests with Pulsars

Constraining the Radius of Neutron Stars Through the Moment of Inertia

arxiv: v1 [gr-qc] 28 Oct 2012

Testing GR with the Double Pulsar: Recent Results

2.5.1 Static tides Tidal dissipation Dynamical tides Bibliographical notes Exercises 118

Binary Pulsars and Evidence for Gravitational Radiation

arxiv:astro-ph/ v1 7 Jul 2004

arxiv:astro-ph/ v1 11 Nov 2002

arxiv:gr-qc/ v1 15 Mar 1999

Double neutron star evolution from geometric constraints

Measurements of binary pulsar masses and a study on the nature of gravitational waves

Spin and quadrupole moment effects in the post-newtonian dynamics of compact binaries. László Á. Gergely University of Szeged, Hungary

The orthometric parametrization of the Shapiro delay and an improved test of general relativity with binary pulsars

The Double Pulsar:! A Decade of Discovery! (and what you can do over the next decade with FAST!)

High Precision Pulsar Timing at Arecibo Observatory

Extreme Properties of Neutron Stars

Einstein s Equations. July 1, 2008

Exotic Nuclei, Neutron Stars and Supernovae

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

CONSTRAINING THE EQUATION OF STATE WITH MOMENT OF INERTIA MEASUREMENTS

2 Post-Keplerian Timing Parameters for General Relativity

Next Texas Meeting December It s warm in December! In Melbourne. See kangaroos & koalas Swim at Barrier Reef Exciting science

The double pulsar as Jupiter: tomography of magnetosphere and a new test of General Relativity. Maxim Lyutikov (Purdue U.)

Pulsars. in this talk. Pulsar timing. Pulsar timing. Pulsar timing. Pulsar timing. How to listen to what exotic. are telling us! Paulo César C.

Binary Pulsars. By: Kristo er Hultgren. Karlstad University Faculty of Technology and Science Department of Physics

Testing General Relativity using the Square Kilometre Array

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

PRECESSIONS IN RELATIVITY

The Cosmic Barber: Counting Gravitational Hair in the Solar System and beyond. Clifford Will Washington University, St. Louis

Neutron-star mergers in scalartensor theories of gravity

arxiv:astro-ph/ v1 16 Nov 2004

From space-time to gravitation waves. Bubu 2008 Oct. 24

Einstein s Theory of Gravity. June 10, 2009

Spacecraft clocks and General Relativity

Extreme gravity in neutron-star systems with XEUS

arxiv:physics/ v2 [physics.gen-ph] 2 Dec 2003

Testing the strong-field dynamics of general relativity with direct gravitational-wave observations of merging binary neutron stars and black holes

Testing the strong-field dynamics of general relativity with gravitional waves

General Relativity. on the frame of reference!

Fundamental Physics at ACT. Sante Carloni, ACT

Strong field tests of Gravity using Gravitational Wave observations

Gravitational Waves Theory - Sources - Detection

Testing f (R) theories using the first time derivative of the orbital period of the binary pulsars

Parameterizing and constraining scalar corrections to GR

Stellar Dynamics and Structure of Galaxies

Research Article Geodesic Effect Near an Elliptical Orbit

Lecture XIX: Particle motion exterior to a spherical star

Experimental Tests and Alternative Theories of Gravity

Gravity Waves and Black Holes

GEODETIC PRECESSION AND TIMING OF THE RELATIVISTIC BINARY PULSARS PSR B AND PSR B Maciej Konacki. Alex Wolszczan. and Ingrid H.

Measuring the Whirling of Spacetime

The Same Physics Underlying SGRs, AXPs and Radio Pulsars

Inertial Frame frame-dragging

Electromagnetic observations of pulsars and binaries

NS masses from radio timing: Past, present and future. Paul Demorest (NRAO) Symposium on Neutron Stars, Ohio U., May 2016

Detecting Gravitational Waves with Pulsars

Elliptical-like orbits on a warped spandex fabric

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

Pulsar Overview. Kevin Stovall NRAO

Synergy with Gravitational Waves

arxiv: v2 [astro-ph] 27 Nov 2007

Dynamics of star clusters containing stellar mass black holes: 1. Introduction to Gravitational Waves

FRAME-DRAGGING (GRAVITOMAGNETISM) AND ITS MEASUREMENT

The structure of spacetime. Eli Hawkins Walter D. van Suijlekom

Special Relativity: The laws of physics must be the same in all inertial reference frames.

, G RAVITATIONAL-WAVE. Kent Yagi. with N. Yunes. Montana State University. YKIS2013, Kyoto

7. BINARY STARS (ZG: 12; CO: 7, 17)

General Relativity. Einstein s Theory of Gravitation. March R. H. Gowdy (VCU) General Relativity 03/06 1 / 26

Pulsar black hole binaries: prospects for new gravity tests with future radio telescopes

Detecting Gravitational Waves. (and doing other cool physics) with Millisecond Pulsars. NANOGrav. Scott Ransom

In Search of New MSPs for Pulsar Timing Arrays. Kevin Stovall, NRAO Socorro NANOGrav Collaboration

Testing relativity with gravitational waves

VIOLATION OF THE STRONG EQUIVALENCE PRINCIPLE

Advanced Newtonian gravity

Frame dragging and other precessional effects in black hole-pulsar binaries

Pulsar timing and its applications

Pulsars. The maximum angular frequency of a spinning star can be found by equating the centripetal and gravitational acceleration M R 2 R 3 G M

Universal Relations for the Moment of Inertia in Relativistic Stars

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

Precision Tests of General Relativity in Space

Tests of General Relativity from observations of planets and spacecraft

arxiv:astro-ph/ v1 30 Jul 2003

Orbital Motion in Schwarzschild Geometry

Incorporating eccentricity into GW templates

arxiv:astro-ph/ v1 15 Aug 2001

General Relativity ASTR 2110 Sarazin. Einstein s Equation

Post-Newtonian limit of general relativity

Post-Newtonian celestial mechanics, astrometry and navigation

Testing General Relativity with Atom Interferometry

Transcription:

Post-Keplerian effects in binary systems Laboratoire Univers et Théories Observatoire de Paris / CNRS

The problem of binary pulsar timing (Credit: N. Wex)

Some classical tests of General Relativity Gravitational redshift of light τ t = 1 G c 2 M R R M τ t Perihelion advance of Mercury Φ = G c 2 6πM a (1 e 2 ) M Precession of Earth-Moon spin Ω prec = G ( ) c 2 v 3M 2r prec S M r

(Credit: N. Wex) Different regimes of gravity

(Credit: N. Wex) Different regimes of gravity

(Credit: N. Wex) Different regimes of gravity

(Credit: N. Wex) Different regimes of gravity quasi-stationary, weak-field regime quasi-stationary, strong-field regime highly dynamical, strong-field regime radiative regime

(Credit: N. Wex) Different regimes of gravity

Effacement of the internal structure

Effacement of the internal structure

Effacement of the internal structure Induced quadrupole moment: Q ij R 5 i j U R 5 (Gm/D 3 )

Effacement of the internal structure Induced quadrupole moment: Q ij R 5 i j U R 5 (Gm/D 3 ) Induced quadrupolar force: F i quad m i( Q r 3 ) R 5 (Gm 2 /D 7 )

Effacement of the internal structure Induced quadrupole moment: Q ij R 5 i j U R 5 (Gm/D 3 ) Induced quadrupolar force: F i quad m i( Q r 3 ) R 5 (Gm 2 /D 7 ) For a compact body with R Gm/c 2, F quad (G 6 /c 10 )(m/d) 7 F Newt Gm 2 /D 2 ( ) Gm 5 ( v ) 10 c 2 1 D c

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Real two-body problem m 2 H(x a, p a ) = p2 1 2m 1 + p2 2 2m 2 Gm 1m 2 r 12 m 1

Real two-body problem m 2 H(x a, p a ) = p2 1 2m 1 + p2 2 2m 2 Gm 1m 2 r 12 m 1 p 1 + p 2 = 0

Real two-body problem m 2 H(x a, p a ) = p2 1 2m 1 + p2 2 2m 2 Gm 1m 2 r 12 m 1 p 1 + p 2 = 0 Effective one-body problem H(r, p) = p2 2µ Gmµ r m =m 1 +m 2 m = m 1 m 2 /m

Keplerian solution for bound orbits

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 )

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 ) Parametric solution r(u) = a (1 e cos u) ( 1 + e φ(u) = 2 arctan 1 e tan u ) 2 ν(u) = u e sin u = n (t t 0 )

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 ) Parametric solution r(u) = a (1 e cos u) ( 1 + e φ(u) = 2 arctan 1 e tan u ) 2 ν(u) = u e sin u = n (t t 0 )

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 ) Parametric solution r(u) = a (1 e cos u) ( 1 + e φ(u) = 2 arctan 1 e tan u ) 2 ν(u) = u e sin u = n (t t 0 )

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 ) Parametric solution r(u) = a (1 e cos u) ( 1 + e φ(u) = 2 arctan 1 e tan u ) 2 ν(u) = u e sin u = n (t t 0 )

Keplerian solution for bound orbits Keplerian elements eccentricity e semi-major axis a Constants of motion energy E = Gmµ/(2a) ang. mom. L = µ Gma(1 e 2 ) Parametric solution r(u) = a (1 e cos u) ( 1 + e φ(u) = 2 arctan 1 e tan u ) 2 ν(u) = u e sin u = n (t t 0 ) Kepler s third law: n 2 a 3 = Gm

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Relativistic perihelion advance of Mercury Leading-order relativistic angular advance per orbit: Φ = 6πGM c 2 a (1 e 2 ) Mercury Origin Amplitude ( /cent.) Other planets 531.63 ± 0.69 Sun oblateness 0.028 ± 0.001 General relativity 42.98 ± 0.04 Total 574.64 ± 0.69 Observed 574.10 ± 0.65 M

Two-body Hamiltonian at 1PN order H = H N + 1 c 2 H 1PN + O(c 4 ) H 1PN (x a, p a ) = 1 (p 2 1 )2 8 m1 3 + 1 G 2 m 1 m 2 m 4 r12 2 + 1 Gm 1 m 2 8 r 12 [ 12 p2 1 m1 2 + 14 p 1 p 2 + 2 (n 12 p 1 )(n 12 p 2 ) m 1 m 2 m 1 m 2 ]

Periastron advance in binary pulsars Generic eccentric orbit parametrized by the two frequencies n = 2π P, 2π + Φ ϕ = P Leading-order periastron advance: ω Φ 2π = 3G(m 1 + m 2 ) c 2 a (1 e 2 ) PSR Amplitude ( /year) B1913+16 4.226598 ± 0.000005 J0737-3039 16.89947 ± 0.00068

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Geodetic spin precession [de Sitter, MNRAS 1916] GR predicts that a test spin S with velocity v in a gravitational potential Φ GM/(c 2 r) will precess according to ds dt = Ω prec S where Ω prec 3 2 v Φ Precession of Earth-Moon spin axis of 1.9 /cent. confirmed using Lunar Laser Ranging v prec S r [Shapiro et al., PRL 1988]

Geodetic effect in Gravity Probe B [Everitt et al., PRL 2011] Measured Geodetic precession (mas/yr) 6602 ± 18 6606 Frame-dragging (mas/yr) 37.2 ± 7.2 39.2 Predicted

Spin-orbit coupling at leading order [Barker & O Connell, PRD 1975] ds a dt = Ω a S a spin-orbit coupling { }}{ H(x a, p a, S a ) = H orb (x a, p a ) + Ω b (x a, p a ) S b Ω 1 (x a, p a ) = G c 2 r12 2 ( 3m2 2m 1 n 12 p 1 2n 12 p 2 b ) L

The double pulsar PSR J0737-3039 [Burgay et al., Nature 2003] (Credit: M. Kramer)

Spin precession of pulsar B z [Breton et al., Science 2008] θ µ Ω B projected orbital motion α pulsar A z 0 R mag pulsar B φ y x (to Earth)

Spin precession of pulsar B [Breton et al., Science 2008] Ω B = 4.77 ± 0.66 /yr z θ µ Ω B projected orbital motion α pulsar A z 0 R mag pulsar B φ y x (to Earth)

Spin precession of pulsar B [Breton et al., Science 2008]

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Einstein quadrupole formula

Einstein quadrupole formula Gravitat. wave energy flux F(t) = G...... 5c 5 Q ij Q ij

Einstein quadrupole formula Gravitat. wave energy flux F(t) = G...... 5c 5 Q ij Q ij Radiation reaction force F i (t, x) = 2G 5c 5 Q(5) ij x j

Application to a binary pulsar [Peters, Phys. Rev. 1964] F = 32G 4 m1 2m2 2 (m ( 1 + m 2 ) 5c 5 a 5 (1 e 2 ) 7/2 1 + 73 24 e2 + 37 G = 32G 7/2 5c 5 m 2 1 m2 2 (m 1 + m 2 ) 1/2 a 7/2 (1 e 2 ) 2 (1 + 78 e2 ) 96 e4 )

Application to a binary pulsar [Peters, Phys. Rev. 1964] F = 32G 4 m1 2m2 2 (m ( 1 + m 2 ) 5c 5 a 5 (1 e 2 ) 7/2 1 + 73 24 e2 + 37 G = 32G 7/2 5c 5 m 2 1 m2 2 (m 1 + m 2 ) 1/2 a 7/2 (1 e 2 ) 2 ) de 96 e4 = dt (1 + 78 ) dl e2 = dt

Application to a binary pulsar [Peters, Phys. Rev. 1964] da = 64G 3 m 1 m 2 (m 1 + m 2 ) dt 5c 5 a 3 (1 e 2 ) 7/2 de = 304G 3 m 1 m 2 (m 1 + m 2 ) dt 15c 5 a 4 (1 e 2 ) 5/2 ( 1 + 73 24 e2 + 37 ( e + 121 304 e3 96 e4 ) )

Application to a binary pulsar [Peters, Phys. Rev. 1964] ( ) dp 192πG 5/3 m 1 m 2 2π 5/3 1 + 73 24 = e2 + 37 96 e4 dt 5c 5 m 1/3 P (1 e 2 ) 7/2

Binary pulsar PSR B1913+16 [Hulse & Taylor, ApJ 1975]

Orbital decay of PSR B1913+16 [Weisberg & Huang, ApJ 2016]

Orbital decay of PSR B1913+16 [Weisberg & Huang, ApJ 2016] Ṗ = (2.398 ± 0.004) 10 12

Binary pulsar tests of orbital decay PSR Ṗ int /Ṗ GR Reference B1913+16 0.9983 ± 0.0016 Weisberg & Huang (2016) J0737-3039 1.003 ± 0.014 Kramer et al. (2006) B2127+11C 1.00 ± 0.03 Jacoby et al. (2006) J1756-2251 1.08 ± 0.03 Ferdman et al. (2014) J1906+0746 1.01 ± 0.05 van Leeuwen et al. (2015) J1141-6545 1.04 ± 0.06 Bhat et al. (2008) B1534+12 0.91 ± 0.06 Stairs et al. (2001) J1738+0333 0.94 ± 0.13 Freire et al. (2012) J0348+0432 1.05 ± 0.18 Antoniadis et al. (2013)

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Gravitational redshift of light Light frequency ω em ω rec = 1 + G c 2 M R

Gravitational redshift of light Light frequency ω em ω rec = 1 + G c 2 M R Proper time τ t = 1 G c 2 M R

Gravitational redshift of light Light frequency ω em ω rec = 1 + G c 2 M R Proper time τ t = 1 G c 2 M R Confirmed by Gravity Probe A at 0.007% [Vessot et al., PRL 1980]

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 2 nd order Doppler {}}{ 1 2 v 2 p c 2 + O(c 4 )

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 = 1 Gm c c 2 r 2 nd order Doppler {}}{ v 2 p 1 2 c 2 + O(c 4 ) m c Gm c m c 2 + cst. r

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 = 1 Gm c c 2 r 2 nd order Doppler {}}{ v 2 p 1 2 c 2 + O(c 4 ) m c Gm c m c 2 + cst. r r = a (1 e cos u) t = (u e sin u)/n

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 = 1 Gm c c 2 r 2 nd order Doppler {}}{ v 2 p 1 2 c 2 + O(c 4 ) m c Gm c m c 2 + cst. r r = a (1 e cos u) t = (u e sin u)/n E (u) τ p t = γ sin u

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 = 1 Gm c c 2 r 2 nd order Doppler {}}{ v 2 p 1 2 c 2 + O(c 4 ) m c Gm c m c 2 + cst. r r = a (1 e cos u) t = (u e sin u)/n E (u) τ p t = γ sin u γ = Gm c(m p + 2m c ) c 2 a (m p + m c )n e

Einstein delay dτ p dt = 1 gravitat. redshift {}}{ U(x p) c 2 = 1 Gm c c 2 r 2 nd order Doppler {}}{ v 2 p 1 2 c 2 + O(c 4 ) m c Gm c m c 2 + cst. r r = a (1 e cos u) t = (u e sin u)/n E (u) τ p t = γ sin u γ = Gm c(m p + 2m c ) c 2 a (m p + m c )n e PSR Amplitude (ms) B1913+16 4.2992 ± 0.0008 J0737-3039 0.3856 ± 0.0026

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Gravitational time delay [Shapiro, PRL 1964]

Gravitational time delay [Shapiro, PRL 1964] t = 2GM c 3 [ ( ) ] 4rE r M ln b 2 + 1

Gravitational time delay [Shapiro, PRL 1964] t = 2GM c 3 120 µs [ ( ) ] 4rE r M ln b 2 + 1

Gravitational time delay [Shapiro et al., PRL 1968]

Shapiro delay in binary pulsars S (θ) = 2 Gm c c 3 }{{} range r ln (1 }{{} sin i cos θ) shape s

Double pulsar PSR J0737-3039 [Kramer et al., Science 2006]

Binary pulsar PSR J1614-2230 [Demorest et al., Nature 2010] 30 20 10 0-10 -20-30 -40 30 20 10 T iming residual (µs) 0-10 -20-30 -40 30 20 10 0-10 -20-30 IPTA 2017-40 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 O rbital P hase (turns)

Constraining the NS equation of state [Demorest et al., Nature 2010] Mass (solar) 2.5 2.0 1.5 GR P < GS1 Double NS Systems causality AP3 ENG AP4 J1 6 1 4-2 2 3 0 SQM3 J1903+ 0327 FSU SQM1 PAL6 GM3 J1909-3744 MPA1 MS1 PAL1 MS2 MS0 1.0 0.5 rotation 0.0 Nucleons Nucleons+ Exotic Strange Quark Matter 7 8 9 10 11 12 13 14 15 Radius (km )

Outline 1 The Newtonian two-body problem 2 Relativistic celestial mechanics Periastron advance Geodetic spin precession Gravitational radiation reaction 3 Light propagation in curved spacetime Einstein delay Shapiro delay 4 Testing relativistic gravitation

Three post-keplerian parameters Periastron advance ω = 3G 2/3 c 2 ( ) 2π 5/3 ( 1 e 2 ) 1 (m1 + m 2 ) 2/3 P

Three post-keplerian parameters

Three post-keplerian parameters Periastron advance ω = 3G 2/3 c 2 ( ) 2π 5/3 ( 1 e 2 ) 1 (m1 + m 2 ) 2/3 P Einstein delay γ = G 3/2 c 2 ( ) P 1/3 e m 2(m 1 + 2m 2 ) 2π (m 1 + m 2 ) 4/3

Three post-keplerian parameters

Three post-keplerian parameters m 1 = 1.4398 ± 0.0002M m 2 = 1.3886 ± 0.0002M

Three post-keplerian parameters Periastron advance ω = 3G 2/3 c 2 ( ) 2π 5/3 ( 1 e 2 ) 1 (m1 + m 2 ) 2/3 P Einstein delay γ = G 3/2 c 2 ( ) P 1/3 e m 2(m 1 + 2m 2 ) 2π (m 1 + m 2 ) 4/3 Orbital decay 192πG 5/3 Ṗ = 5c 5 ( ) 2π 5/3 f (e) P m 1 m 2 (m 1 + m 2 ) 1/3

Three post-keplerian parameters m 1 = 1.4398 ± 0.0002M m 2 = 1.3886 ± 0.0002M

Tests of relativistic gravity [Esposito-Farèse, Proc. MG10] 1 test 3 tests

Tests of relativistic gravity [Esposito-Farèse, Proc. MG10] 2 tests 5 tests

Mass measurements for neutron stars [Antoniadis et al., ApJ 2016] millisecond pulsars J0348+0432 J1614-2230 J1946+3417 J1012+5307 J1023+0038 J1903+0327 J0751+1807 J1909-3744 J1738+0333 J0437-4715 J0337+1715 J2234+0611 J1807-2500B J1910-5959A J1713+0747 B1855+09 J1802-2124 J1918-0642 0.0 0.5 1.0 1.5 2.0 Mass (Solar Mass) double neutron stars J0453+1559 B1913+16 B1913+16(c) B2127+11C B2127+11C(c) B1534+12(c) J0737-3039A B1534+12 J1906+0746 J1756-2251 J1906+0746(c) J1756-2251(c) J0737-3039B J0453+1559(c) 0.0 0.5 1.0 1.5 2.0 Mass (Solar Mass)