Starting from a familiar curve

Similar documents
Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

15. Vector Valued Functions

3.6 Derivatives as Rates of Change

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

3, so θ = arccos

72 Calculus and Structures

Solutions from Chapter 9.1 and 9.2

Parametrics and Vectors (BC Only)

KINEMATICS IN ONE DIMENSION

Some Basic Information about M-S-D Systems

Chapter 7: Solving Trig Equations

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

Position, Velocity, and Acceleration

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

Displacement ( x) x x x

a. Show that these lines intersect by finding the point of intersection. b. Find an equation for the plane containing these lines.

Two Coupled Oscillators / Normal Modes

Lab #2: Kinematics in 1-Dimension

2.7. Some common engineering functions. Introduction. Prerequisites. Learning Outcomes

SPH3U: Projectiles. Recorder: Manager: Speaker:

Kinematics and kinematic functions

Matlab and Python programming: how to get started

Module MA1132 (Frolov), Advanced Calculus Tutorial Sheet 1. To be solved during the tutorial session Thursday/Friday, 21/22 January 2016

Let us start with a two dimensional case. We consider a vector ( x,

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

SOLUTIONS TO ECE 3084

Chapter 2. First Order Scalar Equations

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

MATH 4330/5330, Fourier Analysis Section 6, Proof of Fourier s Theorem for Pointwise Convergence

Chapter 2. Motion in One-Dimension I

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

The average rate of change between two points on a function is d t

Lesson 3.1 Recursive Sequences

The equation to any straight line can be expressed in the form:

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Math 116 Practice for Exam 2

x i v x t a dx dt t x

1. VELOCITY AND ACCELERATION

Answers to 1 Homework

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

1.6. Slopes of Tangents and Instantaneous Rate of Change

IB Physics Kinematics Worksheet

15. Bicycle Wheel. Graph of height y (cm) above the axle against time t (s) over a 6-second interval. 15 bike wheel

INSTANTANEOUS VELOCITY

Increase Our Learning Horizon with Evolving Technology

Testing What You Know Now

4.5 Constant Acceleration

10.1 EXERCISES. y 2 t 2. y 1 t y t 3. y e

10.6 Parametric Equations

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout.

Predator - Prey Model Trajectories and the nonlinear conservation law

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

5.2. The Natural Logarithm. Solution

Equations of motion for constant acceleration

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 20 Lesson 5 Graphical Analysis Acceleration

NEWTON S SECOND LAW OF MOTION

4.6 One Dimensional Kinematics and Integration

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

Check in: 1 If m = 2(x + 1) and n = find y when. b y = 2m n 2

Math 333 Problem Set #2 Solution 14 February 2003

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

MEI Mechanics 1 General motion. Section 1: Using calculus

Be able to sketch a function defined parametrically. (by hand and by calculator)

1. Kinematics I: Position and Velocity

Chapters 6 & 7: Trigonometric Functions of Angles and Real Numbers. Divide both Sides by 180

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

LabQuest 24. Capacitors

Today: Graphing. Note: I hope this joke will be funnier (or at least make you roll your eyes and say ugh ) after class. v (miles per hour ) Time

Math Week 14 April 16-20: sections first order systems of linear differential equations; 7.4 mass-spring systems.

Echocardiography Project and Finite Fourier Series

Announcements: Warm-up Exercise:

Vehicle Arrival Models : Headway

Section 5: Chain Rule

PROBLEMS FOR MATH 162 If a problem is starred, all subproblems are due. If only subproblems are starred, only those are due. SLOPES OF TANGENT LINES

Traveling Waves. Chapter Introduction

Roller-Coaster Coordinate System

Constant Acceleration

Suggested Practice Problems (set #2) for the Physics Placement Test

Welcome Back to Physics 215!

SPH3U1 Lesson 03 Kinematics

Solutionbank Edexcel AS and A Level Modular Mathematics

Final Spring 2007

Topic Astable Circuits. Recall that an astable circuit has two unstable states;

AP CALCULUS AB 2003 SCORING GUIDELINES (Form B)

HOMEWORK # 2: MATH 211, SPRING Note: This is the last solution set where I will describe the MATLAB I used to make my pictures.

Practicing Problem Solving and Graphing

SMT 2014 Calculus Test Solutions February 15, 2014 = 3 5 = 15.

- Graphing: Position Velocity. Acceleration

Today: Falling. v, a

Biol. 356 Lab 8. Mortality, Recruitment, and Migration Rates

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 218 Exam 1 with Solutions Spring 2011, Sections ,526,528

Transcription:

In[]:= NoebookDirecory Ou[]= C:\Dropbox\Work\myweb\Courses\Mah_pages\Mah_5\ You can evaluae he enire noebook by using he keyboard shorcu Al+v o, or he menu iem Evaluaion Evaluae Noebook. Saring from a familiar curve In[]:= Mahemaica commens In he nex subsubsecion here is a simple picure in which I presen only one poin. This is o demonsrae how o plo geomeric objecs in Mahemaica. For ha we use Graphics[] command. One can ge help on Mahemaica commands by placing? before he command name.? Graphics Graphics primiives, opions represens a wo dimensional graphical image. In[3]:= Ou[3]= In[4]:= Ou[4]= In[5]:= In he command below here is only one primiive: PoinSize. Blue, Poin PoinSize. RGBColor, Poin and several opions, he firs opion being Frame True Frame True The example given in Mahemaica help is Thick, Green, Recangle Red, Disk Blue, Circle Yellow, Polygon 4, 4, Purple, Arrowheads Large Arrow 4, 3 3 Black, Dashed, Line 4, Ou[5]= This graphics command has six primiives and no opions. I don like how hey wrie his command. In my opinion i is much nicer if we pu each primiive in a separae lis and all primiives we pu in one lis. Below is a nicer way of wriing he above example

Walking_v8.nb In[6]:= he lis of primiives sars here Thick, Green, Recangle he firs primiive Red, Disk he second primiive Thick, Blue, Circle he hird primiive Yellow, Polygon 4, 4, he fourh primiive Thick, Purple, Arrowheads Large Arrow 4, 3 3 he fifh primiive Thick, Black, Dashed, Line 4, he sixh primiive he lis of primiives ends here Ou[6]= The only disadvanage is ha we have o repea he graphics direcive Thick hree imes. You can experimen by adding opions o he above command. Ploing poins This is how o plo one poin.

Walking_v8.nb 3 In[7]:= Graphics command sars here he lis of primiives sars here PoinSize. Blue, Poin he lis of primiives ends here, he opions follow Frame True, his opion pus a frame around he graph PloRange his opion deermine he range of he plo AspecRaio Auomaic, horzonal uni verical uni GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range his opion draws he grid lines command ends here Ou[7]= Nex I wan o show a family of poins. I do i in several seps. Firs I inroduce a variable, and I give his variable a specific value.5. Then I plo one poin wih coordinaes {Cos[],Sin[]}.

4 Walking_v8.nb In[8]:=.5; PoinSize. Blue, Poin Cos Sin Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Ou[9]= Nex I use command Manipulae[] o show many poins wih coordinaes {Cos[],Sin[]}, as a varies. Noice ha he Graphics[] command from he previous cell is wrapped ino Manipulae and he variable is given range from o. To emphasize he change in I show he value of as PloLabel.

Walking_v8.nb 5 In[]:= Clear ; Manipulae Manipulae sars here PoinSize. Blue, Poin Cos Sin PloLabel N Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range ends here., Pi his ells Manipulae o use in his range Manipulae ends here. Ou[]= In he nex command I ell Mahemaica o remember he poins ha have been ploed previously, so ha we can see which curve is being ploed.

6 Walking_v8.nb In[]:= Clear ; Manipulae PoinSize. Blue, Table Poin Cos v Sin v v,,, Pi 64 PloLabel N Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range, Pi, Pi 64. Ou[3]= In he nex several plos I show variaions on a uni circle. The only hing ha I change is ha I make he radius o be a funcion of. I call ha funcion fr[]

Walking_v8.nb 7 In[4]:= Clear ; fr _ : Cos 3 ; Manipulae PoinSize. Blue, Table Poin fr v Cos v Sin v v,,, Pi 64 Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi, Pi, Pi 64 Ou[6]=

8 Walking_v8.nb In[7]:= Clear ; fr _ : Cos ; Manipulae PoinSize. Blue, Table Poin fr v Cos v Sin v v,,, Pi 64 Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi, Pi, Pi 64 Ou[9]=

Walking_v8.nb 9 In[]:= Clear ; fr3 _ : Cos ; Manipulae PoinSize. Blue, Table Poin fr3 v Cos v Sin v v,,, Pi 64 Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi, Pi, Pi 64 Ou[]= The las radius funcion is more complicaed. As a reward, he resuling graph is any regular n-gon. Jus change 4 o any of 3,4,5,6,7,... in fr4[v,4] in he Graphics[] command below.

Walking_v8.nb In[3]:= Clear ; fr4 _, n_ : Cos Pi n Cos Mod n Pi n ; Manipulae PoinSize. Blue, Table Poin fr4 v, 4 Cos v Sin v v,,, Pi 64 Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi, Pi, Pi 64 Ou[5]= In he nex few examples we demonsrae curves in hree-space. We sar wih a helix above he uni circle and which climes one uni for each complee uni circle.

Walking_v8.nb In[6]:= Clear ; Manipulae Graphics3D PoinSize. Blue, Table Poin Cos v Sin v PloLabel N PloRange 3 Axes True 3 Pi, 6 Pi, Pi 3 v Pi v,,, Pi 3 9.4478 3 Ou[7]= The nex example shows a helix like curve ha climes on a cone

Walking_v8.nb In[8]:= Clear fx, fy, fz ; fx _ : Cos 4 ; fy _ : Pi Pi Sin 4 ; fz _ : Pi ; Manipulae Graphics3D PoinSize. Blue, Table Poin fx v fy v fz v v, Pi,, PloLabel N PloRange Axes True, AxesEdge BoxRaios,.5 Pi Pi, Pi, Pi 8 Pi 8 3.459 Ou[3]= The nex plo is he same helix shown as line, no jus a collecion of poins.

Walking_v8.nb 3 In[3]:= Clear fx, fy, fz ; fx _ : Cos 4 ; fy _ : Pi Pi Sin 4 ; fz _ : Pi ; Manipulae Graphics3D Thickness.5 Blue, Line Table fx v fy v fz v v, Pi,, PloLabel N PloRange Axes True, AxesEdge BoxRaios,.5 Pi Pi, Pi, Pi 8 Pi 8 3.459 Ou[33]= The nex helix is on he same cone, bu winds more ofen hen he previous one.

4 Walking_v8.nb In[34]:= Clear fx, fy, fz ; fx _ : Cos 8 ; fy _ : Pi Pi Sin 8 ; fz _ : Pi ; Manipulae Graphics3D Thickness.5 Blue, Line Table fx v fy v fz v v, Pi,, PloLabel N PloRange Axes True, AxesEdge BoxRaios,.5 Pi Pi, Pi, Pi 8 Pi 8 3.459 Ou[36]=

Walking_v8.nb 5 Lines Poin and a vecor Given a poin say P and a direcion given by a vecor, say v, how do does a poin walk saring from P in he direcion specified by he vecor v? In[37]:= pp ; vv ; PoinSize. Blue, Poin pp Green, Arrow vv Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Ou[38]= Afer one second, he poin will be a he green poin whose posiion vecor is OP v

6 Walking_v8.nb In[39]:= pp ; vv ; ; PoinSize. Green, Poin pp vv PoinSize. Blue, Poin pp Green, Arrow vv Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Ou[4]= Afer / second, he poin will be a he green poin whose posiion vecor is OP v

Walking_v8.nb 7 In[4]:= pp ; vv ; ; PoinSize. Green, Poin pp vv PoinSize. Blue, Poin pp Green, Arrow vv Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Ou[44]= Now we are ready o illusrae he moion of he poin wih he Manipulaion[] command

8 Walking_v8.nb In[45]:= pp ; vv ; Clear ; Manipulae PoinSize. Green, Poin pp vv PoinSize. Blue, Poin pp Green, Arrow vv Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range, 4 Ou[47]= The same illusraion wih poin s posiions remembered.

Walking_v8.nb 9 In[48]:= pp ; vv ; Clear ; Manipulae PoinSize. Green, Table Poin pp s vv s,,,. PoinSize. Blue, Poin pp Green, Arrow vv Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range, 4 Ou[5]= Two poins In his subsecion I illusrae how o find he line deermined by wo poins.

Walking_v8.nb In[5]:= pp ; pq, ; PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Tex P, pp, Tex Q, pq, Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range P Ou[5]= Q

Walking_v8.nb In[53]:= pp ; pq, ; PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Cyan, Arrow pq pp Tex P, pp, Tex Q, pq, Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range P Ou[54]= Q

Walking_v8.nb In[55]:= pp ; pq, ; Manipulae PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Cyan, Arrow pq pp Tex P, pp, Tex Q, pq, PloLabel N Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range,.5, 4.5 P Ou[56]= Q The same logic applies in hree dimensions:

Walking_v8.nb 3 In[57]:= pp 3,, 3 ; pq, 3, ; Manipulae Graphics3D PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Cyan, Arrow, pq pp Tex P, pp, Tex Q, pq, PloLabel N Boxed True, Axes True, PloRange AxesLabel x, y, z, 3 4, 4.75 y P Ou[58]= z Q x

4 Walking_v8.nb Two poins and he uni sphere In[59]:= pp 3,, 3 ; pq 4, 3, 3 ; Manipulae Graphics3D PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Opaciy.75 Sphere, Tex P, pp, Tex Q, pq, PloLabel N Boxed True, Axes True, PloRange AxesLabel x, y, z, 4, 4 Ou[6]= An relevan quesion for he above graph would be: Does a person locaed a he poin P sees a person locaed a he poin Q? To answer his quesion we need o calculae wheher he line joining P and Q inersecs he uni sphere. I will do his in Mahemaica.

Walking_v8.nb 5 In[6]:= pp 3,, 3 ; pq 4, 3, 3 ; In[6]:= The equaion of he line joining hese wo poins is pp pq pp Ou[6]= 3 5 4, 5, 3 3 Now we calculae if here are poins on his line which are a he disance from he origin In[63]:= Solve 3 5 4 5 3 3, Ou[63]= 7 99 7 99 69 69 Or, look for a numerical soluion In[64]:= NSolve 3 5 Ou[64]= 4 5.4998.63764 3 3, Yes, here are wo poins on he line joining P and Q which are on he uni sphere. Therefore a person locaed a he poin P canno see he person locaed a he poin Q. This changes if we change he posiion of Q In[65]:= pp 3,, 3 ; pq, 3, 3 ; In[66]:= The equaion of he line joining hese wo poins is pp pq pp Ou[66]= 3, 5, 3 3 Now we calculae if here are poins on his line which are a he disance from he origin In[67]:= Solve 3 5 3 3, Ou[67]= 34 4 34 4 65 65 There are no real soluions. Therefore here are on poins on he line joining P and his new Q which are on he uni sphere. Here we can calculae he closes poin on his line o he uni sphere. Firs plo

6 Walking_v8.nb In[68]:= Plo 3 7 5 3 3,, PloRange 7 6 5 4 Ou[68]= 3...4.6.8. Now calculae derivaive In[69]:= Simplify 3 Ou[69]= 4 68 65 5 3 3 In[7]:= Solve D 4 68 65, Ou[7]= 34 65 Thus, he closes poin o he uni sphere is In[7]:= pp 34 pq pp 65 Ou[7]= 7 3, 4 3, 9 3 Is disance from he origin is In[7]:= 7 3 4 3 9 3 Ou[7]= 37 3 approximaed by In[73]:= N 37 3 Ou[73]=.657 Thus his poin is really close o he uni sphere. Finally see i in hree-space

Walking_v8.nb 7 In[74]:= Manipulae Graphics3D PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Opaciy.75 Sphere, Tex P, pp, Tex Q, pq, PloLabel N Boxed True, Axes True, PloRange AxesLabel x, y, z, 4, 4 Ou[74]= In[75]:= We need a differen ViewPoin o see wha is happening. VP.543548959663`,.538399886`,.87655645469587` Ou[75]=.54354,.533,.87655

8 Walking_v8.nb In[76]:= Manipulae Graphics3D PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp PoinSize. Cyan, Poin pq Opaciy.75 Sphere, Tex P, pp, Tex Q, pq, PloLabel N Boxed True, Axes True, PloRange AxesLabel x, y, z ViewPoin VP, 4, 4 Ou[76]= Now i is clear ha his line ges very close o he uni sphere, bu does no ouch i. Two lines Two pairs of poins deermine wo lines.

Walking_v8.nb 9 In[77]:= pp, 3 ; pq,, ; pp 3,, 3 ; pq,, ; Manipulae Graphics3D PoinSize. Green, Table Poin pp s pq pp s,,,. PoinSize. Magena, Table Poin pp s pq pp s,,,. PoinSize. Blue, Poin pp, Poin pp PoinSize. Cyan, Poin pq Poin pq Tex P, pp, Tex Q, pq, PloLabel N N Boxed True, Axes True, PloRange,.75, 4.5, 4.75,.5 P Ou[79]= Q Do hese lines inersec? Here is he algebraic answer. The parameric equaions of hese lines are

3 Walking_v8.nb In[8]:= pp pq pp Ou[8]= In[8]:= Ou[8]= In[8]:= Ou[8]=, 3 pp s pq pp, 3 3 3 s,, 3 5 s Do hey have a common poin? Solve 3 s, 3, 3 3 3 5 s s, No soluions, so hese wo lines do no inersec. Miscellaneous An egg This parameric equaion of a cross secion of an egg I found on he Inerne.

Walking_v8.nb 3 In[83]:= Line Table.78 Cos Sin Cos Pi, Pi, Pi 4 8 Frame True, PloRange.,.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range, 4 GrayLevel.5 Dashing.,. & Range, 4..5 Ou[83]=..5...5..5. And you can draw an egg using Manipulae[]

3 Walking_v8.nb In[84]:= Manipulae Line Table.78 Cos Sin Cos Pi,, Pi 4 8 Frame True, PloRange.,.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range, 4 GrayLevel.5 Dashing.,. & Range, 4 Pi 4 Pi, Pi, Pi 8..5 Ou[84]=..5...5..5. Velociy

Walking_v8.nb 33 In[85]:= Each parameric curve sudied above can be inerpreed as a moving paricle which leaves a race: he parameric curve. For each curve we will name is parameric equaion, find he velociy vecor and illusrae on he graph of he curve. The uni circle Clear r ; In[86]:= In[87]:= Ou[87]= In[88]:= r _ : Cos Sin D r Sin Cos Clear v ; v _ : Sin Cos

34 Walking_v8.nb In[89]:= Manipulae Thickness. Blue, Line Table r v v,, Pi, Pi 64 Thickness.7 Blue, Line Table r v v,,, Pi 64 Thickness.35 Magena, Table Arrow r v r v v v v,,, Pi Thickness.7 Magena, Arrow r r v PoinSize.5 Blue, Poin r PloLabel N Frame True, PloRange AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range, Pi, Pi 64 6. Ou[89]= In[9]:= Clover Clear r ; In[9]:= r _ : Cos 3 Cos Sin

Walking_v8.nb 35 In[9]:= D r Ou[9]= In[93]:= Cos 3 Sin 3 Cos Sin 3 Cos Cos 3 3 Sin Sin 3 For esheic reasons, in he picure below I will uniformly shoren each velociy vecor o half of is magniude. Clear v ; v _ : Cos 3 Sin 3 Cos Sin 3 Cos Cos 3 3 Sin Sin 3

36 Walking_v8.nb In[94]:= Manipulae Thickness. Blue, Line Table r v v,, Pi, Pi 64 Thickness.7 Blue, Line Table r v v,,, Pi 64 Thickness.35 Magena, Table Arrow r v r v v v v,,, Thickness.7 Magena, Arrow r r v PoinSize.5 Blue, Poin r PloLabel N Frame True, PloRange 3, 3 3, 3 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi 3, Pi, Pi 64 Pi 3 6 3.944 Ou[94]= 3 3 3 In[95]:= Cardioid Clear r3 ; r3 _ : Cos Cos Sin

Walking_v8.nb 37 In[96]:= D r3 Ou[96]= In[97]:= In[98]:= Cos Sin Cos Sin Cos Cos Sin Clear v3 ; v3 _ : Cos Sin Cos Sin Cos Cos Sin Manipulae Thickness. Blue, Line Table r3 v v,, Pi, Pi 64 Thickness.7 Blue, Line Table r3 v v,,, Pi 64 Thickness.35 Magena, Table Arrow r3 v r3 v v3 v v,,, Thickness.7 Magena, Arrow r3 r3 v3 PoinSize.5 Blue, Poin r3 PloLabel N Frame True, PloRange 3.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi 3, Pi, Pi 64 Pi 6.47 Ou[98]= 3

38 Walking_v8.nb Unnamed curve In[99]:= In[]:= Ou[]= In[]:= Clear r4 ; r4 _ : Cos Cos Sin D r4 Cos Sin 4 Cos Cos Sin Cos Cos 4 Cos Sin Sin Clear v4 ; v4 _ : Cos Sin 4 Cos Cos Sin Cos Cos 4 Cos Sin Sin

Walking_v8.nb 39 In[]:= Manipulae Thickness. Blue, Line Table r4 v v,, Pi, Pi 64 Thickness.7 Blue, Line Table r4 v v,,, Pi 64 Thickness.35 Magena, Table Arrow r4 v r4 v v4 v v,,, Thickness.7 Magena, Arrow r4 r4 v4 PoinSize.5 Blue, Poin r4 PloLabel N Frame True, PloRange 3, 3 3, 3 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Pi 3, Pi, Pi 64 Pi 6 3.47 Ou[]= 3 3 3 Egg In[3]:= Clear r5 ; r5 _ :.78 Cos Sin Cos 4

4 Walking_v8.nb In[4]:= D r5 Ou[4]=.78 Cos 4 Cos.95 Sin Sin Sin 4 In[5]:= Clear v5 ; v5 _ :.78` Cos 4 Cos.95` Sin Sin Sin 4

Walking_v8.nb 4 In[6]:= Manipulae Thickness. Blue, Line Table r5 v v, Pi, Pi, Pi 64 Thickness.7 Blue, Line Table r5 v v, Pi,, Pi 64 Thickness.35 Magena, Table Arrow r5 v r5 v v5 v v, Pi,, Thickness.7 Magena, Arrow r5 r5 v5 PoinSize.5 Blue, Poin r5 PloLabel N Frame True, PloRange.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range, 4 GrayLevel.5 Dashing.,. & Range, 4 Pi 4 Pi, Pi, Pi 64 Pi 6.785398..5 Ou[6]=..5...5..5.

4 Walking_v8.nb In[7]:= In[8]:= Helix Clear r6 ; r6 _ : Sin Cos D r6 Ou[8]= Cos Sin Pi In[9]:= Clear v6 ; v6 _ : Cos Sin

Walking_v8.nb 43 In[]:= Manipulae Graphics3D Thickness. Blue, Line Table r6 v v,, 8 Pi, Pi 64 Thickness.7 Blue, Line Table r6 v v,,, Pi 64 Thickness.35 Magena, Table Arrow r6 v r6 v v6 v v,,, Pi Thickness.7 Magena, Arrow r6 r6 v6 PoinSize.5 Blue, Poin r6 PloLabel N Boxed True, Axes True, PloRange 4 BoxRaios, 3 Pi, 8 Pi, Pi 64 9.4478 4 Ou[]= 3 In[]:= Conical helix

44 Walking_v8.nb In[]:= Clear r7 ; r7 _ : Sin 8 Cos 8 Pi In[3]:= D r7 Ou[3]= In[4]:= 8 Cos 8 Sin 8 Cos 8 8 Sin 8,, Clear v7 ; v7 _ : 8 8 Cos 8 Sin 8 Cos 8 8 Sin 8,,

Walking_v8.nb 45 In[5]:= Manipulae Graphics3D Thickness. Blue, Line Table r7 v v, Pi, Pi, Thickness.7 Blue, Line Table r7 v v, Pi,, Pi 8 Pi 8 Thickness.35 Magena, Table Arrow r7 v r7 v v7 v v, Pi,, Pi Thickness.7 Magena, Arrow r7 r7 v7 PoinSize.5 Blue, Poin r7 PloLabel N Boxed True, Axes True, PloRange 3, 3 3, 3.5 BoxRaios, Pi Pi, Pi, Pi 64 48.578 Ou[5]=

46 Walking_v8.nb Lengh Smile Wha is a smile mahemaically? I could be defined as a graph of he square funcion near he origin; for example for x beween -/ and /. In[6]:= Thickness.5 Circle 3 Blue, PoinSize.7 Poin 3 8, 9 8 Poin 3 8, 9 8 Thickness. Line Table x, x x,,,. Frame True.5. Ou[6]=.5...5..5.

Walking_v8.nb 47 In[7]:= Thickness.5 Circle 3 Blue, PoinSize.7 Poin 3 8, 9 8 Poin 3 8, 9 8 Thickness. Line Table x, x x,,,. Frame True, GridLines GrayLevel.5 Dashing.,. & Range, 4 GrayLevel.5 Dashing.,. & Range, 4.5. Ou[7]=.5...5..5. The parameric equaion of a smile is In[8]:= In[9]:= Ou[9]= rs _ : D rs Then magniude of his vecor is In[]:=. Ou[]= 4 The lengh of his smile is In[]:= Inegrae 4,, Ou[]= ArcSinh

48 Walking_v8.nb In[]:= Cardioid Clear rc ; rc _ : Cos Cos Sin ; Thick, Blue, Line Table rc v v,, Pi, Pi 8 Frame True, PloRange.5,.5.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range.5..5 Ou[4]=..5. In[5]:=.5.5..5..5..5 rc Ou[5]= In[6]:= Ou[6]= In[7]:= Ou[7]= Cos Cos Cos Sin FullSimplify D rc Cos Sin Cos Cos FullSimplify Cos Sin Cos Cos. Cos Sin Cos Cos Cos The lengh of he cardioid is In[8]:= Inegrae Cos,, Pi Ou[8]= 8

Walking_v8.nb 49 In[9]:= Inegrae Cos, Ou[9]= Cos Tan Egg In[3]:= Line Table.78 Cos Sin Cos Pi, Pi, Pi 4 8 Frame True, PloRange.,.5,.5 AspecRaio Auomaic, GridLines GrayLevel.8 & Range, 4 GrayLevel.8 & Range, 4..5 Ou[3]=..5...5..5. I will modify his egg o

5 Walking_v8.nb In[3]:= Line Table 3 4 Cos Sin Cos Pi, Pi, Pi 4 8 Frame True, PloRange.,.5,.5 AspecRaio Auomaic, GridLines GrayLevel.8 & Range, 4 GrayLevel.8 & Range, 4..5 Ou[3]=..5...5..5. In[3]:= D 3 4 Cos Sin Cos 4 Ou[3]= 3 4 Cos 4 Cos 3 6 Sin Sin Sin 4 In[33]:= Ou[33]= FullSimplify 3 4 Cos 4 Cos 3 6 Sin 4 Sin Sin. 3 4 Cos 4 Cos 3 6 Sin Sin Sin 4 9 3 Cos 3 4 5 Cos 5 4 4 Sin The inegral below is a difficul inegral, i akes oo long o evaluae. In[34]:= Inegrae 49 3 Cos 3 5 5 Cos 4 4 Sin Pi,Pi So, find a numerical approximaion

Walking_v8.nb 5 In[35]:= NInegrae 4 9 3 Cos 3 Ou[35]= 5.349 In[36]:= Ellipse Clear a, b, rel ; rel _, a_, b_ : a Cos b Sin ; 4 5 Cos 5 4 Sin, Pi, Pi Thick, Blue, Line Table rel v, 3, v,, Pi, Pi 8 Frame True, PloRange 3.5, 3.5.5,.5 AspecRaio Auomaic, GridLines GrayLevel.5 Dashing.,. & Range GrayLevel.5 Dashing.,. & Range Ou[38]= In[39]:= Ou[39]= In[4]:= 3 3 D rel a, b a Sin b Cos a Sin b Cos. a Sin b Cos Ou[4]= b Cos a Sin Thus, he lengh of he specific ellipse ha we ploed above is In[4]:= Inegrae Cos 3 Sin,, Pi Assumpions And a, b Ou[4]= 8 EllipicE 5 4 This shows ha his inegral is no calculable using he funcions ha we learn in Pre-calculus. A numerical approximaion is

5 Walking_v8.nb In[4]:= N 8 EllipicE 5 4 Ou[4]= 5.8654 We can expec ha he general case will involve EllipicE funcion. However, o calculae he general inegral one needs o use an opion for he Inegral[]. Calculaing he general inegral akes 48 seconds In[43]:= Timing Inegrae b Cos a Sin,PiAssumpions And ab I is a lile easier o calculae In[44]:= Timing Inegrae Cos a Sin,, Pi Assumpions And a Ou[44]= 7.75, 4 EllipicE a Then he general inegral equals In[45]:= 4 b EllipicE a b Ou[45]= 4 b EllipicE a b since b Cos a Sin b Cos a b Sin I is clear ha exchanging he role of a and b does no change he lengh of an ellipse. Therefore 4 b EllipicE a b 4 a EllipicE b a. I is ineresing ha Mahemaica does no know ha he preceding expressions are equal In[46]:= Ou[46]= FullSimplify b EllipicE a b EllipicE a b a EllipicE b a The above expression should simplify o. b a EllipicE And a, b b a

Walking_v8.nb 53 In[47]:= Plo3D a EllipicE b a b EllipicE a,, b,, a b Ou[47]= Now explore he funcion for he lengh of an ellipse as a funcion of a and b. In[48]:= Plo3D 4 b EllipicE a a,, b,, b Ou[48]=

54 Walking_v8.nb In[49]:= Show ConourPlo 4 b EllipicE a a,, b,, b Conours Pi Range, ConourLabels All PloRangePadding. 4 Ou[49]=

Walking_v8.nb 55 In[5]:= Show ConourPlo 4 b EllipicE a a,, b b,, Conours Pi Range, ConourLabels 4 Tex Framed 3 3 Pi, 3 Background Whie & PloRangePadding. Pi Ou[5]=