Supporting Information

Similar documents
Supporting Information

Supporting Information

Supporting Information for

Aziridine in Polymers: A Strategy to Functionalize Polymers by Ring- Opening Reaction of Aziridine

One polymer for all: Benzotriazole Containing Donor-Acceptor Type Polymer as a Multi-Purpose Material

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Supporting Information

A TTFV pyrene-based copolymer: synthesis, redox properties, and aggregation behaviour

A supramolecular approach for fabrication of photo- responsive block-controllable supramolecular polymers

Tetrahydrofuran (THF) was distilled from benzophenone ketyl radical under an argon

Supporting Information

Supporting Information. Vesicles of double hydrophilic pullulan and. poly(acrylamide) block copolymers: A combination

Supporting Information for

SUPPLEMENTARY INFORMATION

Optimizing Ion Transport in Polyether-based Electrolytes for Lithium Batteries

Acid-Base Bifunctional Shell Cross-Linked Micelle Nanoreactor for One-pot Tandem Reaction

Supporting Information for

Supporting Information for

Electronic Supplementary Information

A selenium-contained aggregation-induced turn-on fluorescent probe for hydrogen peroxide

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supplementary Figure 2. Full power on times. Histogram showing on times of bursts with 100 pm 1, 100 pm 2 and 1 nm Et 3 N at full laser power.

Electronic Supplementary Information (ESI)

SUPPORTING INFORMATION

Thiol-reactive amphiphilic block copolymer for coating gold nanoparticles with neutral and functionable surfaces

One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and grafting from RAFT polymerization

Supplementary Material for

Supporting Information

Supporting Information. Surface Functionalized Polystyrene Latexes using Itaconate based Surfmers

Red Color CPL Emission of Chiral 1,2-DACH-based Polymers via. Chiral Transfer of the Conjugated Chain Backbone Structure

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Block: Synthesis, Aggregation-Induced Emission, Two-Photon. Absorption, Light Refraction, and Explosive Detection

Tuning Porosity and Activity of Microporous Polymer Network Organocatalysts by Co-Polymerisation

Hyperbranched Poly(N-(2-Hydroxypropyl) Methacrylamide) via RAFT Self- Condensing Vinyl Polymerization

Supplementary Information. Rational Design of Soluble and Clickable Polymers Prepared by. Conventional Free Radical Polymerization of

Block copolymers containing organic semiconductor segments by RAFT polymerization

A Mild, Catalytic and Highly Selective Method for the Oxidation of α,β- Enones to 1,4-Enediones. Jin-Quan Yu, a and E. J.

Electronic Supplementary Information for. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective

Supporting Information

with EDCI (5.73 g, 30.0 mmol) for 10 min. Bromoethylamine hydrobromide (6.15

Kinetics experiments were carried out at ambient temperature (24 o -26 o C) on a 250 MHz Bruker

A novel smart polymer responsive to CO 2

Supporting Information

Fluorescent Chemosensor for Selective Detection of Ag + in an. Aqueous Medium

Chemically recyclable alternating copolymers with low polydispersity from

Supporting Information. An AIE active Y-shaped diimidazolylbenzene: aggregation and

How to build and race a fast nanocar Synthesis Information

Supporting Information

Supramolecular hydrogen-bonded photodriven actuators based on an azobenzenecontaining

Organized polymeric submicron particles via selfassembly. and crosslinking of double hydrophilic. poly(ethylene oxide)-b-poly(n-vinylpyrrolidone) in

Supporting Information

Supplementary Materials: SRG Inscription in Supramolecular Liquid Crystalline Polymer Film: Replacement of Mesogens

2017 Reaction of cinnamic acid chloride with ammonia to cinnamic acid amide

High-Performance Semiconducting Polythiophenes for Organic Thin Film. Transistors by Beng S. Ong,* Yiliang Wu, Ping Liu and Sandra Gardner

Supporting Information

Nanocrystalline Magnesium Oxide-Stabilized Palladium(0): An Efficient and Reusable Catalyst for the Synthesis of N-(2- pyridyl)indoles

Electronic Supplementary Information

SUPPORTING INFORMATION

Supporting Information

Supplementary Information. "On-demand" control of thermoresponsive properties of poly(n-isopropylacrylamide) with cucurbit[8]uril host-guest complexes

Free radical and RAFT polymerization of vinyl

Supplementary Note 1 : Chemical synthesis of (E/Z)-4,8-dimethylnona-2,7-dien-4-ol (4)

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Novel Supercapacitor Materials Including OLED emitters

ELECTRONIC SUPPORTING INFORMATION Pentablock star shaped polymers in less than 90 minutes via

Light irradiation experiments with coumarin [1]

Supplementary Information. Solvent-Dependent Conductance Decay Constants in Single Cluster. Junctions

Supplementary Material (ESI) for Chemical Communication

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Electronic Supplementary Information (12 pages)

Supporting Information for

Synthesis of hydrophilic monomer, 1,4-dibromo-2,5-di[4-(2,2- dimethylpropoxysulfonyl)phenyl]butoxybenzene (Scheme 1).

Supporting Information. Competitive Interactions of π-π Junctions and their Role on Microphase Separation of Chiral Block Copolymers

Multicomponent Combinatorial Polymerization via the Biginelli Reaction

Synthesis and characterization of innovative well-defined difluorophosphonylated-(co)polymers by RAFT polymerization

Supporting Information

Supporting Information

HIV anti-latency treatment mediated by macromolecular prodrugs of histone deacetylase inhibitor, panobinostat

Supporting Information

Supporting information. for. hydrophobic pockets for acylation reactions in water

Supporting Information. Table of Contents. 1. General Notes Experimental Details 3-12

Supporting Information

Supplementary Information. Mapping the Transmission Function of Single-Molecule Junctions

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Supplementary Information

The First Asymmetric Total Syntheses and. Determination of Absolute Configurations of. Xestodecalactones B and C

Shape-Morphing Chromonic Liquid Crystal Hydrogels. Supporting information

TOF mass spectra of molecule 2 (a), molecule 3 (b), molecule 5 (c), molecule 8 (d),

Electronic Supplementary Information. for. Self-Assembly of Dendritic-Linear Block Copolymers With Fixed Molecular Weight and Block Ratio.

Electronic Supplementary Information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Supporting Information

Supplementary Table S1: Response evaluation of FDA- approved drugs

Supporting Information

Electronic Supplementary Material

Selective Reduction of Carboxylic acids to Aldehydes Catalyzed by B(C 6 F 5 ) 3

Supporting Information

*Corresponding author. Tel.: , ; fax: ; Materials and Method 2. Preparation of GO nanosheets 3

Tunable Visible Light Emission of Self-Assembled Rhomboidal Metallacycles

Synthesis, characterization and molecular recognition of bis-platinum terpyridine dimer. Supporting information

Transcription:

Electronic Supplementary Material (ESI) for Polymer Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information A synthetic strategy for the preparation of sub-100nm functional polymer particles of uniform diameter Kato L. Killops, a* Christina G. Rodriguez, b,c Pontus Lundberg, d Craig J. Hawker, c and Nathaniel A. Lynd b,c,e* a U.S. Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD 21010. Email: kathryn.l.killops.civ@mail.mil b Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA 94720. c Materials Research Laboratory, University of California, Santa Barbara, CA 93106. d Life Sciences Solutions, Thermo Fisher Scientific, Svelleveien 29, 2001, Lillestrøm, Norway. e McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712. Email: lynd@che.utexas.edu Chemicals. All chemicals were purchased from Sigma Aldrich and used without further purification, unless otherwise stated. Allyl glycidyl ether was purchased from TCI America. Styrene was degassed by three freeze-pump-thaw cycles and purified by stirring over dibutylmagnesium at 0 C and distilling into receiving flasks. Ethylene oxide and allyl glycidyl ether were degassed by three freeze-pump-thaw cycles and purified by stirring over butylmagnesium chloride at 0 C and distilling into receiving flasks. Deuterated solvents for NMR were purchased from Cambridge Isotope Laboratories. Potassium naphthalenide was prepared by dissolving recrystallized naphthalene (10 g) in dry THF (250 ml) and then adding potassium metal (3 g) under positive argon pressure. The system was closed with a septum and allowed to stir overnight with a glass-coated stir-bar. Basic aluminum oxide was used to remove the inhibitor present in the styrene monomer prior to emulsion polymerization. Instrumentation. NMR ( 1 H, 13 C) spectra were recorded on a Bruker DMX-300 MHz spectrometer at room temperature. Chemical shifts are reported in parts per million (δ) relative to CHCl 3 (7.24 ppm for 1 H), DMSO (2.50 ppm for 1 H), or DMF (8.03 ppm for 1 H) as internal reference. Gel permeation chromatography was performed in chloroform with 0.25% triethylamine on a Waters 2695 Separation Module equipped with a Waters 2414 Refractive Index Detector and a Waters 2996 Photodiode Array Detector. Scanning electron microscopy was performed on a FEI XL30 Sirion FEG Digital Electron Scanning Microscope at 3.0 to 5.0 kev. Dynamic light scattering was performed on a Wyatt Möbius instrument at ambient temperature in Milli-Q water. BCP and latex samples were diluted and filtered through a 1.6 μm glass filter before DLS measurement. Particle size and polydispersity were derived from the regularization fit of the correlation function, and scattering intensities < 3% were not included. Confocal microscopy of the particles was performed on an Olympus BX40 microscope. Fluorescence spectroscopy was performed on a Horiba Jobin Yvon fluorometer. Coefficient of variation (CV) was determined from measuring at least 30 particles from the SEM image for each sample, and the standard deviation in particle diameters was divided by the sample mean. The measurements were made using ImageJ software. N p was determined according to the equation: 1 N p = 6τ ρπd 3

where N p is the number of particles per unit volume, τ is the solids content in the dispersed phase (g L -1 ), ρ is the density of the polymer (g ml -1 ), and D is the diameter of the particles measured by either SEM or DLS (D h ). PS-b-P(EO-co-AGE). The synthesis was performed according to procedures found in Killops, et al. 2 Particle synthesis. A general procedure was used and scaled accordingly: 10 wt. % styrene in water, 5-20 wt. % block copolymer (BCP) (relative to styrene), and 0.8 wt. % (relative to styrene) potassium persulfate (KPS). Reactions were typically conducted in water (25 to 100 ml). First, styrene was suspended with vigorous stirring in half of the total volume of water in a three-neck flask fitted with a condenser. The BCP was dissolved in the other half of water. The BCP micelle solution was added dropwise to the stirring styrene suspension. The mixture was sparged with N 2 for 30 minutes at RT, then heated to 70 C under N 2 flow. In a separate vial fitted with a septum, KPS was dissolved in a small amount of water and sparged with N 2 for 10 minutes. The solution was transferred via cannula to the reaction mixture. The emulsion polymerization was stirred at 80 C for 6-16 hours. 4-((2-mercaptoethoxy)methyl)-6,7-dimethoxycoumarin. In a vial, 4-bromomethyl-6,7-dimethoxycoumarin (307 mg, 1.03 mmol) was dissolved in DMF. Mercaptoethanol (100 mg, 1.28 mmol) and potassium carbonate (160 mg, 1.16 mmol) were then added. The reaction was left to stir overnight at room temperature. The solution was diluted with CH 2 Cl 2 and washed twice with H 2 O, then brine, and dried over anhydrous MgSO 4. The crude product was purified over a silica plug with ethyl acetate and evaporated to dryness. Product was recovered as a light yellow solid (248 mg, 82% yield). 1 H NMR (300 MHz, CDCl 3 ): δ 7.05 (s, 1H), 6.83 (s, 1H), 6.23 (s, 1H), 3.92 (s, 6H), 3.79 (m, 4H), 2.71 (t, 2H, J=6 Hz), 2.05 (bt, 1H). 13 C NMR (100 MHz, CDCl 3 ) δ 161.3, 153.1, 151.3, 150.2, 146.3, 112.5, 110.6, 105.5, 100.4, 61.2, 56.5, 34.8, 32.7. ESI-TOF MS (M + H + ) calculated for C 14 H 16 O 5 S: 297.0791; found: 297.0809. Synthesis of coumarin-labeled particles. The solvent for the as-synthesized alkene-functional (M3 15 wt.% BCP) particles (H 2 O) was replaced by MeOH via three centrifugation, solvent-exchange cycles. The thiol-functional coumarin (100 mg, 0.423 mmol) was dissolved in MeOH (7 ml)and added to a vial containing 1 ml of the particles in MeOH (0.114 mmol ene). AIBN (9 mg, 0.055 mmol) was added as the thermal initiator, the vial was capped with a septum, and the solution was sparged with N 2 for 10 minutes. The solution was heated at 60 C overnight. The solution was diluted with MeOH (10 ml), and centrifuged to purify. The supernatant was removed and replaced with MeOH five times to ensure complete removal of the unreacted coumarin, the point at which the fluorescence spectrum showed no coumarin absorption.

Figure S1. Size exclusion chromatograph of M3 in THF. Figure S2. 1 H NMR of M3.

Table S1. Diameters of block copolymer structures in aqueous solution from DLS Polymer D h (nm) % PD S3 156 45 M1 246 31 M3 229 41 M5 262 37 L3 12, 389 19, 69 Size and polydispersity (PD) determined using the regularization fit of the correlation function from Dynamics software from Wyatt; average of three measurements, each containing 10 acquisitions. Table S2. Diameters of monomer-swollen block copolymer structures in aqueous solution from DLS Polymer D h (nm) % PD S3 130 32 M1 182 75 M3 132 35 M5 156 56 L3 154 23 Size and polydispersity (PD) determined using the regularization fit of the correlation function from Dynamics software from Wyatt; average of three measurements, each containing 10 acquisitions.

Figure S3. Dynamic light scattering of (a) aqueous BCP solutions and (b) BCP solutions after swelling with styrene. Representative histograms from the regularization fit of the correlation function from Wyatt Dynamics software. Figure S4. Representative DLS histograms of a) S3, b) M1, c) M3, d) L3 series of particles determined from the regularization fit of the correlation function in Dynamics software from Wyatt.

a) b) Figure S5. Plots of number of particles (N p ) versus weight % BCP for (a) L3 and (b) M3. Filled circles represent N p calculated from particle diameters measured by SEM and open circles represent N p calculated from particle diameters measured by DLS. Both measurements include the mass of the total solids. Figure S6. SEM images of particles synthesized with 10 wt% of BCP stabilizers with varying incorporations of AGE comonomer.

Figure S7. Chemical structure and 1 H NMR spectrum of 4-((2-mercaptoethoxy)methyl)-6,7- dimethoxycoumarin in CDCl 3.

Figure S8. 13 C NMR spectrum of 4-((2-mercaptoethoxy)methyl)-6,7-dimethoxycoumarin in CDCl 3.

Figure S9. Dynamic light scattering of M3 (15 wt.% BCP) particles before (black) and after (red) thermal thiol-ene click reaction with coumarin. Figure S10. Fluorescence microscope image (10x magnification) of particles functionalized with coumarin.

1. I. Chaduc, M. Girod, R. Antoine, B. Charleux, F. D Agosto and M. Lansalot, Macromolecules, 2012, 45, 5881-5893. 2. K. L. Killops, N. Gupta, M. D. Dimitriou, N. A. Lynd, H. Jung, H. Tran, J. Bang and L. M. Campos, ACS Macro Letters, 2012, 1, 758-763.