Suboptimal Open-loop Control Using POD. Stefan Volkwein

Similar documents
POD for Parametric PDEs and for Optimality Systems

Proper Orthogonal Decomposition in PDE-Constrained Optimization

Proper Orthogonal Decomposition. POD for PDE Constrained Optimization. Stefan Volkwein

Model order reduction & PDE constrained optimization

Constrained optimization: direct methods (cont.)

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

An optimal control problem for a parabolic PDE with control constraints

Numerical approximation for optimal control problems via MPC and HJB. Giulia Fabrini

minimize x subject to (x 2)(x 4) u,

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics

Adaptive methods for control problems with finite-dimensional control space

Proper Orthogonal Decomposition for Optimal Control Problems with Mixed Control-State Constraints

Optimization Problems with Constraints - introduction to theory, numerical Methods and applications

OPTIMALITY CONDITIONS AND POD A-POSTERIORI ERROR ESTIMATES FOR A SEMILINEAR PARABOLIC OPTIMAL CONTROL

Eileen Kammann Fredi Tröltzsch Stefan Volkwein

SF2822 Applied Nonlinear Optimization. Preparatory question. Lecture 9: Sequential quadratic programming. Anders Forsgren

CE 191: Civil and Environmental Engineering Systems Analysis. LEC 05 : Optimality Conditions

Trust-Region SQP Methods with Inexact Linear System Solves for Large-Scale Optimization

INTERPRETATION OF PROPER ORTHOGONAL DECOMPOSITION AS SINGULAR VALUE DECOMPOSITION AND HJB-BASED FEEDBACK DESIGN PAPER MSC-506

Algorithms for PDE-Constrained Optimization

Fast Iterative Solution of Saddle Point Problems

Constrained Optimization

Optimal control problems with PDE constraints

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

An Inexact Newton Method for Nonlinear Constrained Optimization

5 Handling Constraints

NECESSARY OPTIMALITY CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM OF 2D

Algorithms for constrained local optimization

Reduced-Order Model Development and Control Design

The HJB-POD approach for infinite dimensional control problems

12. Interior-point methods

Reduced-Order Methods in PDE Constrained Optimization

A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem

Hamburger Beiträge zur Angewandten Mathematik

ON CONVERGENCE OF A RECEDING HORIZON METHOD FOR PARABOLIC BOUNDARY CONTROL. fredi tröltzsch and daniel wachsmuth 1

Projection methods to solve SDP

Nonlinear stabilization via a linear observability

Interior Point Algorithms for Constrained Convex Optimization

Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems. Laura Iapichino Stefan Trenz Stefan Volkwein

Dedicated to the 65th birthday of Prof Jürgen Sprekels

CS711008Z Algorithm Design and Analysis

Time-dependent Dirichlet Boundary Conditions in Finite Element Discretizations

Approximation of fluid-structure interaction problems with Lagrange multiplier

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control

Support Vector Machines

An Inexact Sequential Quadratic Optimization Method for Nonlinear Optimization

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Infinite-dimensional nonlinear predictive controller design for open-channel hydraulic systems

PDE Constrained Optimization selected Proofs

Proper Orthogonal Decomposition (POD)

AN AUGMENTED LAGRANGIAN AFFINE SCALING METHOD FOR NONLINEAR PROGRAMMING

Numerics and Control of PDEs Lecture 1. IFCAM IISc Bangalore

Lectures Notes Algorithms and Preconditioning in PDE-Constrained Optimization. Prof. Dr. R. Herzog

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

Numerical Optimization of Partial Differential Equations

Numerics and Control of PDEs Lecture 7. IFCAM IISc Bangalore. Feedback stabilization of a 1D nonlinear model

PDE-constrained Optimization and Beyond (PDE-constrained Optimal Control)

Sufficient Conditions for Finite-variable Constrained Minimization

Written Examination

Multiobjective PDE-constrained optimization using the reduced basis method

The estimation problem ODE stability The embedding method The simultaneous method In conclusion. Stability problems in ODE estimation

Exam in TMA4180 Optimization Theory

Part 5: Penalty and augmented Lagrangian methods for equality constrained optimization. Nick Gould (RAL)

SECOND-ORDER SUFFICIENT OPTIMALITY CONDITIONS FOR THE OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS

Department of Aerospace Engineering AE602 Mathematics for Aerospace Engineers Assignment No. 6

UC Berkeley Department of Electrical Engineering and Computer Science. EECS 227A Nonlinear and Convex Optimization. Solutions 5 Fall 2009

Finite Elements for Magnetohydrodynamics and its Optimal Control

Optimization and control of a separated boundary-layer flow

Constrained Optimization and Lagrangian Duality

K. Krumbiegel I. Neitzel A. Rösch

Comparison of the Reduced-Basis and POD a-posteriori Error Estimators for an Elliptic Linear-Quadratic Optimal Control

POD/DEIM 4DVAR Data Assimilation of the Shallow Water Equation Model

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

10 Numerical methods for constrained problems

Joint work with Nguyen Hoang (Univ. Concepción, Chile) Padova, Italy, May 2018

Algorithms for nonlinear programming problems II

Bang bang control of elliptic and parabolic PDEs

Lecture 13: Constrained optimization

Reduced-Hessian Methods for Constrained Optimization

1. INTRODUCTION 2. PROBLEM FORMULATION ROMAI J., 6, 2(2010), 1 13

Taylor expansions for the HJB equation associated with a bilinear control problem

Newton s Method. Ryan Tibshirani Convex Optimization /36-725

Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. Giulia Fabrini Laura Iapichino Stefan Volkwein

Lagrange duality. The Lagrangian. We consider an optimization program of the form

A Sobolev trust-region method for numerical solution of the Ginz

12. Interior-point methods

ON TWO OPTIMAL CONTROL PROBLEMS FOR MAGNETIC FIELDS

Real-time Constrained Nonlinear Optimization for Maximum Power Take-off of a Wave Energy Converter

A GLOBALLY CONVERGENT STABILIZED SQP METHOD: SUPERLINEAR CONVERGENCE

1 Computing with constraints

You should be able to...

On sequential optimality conditions for constrained optimization. José Mario Martínez martinez

Approximation of the Linearized Boussinesq Equations

A Review of Preconditioning Techniques for Steady Incompressible Flow

Algorithms for Constrained Optimization

1. Introduction. In this work we consider the solution of finite-dimensional constrained optimization problems of the form

An Inexact Newton Method for Optimization

Convex Optimization. Prof. Nati Srebro. Lecture 12: Infeasible-Start Newton s Method Interior Point Methods

Transcription:

Institute for Mathematics and Scientific Computing University of Graz, Austria PhD program in Mathematics for Technology Catania, May 22, 2007

Motivation Optimal control of evolution problems: min J(y, u) s.t. ẏ(t) = F(y(t), u(t)) for t > 0, y(0) = y, u U Optimization methods: First-order methods: gradient type methods per iteration nonlinear state and linear adjoint equations Second-order methods: SQP or Newton methods per iteration coupled linear state and linear adjoint equations Spatial discretization by FE or FD large-scale problems and feedback-strategies not feasible Model reduction by POD

Outline Suboptimal control of a nonlinear heat equation Suboptimal control of the Navier-Stokes equation POD for parameter estimation

Nonlinear heat equation [Diwoky/V.] Model problem: minj(y, u) = 2 subject to Ω y(t, x) z(x) 2 dx + β 2 T 0 Γ u(t, s) 2 dsdt y t (t, x) = k y(t, x) for (t, x) Q = (0, T) Ω y (t, s) = b(y(t, s)) + u(t, s) n for (t, s) Σ = (0, T) Γ y(0, x) = y (x) for x Ω R 2 Assumptions: T, β, k > 0, z, y C(Ω), b C 2, (R) with b 0

Infinite-dimensional problem Optimization variables: z = (y, u) Z, Z function space Equality constraints: e = (e, e 2 ) e (z), ϕ = T y t (t, x)ϕ(t, x) + k y(t, x) ϕ(t, x)dxdt 0 Ω T 0 Γ ( b(y(t, s)) + u(t, s) ) ϕ(t, s)dsdt e 2 (z) = y(0, ) y Infinite-dimensional optimization in function spaces: min J(z) subject to e(z) = 0 Lagrange function: L(z, p) = J(z) + e(z), p Optimality conditions: L(z, p) =! 0 (Fréchet-derivatives)

First-order optimality conditions y L(y, u, p)! = 0: adjoint equation p t (t, x) = k p(t, x) p n (t, s) = b (y(t, s))p(t, s) p(t, x) = (y(t, x) z(x)) for (t, x) Q = (0, T) Ω for (t, s) Σ = (0, T) Γ for x Ω u L(z, p)! = 0: optimality condition βu = kp on Σ p L(z, p)! = 0: state equation y t (t, x) = k y(t, x) y (t, s) = b(y(t, s)) + u(t, s) n y(0, x) = y (x) for (t, x) Q for (t, s) Σ for x Ω

SQP methods SQP: sequentiel quadratic programming Quadratic programming problem: L(z, p) = J(z) + e(z), p min L(z n, p n ) + L z (z n, p n )δz + 2 L zz(z n, p n )(δz, δz) subject to e(z n ) + e (z n )δz = 0 First-order optimality conditions for (QP n ): KKT system ( ) ( ) ( Lzz (z n, p n ) e (z n ) δz Lz (z e (z n = n, p n ) ) 0 δp e(z n ) ) (QP n ) Convergence: locally quadratic rate in (z n, p n ) (infinite-dimensional) Globalization: modification of the Hessian and line-search methods Alternative: trust-region methods

POD model reduction Goal: POD Galerkin ansatz using l POD basis functions Snapshot POD: solve of heat equation for 0 t <... < t n T Problems: unknown optimal control good snapshot set? u = k βp depends on p POD approximation for p? Strategy: iterate basis computation and include adjoint information in the snapshot ensemble

Dynamic POD strategy [Hinze et al./sachs et al.] () Choose estimate u 0 ; compute snapshots by solving state equation with u = u 0 and adjoint equation with y = y(u 0 ); i := 0 (2) Determine l POD basis functions and associated ROM of infinite-dimensional optimization problem (3) Compute solution u i+ of optimization problem (e.g., by SQP) (4) If Ψ(i) = ui+ u i u i+ TOL then stop (stopping criterium) (5) i := i + ; compute snapshots by solving state equation with control u = u i and adjoint equation with y = y(u i ); go back to (2)

Numerical results Data: y (x, x 2 ) = 0x x 2, z(x, x 2 ) = 2 + 2 2x x 2, b(y) = arctan(y), k = β = 0, T =, 85 FEs Recall: Ψ(i) = ui+ u i u i+ stopping criterium for dynamic POD strategy i relative L 2 error for y relative L 2 error for u J(y, u) Ψ(i) 0 4.4 2.0 0.358.00.0 8. 0.360 0.3 2 0.9 6.8 0.36 0.08 POD opt 0.5 5.7 0.358 FE 0.358 POD Compute snapshots M-flops 8 CPU time in s 3.3 Compute POD basis M-flops 0.44 CPU time in s 0.0 Solve with SQP M-flops 84 CPU time in s 22 total M-flops.0 0 2.9 0 5 FE CPU time in s 2.5 0 6.6 0 3

Suboptimal control PDE: y t = y in (0, T) Ω y n = 0 on (0, ) Γ y n = u(t)q on (0, ) Γ 2 y(0) = 0 on Ω R 3 Boundary condition at z = 0.5: ( ) 2 q(t, x) = e x 0.7 cos(2πt) ( ) 2 e y 0.7 sin(2πt) Cost functional: J(y, u) = 2 Ω y(t) 2 dx + σ T 2 0 u(t) 2 dt

POD computation Snapshot ensembles: { V = span {ȳ h (t j )} j, { V 2 = span { p h (t j )} j, V 3 = V V 2 E(l) = l i= λ i 00%: { ȳh (t j) ȳ h (t j ) t { p h (t j) p h (t j ) t } } j } } l E(l) for V E(l) for V 2 E(l) for V 3 l = 45.89 % 70.44 % 48.20 % l = 3 87.65 % 97.4 % 84.39 % l = 7 99.37 % 00.00 % 98.06 % l = 99.78 % 00.00 % 99.82 % l = 5 99.80 % 00.00 % 99.90 % j

Approximation of the dual variable Theoretical POD estimate for the dual: ) p l p L 2 (0,T;V) ( y C l y + p P l p 0 0 p P l p L 2 (0,T;H (Ω)) 0 2 p P l p L 2 (0,T;L 2 (Ω)) 0 2 0 4 0 4 0 6 0 6 0 8 0 0 0 8 {ψ } {ψ 2 } {ψ 3 } 0 0 3 5 7 9 3 5 Number l of POD basis functions {ψ } {ψ 2 } {ψ 3 } 3 5 7 9 3 5 Number l of POD basis functions

Approximation of the control variable 2 Comparison of the optimal controls Comparison of u h u 5.5 0.2 0 0.5 0 0.5 u h u 5 for ψ i u 5 for ψ i 2 u 5 for ψ i 3 0.2 0.4 0.6 0.8 t axis 0.2 u h u 5 for ψ i u h u 5 for ψ i 2 u h u 5 for ψ i 3 0.2 0.4 0.6 0.8 t axis l u h u l for {ψi }l i= u h u l for {ψi 2 }l i= u h u l for {ψi 3 }l i= l = 0.500 0.5437 0.4672 l = 3 0.3792 0.200 0.869 l = 5 0.3506 0.0588 0.20 l = 9 0.303 0.0585 0.0566 l = 3 0.2057 0.0596 0.0555 u h u l for different POD basis {ψ j i }l i= corresponding to the ensembles V j, j =, 2, 3

Control of the Navier-Stokes equation [Hinze] Optimal control problem: min J(y, u) = Z T Z y z 2 dxdt + α Z T Z u 2 dxdt (y,u) 2 0 Ω 2 0 Ω subject to y t + (y )y ν y + p = Bu div y = 0 in Q = (0, T) Ω in Q y(t, ) = y d on (0, T) Γ d ν ηy(t, ) = pη on (0, T) Γ outlet y(0, ) = y in Ω Domain Ω:

Outline Nonlinear heat equation Navier-Stokes Parameter Id. Computation of the POD basis Uncontrolled flow: POD basis functions: ψ, ψ2, ψ3 and ψ4 Vorticity 0 9.04762 8.09524 7.4286 6.9048 5.238 4.2857 3.33333 2.38095.42857 0.4769-0.4769 -.42857-2.38095-3.33333-4.2857-5.238-6.9048-7.4286-8.09524-9.04762-0 Y 0 - -2 2 3 4 5 6 7 2 Vorticity 0 9.04762 8.09524 7.4286 6.9048 5.238 4.2857 3.33333 2.38095.42857 0.4769-0.4769 -.42857-2.38095-3.33333-4.2857-5.238-6.9048-7.4286-8.09524-9.04762-0 Y 2 0 - -2 8 2 3 4 X Vorticity 0 9.04762 8.09524 7.4286 6.9048 5.238 4.2857 3.33333 2.38095.42857 0.4769-0.4769 -.42857-2.38095-3.33333-4.2857-5.238-6.9048-7.4286-8.09524-9.04762-0 Y 0-2 3 4 5 6 7 8 6 7 8 X 2 Vorticity 0 9.04762 8.09524 7.4286 6.9048 5.238 4.2857 3.33333 2.38095.42857 0.4769-0.4769 -.42857-2.38095-3.33333-4.2857-5.238-6.9048-7.4286-8.09524-9.04762-0 Y 2-2 5 X 0 - -2 2 3 4 5 6 7 8 X

projections predictions POD properties POD ansatz: y l = y m + l i= α i(t)ψ i with y m = m m i= y(t i) Projection onto the POD subspace: α i (t) and ( y(t) y m ) Tψi 4 2 amplitude 0 2 4 0 2 4 6 8 time Different number of snapshots: 4.0 2.0 N=4 N=8 N=0 N=6 N=20 amplitude 0.0-2.0-4.0 34.0 36.0 38.0 40.0 42.0 44.0 time

Optimal solution Goal: mean flow field y m Starting value for optimizer: uncontrolled flow, i.e., y for u = 0 Optimal solution: flow field y l

Parameter estimation [Kahlbacher/V.] Model equations: g(x) = x 3 4 u + ( ) u + au = g in Ω = (0, ) (0, ) ( ) 3 u 4 n + 3 2 u = on Γ Data: choose a id 0 and compute (FE) solution u(a id ) to ( ) Reconstruction: estimate a 0 from u d = ( + εδ)u(a id ) Γ with random ε and factor δ = 5% Constrained optimization: min J(a, u) = α u u d 2 ds+κ a 2 s.t. (a, u) solves ( ) and a 0 Relaxation of the inequality: Γ min J λ (a, u) = J(a, u)+ max{ 0, λ + (0 a) } 2 s.t. (a, u) solves ( )

Global convergent optimization method Outer loop: augmented Lagrangian method control of k and λ k Inner loop: globalized SQP algorithm with fixed ( k, λ k ) for { min J k 3 (a, u) s.t. 4 u + ( ) u + au = g in Ω λ k 3 u 4 n + 3 2 u = on Γ Numerical results: α = 5000, κ = 0.0005, a id = 25, l = 7 0 0 Decay of the first eigenvalues 0 2 relative errors: 0 4 u l u(a id ) u(a id ).87 0 5 0 6 0 8 a l a id a id 6 0 3 0 0 2 3 4 5 6 7

Parameter identification Model equations: a(x) is piecewise constant on 4 subdomains of Ω 3 4 u + ( 2 ) u + au = in Ω = (0, ) (0, ) (0, ) 3 u 4 n + 3 2 u = on Γ ( ) Data: choose a id 0 and compute (FE) solution u(a id ) to ( ) Reconstruction: estimate a 0 from u d = ( + εδ)u(a id ) Γ with random ε and factor δ = 5% 0 0 Decay of the first eigenvalues 0 0 2 0 3 0 4 2 3 4 5 6 7

Global convergent optimization method Outer loop: augmented Lagrangian method control of k and λ k Inner loop: globalized SQP algorithm with fixed ( k, λ k ) for min J k λ k (a, u) s.t. 3 4 u + ( 2 ) u + au = in Ω 3 4 u n + 3 2 u = on Γ Numerical results: α = 0000, κ = 0 3 ( 2, 4, 4, 8 )T, a id = (0, 20, 5, 7) T, l = 7 POD FE a a id a id.0 0 2 6. 0 3 u u(a id ) u(a id ) 5.6 0 3.9 0 3 CPU time in s 30.4 504.2

Parameter identification of the diffusion coefficient Model equations: g(x) = x c u + 25u = in Ω = (0, ) (0, ) c u n + 3 2 u = g on Γ ( ) Data: choose c id 0 and compute (FE) solution u(a id ) to ( ) Reconstruction: estimate c 0 from u d = ( + εδ)u(c id ) Γ with random ε and factor δ = 5% Optimal state and decay of the first eigenvalues: FE solution 0 0 Decay of the first eigenvalues 0.25 0 0.2 0.5 0 2 0. 0 3 0.05 0.5 y axis 0 0 0.2 0.4 x axis 0.6 0.8 0 4.5 2 2.5 3 3.5 4 4.5 5

Global convergent optimization method Outer loop: augmented Lagrangian method control of k and λ k Inner loop: globalized SQP algorithm with fixed ( k, λ k ) for min J k λ k (c, u) s.t. { c u + 25u = in Ω c u n + 3 2 u = g on Γ Numerical results: α = 00000, κ = 0.0000, c id = 3, l = 5 POD FE c c id c id 4.7 0 3 4.2 0 3 u u(c id ) u(c id ) 6.74 0 4 6.72 0 4 CPU time in s 30.4 262.2