On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject

Similar documents
Spectral Analysis of Noise in Switching LC-Oscillators

Linear Phase-Noise Model

Introduction to CMOS RF Integrated Circuits Design

Circuit Topologies & Analysis Techniques in HF ICs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Electronic Circuits Summary

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Reciprocal Mixing: The trouble with oscillators

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

Amplifiers, Source followers & Cascodes

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Biasing the CE Amplifier

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Advanced Current Mirrors and Opamps

Systematic Design of Operational Amplifiers

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Switching circuits: basics and switching speed

Structured Electronic Design. Building the nullor: Distortion

ECE 497 JS Lecture - 12 Device Technologies

EECS 105: FALL 06 FINAL

Lecture 4, Noise. Noise and distortion

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

Insulated Gate Bipolar Transistor (IGBT)

ECE315 / ECE515 Lecture 11 Date:

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

Microelectronics Main CMOS design rules & basic circuits

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Fundamentals of PLLs (III)

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

ECE 546 Lecture 11 MOS Amplifiers

Transistor Noise Lecture 10 High Speed Devices

IRGB4056DPbF. n-channel Lead Free Package INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

n-channel Solar Inverter Induction Heating G C E Gate Collector Emitter

13. Bipolar transistors

Voltage-Controlled Oscillator (VCO)

ELEN 610 Data Converters

Integrated Circuit Operational Amplifiers

CMOS Analog Circuits

UNIVERSITÀ DEGLI STUDI DI CATANIA. Dottorato di Ricerca in Ingegneria Elettronica, Automatica e del Controllo di Sistemi Complessi, XXII ciclo

Circle the one best answer for each question. Five points per question.

IRGS4062DPbF IRGSL4062DPbF

Homework Assignment 08

n-channel Standard Pack Orderable part number Form Quantity IRG7PH35UD1MPbF TO-247AD Tube 25 IRG7PH35UD1MPbF

(3), where V is the peak value of the tank voltage in the LC circuit. 2 The inductor energy is: E.l= LI 2

IRGPS40B120UP INSULATED GATE BIPOLAR TRANSISTOR UltraFast IGBT

IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF

IRGB30B60K IRGS30B60K IRGSL30B60K

Electronic Devices and Circuits Lecture 18 - Single Transistor Amplifier Stages - Outline Announcements. Notes on Single Transistor Amplifiers

Absolute Maximum Ratings Parameter Max. Units

Two-Port Noise Analysis

Parameter Max. Units V CES Collector-to-Emitter Breakdown Voltage 600 I T C = 25 C Continuous Collector Current

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

IRGP30B60KD-EP V CES = 600V I C = 30A, T C =100 C. t sc > 10µs, T J =150 C. V CE(on) typ. = 1.95V. Absolute Maximum Ratings. Thermal Resistance

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

IRGR3B60KD2PbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings Parameter Max.

ESE319 Introduction to Microelectronics. Feedback Basics

Characteristic of Capacitors

Lecture Stage Frequency Response - I (1/10/02) Page ECE Analog Integrated Circuits and Systems II P.E.

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description.

MOSFET and CMOS Gate. Copy Right by Wentai Liu

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

Dynamic operation 20

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

THE INVERTER. Inverter

IXFL32N120P. Polar TM HiPerFET TM Power MOSFET V DSS I D25 = 1200V = 24A. 300ns. Preliminary Technical Information. R DS(on) t rr

IRGB8B60KPbF IRGS8B60KPbF IRGSL8B60KPbF C

MMIX4B22N300 V CES. = 3000V = 22A V CE(sat) 2.7V I C90

IRGIB15B60KD1P INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE. n-channel. Absolute Maximum Ratings

IXBT20N360HV IXBH20N360HV

IXBK55N300 IXBX55N300

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

PARALLEL DIGITAL-ANALOG CONVERTERS

IXFR230N20T V DSS. GigaMOS TM Power MOSFET = 200V = 156A. 8.0m t rr. 200ns. (Electrically Isolated Tab)

Sample-and-Holds David Johns and Ken Martin University of Toronto

Lecture 37: Frequency response. Context

Chapter 13 Small-Signal Modeling and Linear Amplification

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

IRGB4062DPbF IRGP4062DPbF

=25 C Avalanche Energy, single pulse 65 I C. C Soldering Temperature, for 10 seconds 300, (0.063 in. (1.6mm) from case)

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

IXTH80N65X2 V DSS. X2-Class Power MOSFET = 650V I D25. = 80A 38m. R DS(on) N-Channel Enhancement Mode Avalanche Rated TO-247 G D S

Lecture 7: Transistors and Amplifiers

55:041 Electronic Circuits The University of Iowa Fall Exam 2

A LDO Regulator with Weighted Current Feedback Technique for 0.47nF-10nF Capacitive Load

IXBT12N300 IXBH12N300

HN58C65 Series word 8-bit Electrically Erasable and Programmable CMOS ROM

IXBK55N300 IXBX55N300

Design of crystal oscillators

IRGB4B60K IRGS4B60K IRGSL4B60K

IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF

IXFT100N30X3HV IXFH100N30X3

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

MMIX4B12N300 V CES = 3000V. = 11A V CE(sat) 3.2V. High Voltage, High Gain BIMOSFET TM Monolithic Bipolar MOS Transistor

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

At point G V = = = = = = RB B B. IN RB f

OptiMOS 2 Power-Transistor

CE/CS Amplifier Response at High Frequencies

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

OptiMOS 3 Power-MOSFET

Transcription:

On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject Aleksandar Tasic QCT - Analog/RF Group Qualcomm Incorporated, San Diego A. Tasic 9 1

Outline Spectral Analysis of Noise in LC-Oscillators LC-tank, g m -cell, bias current source noise (Phase-) Noise factor Bipolar vs. CMOS LC-Oscillators LC-Oscillators Noise Reduction Methods Mixer Noise Factor from VCO Noise Factor Oscillator Phase Noise in Receiver s SNR LNA and Mixer Noise Factors in a Receiver BBFilter Noise Transfer vs. LO/Mix Duty A. Tasic 9

Phase Noise Model of Bipolar and CMOS LC-Oscillators A. Tasic 9 3

Outline Oscillation Condition LC-Tank Noise Folding g m -Cell Noise Folding Bias-Current Source Noise Folding Phase-Noise Model of Bipolar LC-Oscillators Phase-Noise Model of CMOS LC-Oscillators Bipolar vs. CMOS LC-Oscillators A. Tasic 9 4

LC-Oscillator Noise Sources i GTK L/ L/ C C R TK / R TK / LC-tank noise i N ( GTK ) KTGTK i C1 v B1 v B ~ ~ Q 1 Q i B1 i B i C transconductor noise i N ( IC ) qic KTgm / v N ( rb ) KTrB I TAIL Q CS i BCS bias current source noise i ( I ) KTg (1 r g ) N BCS m, CS B, CS m, CS A. Tasic 9 5

Oscillator and Phase-Noise Model v N + g m -cell i NO, i i PM * NO(, f ) i NO(, f ) i AM v NO, LC- tank i S phase-modulating noise component (double-sided) 1 * ipm ( f ) in, O( f ) in, O( f ) 1 * ipm ( f ) in, O( f ) in, O( f ) phase-related noise power (single-sided) 1 v i f i f Z f PM, TOT PM, TOT PM ( ) PM ( ) ( ) A. Tasic 9 4 CTOT i 6

g m -Cell Transfer Function small-signal gain in the presence of a large signal i OUT g IN = d i OUT d v S v S t d / f - g = g m / 1 / f Fourier domain (magnitude) complex harmonic components g -4 g - g g g 4 g i ji t g g() t e dt i 1 / f gd T T T /4 /4 sin( i d) i d d 1 k -4f -3f -f -f A. Tasic 9 f f 3f 4f 7

Oscillation Condition harmonics: g m -cell and oscillation signal g g - v S / v S / g -f -f f f convolution: g v S / g v S / g - v S / g v S / -f oscillation signal: -f v ( f ) v ( f ) v ( f ) v ( f ) v g g g g R ( g g ) v R S S S S S TK S TK oscillation condition: g g G TK A. Tasic 9 f f small-signal loop gain: k=r TK g m / duty cycle: d=1/(k) 8

g - LC-Tank Noise Folding convolution: g and g harmonics and LC-tank noise v N ( f ) v N ( f ) g v N ( f ) v N ( f ) g -f -f f f g g v vn ( f ) v N ( f ) g vn ( f ) g N ( f ) -f -f f f g - g g v N ( f ) v N ( f ) v N ( f ) v N ( f ) -f -f f f g - vn ( f ) g - v g vn ( f ) g vn ( f ) N ( f ) -f -f A. Tasic 9 f f 9

LC-Tank Noise Folding LC-tank noise contribution: g g v ( f ) v ( f ) vn ( f ) g v N g N N ( f ) -f -f f f g - v ( f ) v ( f ) v ( f ) vn ( f ) N g - g N g N -f -f f f i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N i ( f ) g v ( f ) g v ( f ) NO, N N A. Tasic 9 1

LC-Tank Noise Contribution phase-modulating noise component: 1 ipm in, O( f ) in, O( f ) in, O( f ) in, O( f ) i ( g g ) v ( f ) ( g g ) v ( f ) PM N N phase-related noise power (k>>1, g=g =g ): TK i ( R ) ( g g ) v ( R ) PM LC-tank noise transfer function: ( TK ) ( ) TK g R g g G LC-tank noise factor: N TK PM TK g g v R N TK GTK v R N TK i ( R ) ( ) ( ) ( ) 4KTGTK FR ( TK ) 1 4KTG 4KTG 4KTG 4KTG TK TK TK TK A. Tasic 9 11

g -4 g m -Cell Noise Folding convolution: g and g harmonics and f g m -cell noise g - g g g 4 vn ( 3 f ) vn ( 3 f ) vn ( f ) vn ( f ) vn ( f ) vn ( f ) vn (3 f ) vn (3 f ) -4f -3f -f -f f f 3f 4f gv ( v ( g vn ( f ) v N f ) N f ) g g N ( f ) -f -f f f g - g g - vn ( f ) vn ( f ) g v ( vn ( f ) N f ) -f -f g m -cell noise around odd multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency A. Tasic 9 f f 1

g m -Cell Noise Contribution phase-modulating noise component: i ( g g ) v ( f ) ( g g ) v ( f ) PM N N +( g g ) v (3 f ) ( g g ) v (3 f )... 4 N 4 N +( g g ) v ((i 1) f ) ( g g ) v ((i 1) f ) i i N i i N phase-related noise power (k>>1, g=g =g = ): m IN 4 i i m IN i ( g ) ( g g ) ( g g )... ( g g ) v ( g ) PM N number of g i harmonic components: f 1 1 d f d number of (g i- +g i ) folding pairs: 1 k k d t -g=g m / d/f f /d A. Tasic 7 13 f

g m -Cell Noise Contributions phase-related noise power: 1 gi i ( g ) ( ) ( ) ( ) ( ) PM m IN g i g i v g N m IN v g N m IN dg v g N m IN d d g m -cell noise transfer function: gm 1 g ( g ) dg d( ) ( kg k ) kg g m -cell noise factors: m IN TK TK i ( r ) 4 PM B kgtk KTrB B B TK 4KTGTK 4KTGTK F( r ) kr G kc i I PM C kgtk KT gm C TK m 4KTGTK 4KTGTK ( ) / 1 F( I ) kg / g A. Tasic 9 14

r B Noise Contribution Be Precise phase-related noise power (k>>1): B 4 i B i ( r ) g 4g 4 g... 4 g v ( r ) PM N Paseval s Theorem: T / 4 t 4 ( B) i ( ) (1 ) T 1 T / 3 i T g r g g g t dt g dt g d r B noise factor: i ( r ) PM B F( rb ) kc 4KTG 3 TK A. Tasic 7 15

Bias Current-Source Noise Transfer Function g m -cell large-signal V-to-I transfer function I OUT 1 I OUT VIN -1 1 / f 1/f c i 1 sin((i 1) / ) (i 1) / Fourier domain (magnitude) complex harmonic components c -1 c -3 c 3 c 1-4f -3f -f -f A. Tasic 9 f f 3f 4f 16

phase-related noise power: ipm, DIFF ( IBCS ) 1 ipm ( I BCS ) in ( I BCS ) 4 4 BCS noise transfer function: BCS noise factor: FI ( ) BCS BCS Noise Contribution BCS noise around even multiples of the oscillation frequency is folded to the LC-tank noise around the oscillation frequency 1 g ( I BCS ) 4 i ( I ) KTg (1 r g ) KT kg (1 kc) PM BCS m B m TK 4KTG 4KTG 4KTG TK TK TK 1 1 k(1 kc) k( kc) k F( IC) F( rb) A. Tasic 9 17

Phase-Noise Model of Bipolar Switching LC-Oscillators Noise factor: F F( R ) F( I ) F( r ) F( I ) TK C B BCS 1 1 1 F 1 kc k( kc) 1 (1 k) kc( k) 3 3 Phase noise: L L L L L ( R ) ( I ) ( r ) ( I ) 4KTG F TK C B BCS TK (4 CTOT ) v (4 CTOT ) S v S 8 kv T L 1 1 (1 k) kc( k) 4KTGTK 3 (4 C ) TOT ( ) 8V T k A. Tasic 9 18

Phase Noise Model of Bipolar Switching LC-Oscillators 1 1 F 1 kc k( kc) 3 Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell current shot noise contribution ~ ½ Small-signal loop-gain related contributions g m -cell base-resistance noise contribution ~.66ck phase-noise contribution of the bias current source is k-times larger then the noise contribution of the g m -cell ~ k(½+ck)! A. Tasic 9 19

Low/High-Performance VCO Designs high ss loop-gain, high quality LC-tank, BCS noise eliminated: e.g., k>>1(=1), c<<1(~.1) 1 1 kc 3 7.8 1 1 1 L ~ ~ k 5 1 1 k high ss loop-gain, high quality LC-tank, BCS noise present: e.g., k>>1(=1), c<<1(~.1) 1 1 k( kc) kc 3 1 1 L ~ ~ k k 5 1 k low ss loop-gain, low quality LC-tank, BCS noise present: e.g., k~1(=), c~1(~.5) 7 3 (1 k) 6 5 L ~ ~1 k 4 A. Tasic 9

ingle/double-switch CMOS LC-VCOs i N ( GTK ) KTGTK i GTK i D3 V DD i ( I ) KT g N D, P P m, P Q 3 Q 4 i D4 L/ L/ C C i GTK R TK / R TK / L/ L/ C C R TK / R TK / i D1 Q 1 Q i D i N ( I D ) KT gm Q CS i BCS i D1 Q 1 Q i ( I ) KT g N D, N N m, N i D d N G g TK m i ( I ) KT g N BCS m, CS A. Tasic 9 Q CS i BCS d C 1 G TK g m

Phase Noise Model of CMOS LC-Oscillators Noise factor ( N = P, g m,n =g m,p ): F F( R ) F( I ) F( I ) SS TK D BCS F 1 g /(4 G ) SS m, CS TK F F( R ) F(4 I ) F( I ) DS TK D BCS F 1 g / G DS m, CS TK Phase noise: L L L L ( R ) ( I ) ( I ) 4KTG F TK D BCS TK (4 CTOT ) v (4 CTOT ) S L SS 4KTG TK (4 C ) 1 gm, CS /(4 GTK ) ( I R ) TAIL TK L DS 4KTG TK (4 C ) 1 gm, CS / G 4 ( I R ) TAIL TK TK A. Tasic 9

Phase Noise Model of CMOS LC-Oscillators F 1 g / G m, CS Constant phase-noise contributions LC-tank noise contribution ~ 1 g m -cell drain-current thermal noise contribution ~ Small-signal loop-gain related contributions (?) bias current source noise contribution ~ g m,cs /G TK (k ) TK A. Tasic 9 3

CMOS vs. Bipolar LC-Oscillators noise factors (for removed BCS noise): FBIP 1 1 3 kc F CMOS 1 bipolar VCO better for the same power consumption (v s,bip =v s,cmos ) 3 5 kc 3 3 kr B R TK 8 e.g., k=1, R TK =8 e.g., k=1, R TK =8 r B 8 1 8 A. Tasic 9 r B 8 1 8 4

CMOS vs. Bipolar LC-Oscillators power consumption figure of merit: L FOM 1log ( ) VCC ICC V CC =1.8V, v s,bip =.4V, v s,ss-cmos =1.V, (3I CC,BIP =I CC,SS-CMOS ) FOM FOM 4.8dB BIP SS CMOS V CC =1.8V, v s,bip =.4V, v s,ds-cmos =1.V, (1.5I CC,BIP =I CC,DS-CMOS ) FOM FOM 7.8dB BIP DS CMOS A. Tasic 9 5

Phase-Noise Model Conclusions Parametric Phase-Noise Model electrical circuit parameters (ss loop gain) worst-case phase noise (bandwidth unlimited) Bipolar vs. CMOS LC-Oscillators bipolar ss loop-gain related contributions v S, BIP ~k (<<V CC ), v S,CMOS ~V CC bipolar capacitive tapping for larger v S, BIP, but also larger k-related noise contributions and power consumption A. Tasic 9 6

Verification of the Phase-Noise Model A. Tasic 7 7

VCO Noise Contributions f ~5.74GHz, R TK ~34 i GTK, n~1.65, c~.5, V CC =.V C V L V CC V TUNE C V LC-tank noise ~ 1 i C1 v B1 ~ C B ~ v B Q 1 Q C A C B C A i C transconductor noise ~ n(.5+.66c k) i B1 i B I TAIL Q CS i BCS bias current-source noise ~ n(.5+c k) k A. Tasic 7 8

g m -Cell Noise Contributions k=.5g m R TK <.5g m,actual R TK =.5g m R TK /(1+g m r E )=k actual 1,95,9 F(I C ) simulations calculations F( rb ) nkc 1.65.5 k.7 k 3 3,85,8,75,7 4 6 8 9,6,5 k 1,5 F (r B ) simulations calculations 1 n FI ( C ).87,5 k 4 6 8 9,6 A. Tasic 7 9

Bias Noise Contributions 7 6 5 F (I C,CS ) simulations calculation s F( r ) knkc 1.65.5 k.41 k B, CS 4 3 1 18 16 14 1 F (r B,CS ) simulation calculation s 4 6 8 9,6 k 1 8 6 4 1 F( IC, CS ) nk.8k 4 6 8 9.6 k A. Tasic 7 3

Suppression of Bias Current-Source Noise in LC-Oscillators A. Tasic 9 31

Outline Contribution of Bias Current-Source Noise to Phase Noise of LC-Oscillators Techniques for Reduction of Bias Current- Source Noise Noise Analysis of Degenerated Bias Current Source Bias Noise Suppression - Design Example A. Tasic 9 3

VCO Noise Contributions i GTK C V L V CC C V LC-tank noise ~ 1 V TUNE i C1 v B1 v B ~ Q 1 ~ Q C A C B C B C A i C transconductor noise ~.5+c k i B1 i B I TAIL Q CS i BCS bias current-source noise ~ (.5+c k) k A. Tasic 9 33

VCO Noise Contributions f ~5.74GHz, R TK ~34, n~1.65, c~.5, V CC =.V 1% 9% 8% 7% 6% 5% 4% 3% r B,CS I C,CS r B BCS: ~85% % 1% % I C R TK 4 6 8 9.6 A. Tasic 9 g m : ~15% k 34

Phase-Noise Ratio PNR 1 9 8 7 6 5 4 3 1 n k( nkc) L( RTK ) L( IC ) L( rb ) L( I BCS ) 1 L( R ) ( ) ( ) n TK L IC L rb 1 nkc 3 PNR[dB] PNR=8.dB k 4 6 8 9.6 A. Tasic 7 35

common emitter (CE) resonant inductive degeneration (RID) resistive degeneration (RD) Bias Noise Reduction Techniques resistive degeneration inductive degeneration filtering? I TAIL ITAIL I TAIL V IN V IN + R - D LD V IN C D high supply required large area if integrated noise injection if discrete A. Tasic 9 transconductor noise always ON reduced output impedance 36

Capacitive Filtering AC short 1 d / f 1 d' (1 d) n F '( IC ) ~ k 1/f AC open 1 d/ f 1/ f 1 d k n F( IC ) ~ for k=1, d=5%, d =5.5%, and F >F A. Tasic 9 37

Bias Current Source with Resonant-Inductive Degeneration V IN C I TAIL L RID matched to C at f r B,CS noise contribution reduced transconductance gain small at resonance series resonance I B,CS noise contribution small L RID I C,CS noise contribution removed common-base like configuration (gain of 1) parallel resonance emitter open at resonance (I C,CS floats) A. Tasic 9 38

Circuit Diagram for Noise Transfer Functions B C r B,CS i B,CS C,CS E ~ (v B - v E )g m,cs i C,CS i OUT,CS v B,CS ~ L RID i C,CS to i OUT : v B,CS short, i B,CS open i B,CS to i OUT : v B,CS short, i C,CS open v B, CS to i OUT : i C,CS open, i B,CS open A. Tasic 7 39

i N iout ( I ) B, CS Bias Current-Source Noise Contributions i 1 v r f j C OUT T, CS ( f) gm( ) ( 1 N B, CS ) T, CS T LRID j LRID g m, CS ( f ) 1 C rb, CS 1 f g 1 ( ) m, CS j C rg B m LRID j L f RID T 1 f series resonance i N iout ( I ) C, CS g parallel resonance m, CS ( f ) 1 1 C rb, CS 1 f g 1 ( ) m, CS j C rg B m LRID j L f RID T, CS A. Tasic 7 4 1 parallel resonance

BCS w/ RID vs. BCS w/o RID BCS noise with degeneration g f 1 f i 4kT ( ) r g m, CS T, CS CS, RID B, CS m, CS f ft, CS BCS noise without degeneration g f 1 i 4kT 1 ( ) r g m, CS T, CS CS B, CS m, CS f more than a factor (f T,CS /f ) noise reduction after RID f ics, RID ics ft, CS for (f T,CS /f )=5, a factor of 5 reduction A. Tasic 7 41

VCO Noise Contributions after RID applied to BCS f ~5.74GHz, L RID ~1.3nH, R TK ~34, n~1.65, c~.5, V CC =.V 1% BCS: ~6% r B,CS I C,CS 8% r B 6% 4% g m : ~94% I C % R TK % 4 6 8 9.6 k A. Tasic 9 4

5.7GHz band VCO buffer RID LC-tank -g-cell m 5 metals active area.1mm buffer L RID =.6nH, 7-turns,.1mm A. Tasic 7 43

VCO w/ RID vs. VCO w/o RID to ground to ground to TCS transistors to ground A. Tasic 9 44

Phase Noise (w/ RID vs. w/o RID) without RID with RID 6dB phase-noise improvement with RID -11dBc/Hz @1MHz from A. Tasic 5.7GHz 9 @ 4.8mA&.V 45

RID Conclusions BCS noise >> g m -cell and LC-tank noise Resonant inductive degeneration good suppression of high frequency BCS noise low voltage operation small chip area (vs. discrete solutions) BCS DC noise upconversion large area (vs. resistive degeneration) poorer noise suppression at high supplies (vs. resistive degeneration) A. Tasic 9 46

Oscillator Conclusions Spectral Analysis of Noise in LC-Oscillators Phase-Noise Model LC-tank, g m -cell, bias current source contributions Bipolar vs. CMOS LC-Oscillators Oscillator Noise Reduction Methods Resonant-Inductive Degeneration A. Tasic 9 47

Future Worries Low-(Supply and Swing)-Voltage Operation Linear and Quasi-Linear Phase-Noise Model Low-Performance Oscillators Noise-Reduction Methods A. Tasic 9 48

Conclusions A. Tasic 9 49

Conclusions Spectral Analysis of Noise in LC-Oscillators LC-tank, g m -cell, bias current source noise contributions Bipolar and CMOS VCO Noise Factors LC-Oscillators Noise Reduction Methods Mixer Noise Factor from VCO Noise Factor Oscillator Phase Noise in Receiver s SNR Mixer Noise Factor in a Receiver LNA Noise Factor in a Receiver BBFilter Noise Transfer vs. LO/Mix Duty A. Tasic 9 5