EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

Similar documents
Solubility Product Constant (K sp ) and the Common-Ion Effect for Calcium Iodate, a Salt of Limited Solubility

[Ca 2+ ] = s (3) [IO - 3 ] = 2s (4)

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Experiment 2: Analysis of Commercial Bleach Solutions

E09. Exp 09 - Solubility. Solubility. Using Q. Solubility Equilibrium. This Weeks Experiment. Factors Effecting Solubility.

Solubility of KHT and Common ion Effect

EXPERIMENT 8 Determining K sp

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Experiment 20: Analysis of Vinegar. Materials:

Name Period Date. Lab 9: Analysis of Commercial Bleach

Analysis of Hypochlorite in Bleach

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

Experiment 10 Acid-Base Titrimetry. Objectives

Determining the Rate Law for a Chemical Reaction

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Synthesis and Analysis of a Coordination Compound

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

TITRATION OF AN ACID WITH A BASE

DETERMINATION OF THE SOLUBILITY PRODUCT OF GROUPII HYDROXIDES

Molarity of Acetic Acid in Vinegar A Titration Experiment

PURPOSE: To determine the Rate Law for the following chemical reaction:

EXPERIMENT 5 ACID-BASE TITRATION

Partner: Judy 29 March Analysis of a Commercial Bleach

Copper (II) Glycinate Titration

Ascorbic Acid Titration of Vitamin C Tablets

Titration with an Acid and a Base

Titrations Worksheet and Lab

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

TRATION: ANALYSIS OF VINE

Chemistry 1B Experiment 17 89

Studies of a Precipitation Reaction

+ H 2 O Equation 1. + NaOH CO 2 Na

NOTE: YOU WILL BE USING THIS SOLUTION IN BOTH, THIS EXPERIMENT AND EXP 12B. IF YOU WASTE THE SOLUTION YOU MAY RUN OUT BEFORE YOU HAVE FINISHED EXP 12B

Experimental Procedure. Lab 406

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

2 burets (50 ml) Standard solution of NaOH (0.600 M) Phenolphthalein indicator

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Acid-Base Titration. M M V a

Experiment: Titration

CHM111 Lab Titration of Vinegar Grading Rubric

9. Determination of the solubility product of KIO 4 and an investigation of the common ion effect Student Sheet

EXPERIMENT #8 Acid-Base I: Titration Techniques

Titration of HCl with Sodium Hydroxide

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets

GETTING THE END POINT TO APPROXIMATE. Two hours

H 3 O + (aq) + P 2- (aq)

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Experiment #7. Titration of Vinegar

EXPERIMENT NINE Part I - The Standardization of Thiosulfate Solutions

Experiment 7: Titration of an Antacid

2002 D Required 2001 D Required

EXPT. 8 IODOMETRIC DETERMINATION OF AVAILABLE CHLORINE IN A SAMPLE OF BLEACHING POWDER

$ % K st. K D [ I 2 ] Aqueous. [ I 2 ] Hexane. % Aqueous

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

EXPERIMENT - 2 DETERMINE THE PRODUCT OF A REDOX REACTION REACTION OF BROMATE AND HYDROXYLAMMONIUM IONS CHM110H5F

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4)

Determining the K sp of Calcium Hydroxide

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Acid-Base Titration Acetic Acid Content of Vinegar

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown.

ASTM Designation: D Standard Test Method for Determination of Iodine Number of Activated Carbon

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

Experiment 10. Acid Base Titration

Solubility Product Constants

Techniques for Volumetric Analysis

6 Acid Base Titration

Experiment #10: Analysis of Antacids

Solubility Product Constant of Silver Acetate

Chemical Reactions: Titrations

Chemistry 119: Experiment 6. Sampling and Analysis of a Solid Drain Cleaner

Chemical Reactions: The Copper Cycle

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

CHEM 132 Lab 11 Western Carolina University

Acid / Base Titrations

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Titration of an Unknown Acid

Thermodynamics of Borax Dissolution

Pre-lab: Read sections 10.6 in the textbook. Complete the attached pre-lab by Thursday, May 22.

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Ascorbic Acid Titration of Vitamin C Tablets

Volumetric Analysis: Analysis of antacid tablets Analysis of Cl - concentrations in IV solutions

Ascorbic Acid Titration of Vitamin C Tablets

EXPERIMENT #9 PRELAB EXERCISES. Redox Titration (Molarity Version) Name Section. 1. Balance the following redox reaction under acidic conditions.

Titration of Vinegar

Ascorbic Acid Titration of Vitamin C Tablets

Analyzing Hydrogen Peroxide Solution Chemistry 30

Experiment 18 - Absorption Spectroscopy and Beer s Law: Analysis of Cu 2+

Pre-lab: Read section 9.9 (pages ) on acid-base titrations in the textbook. Complete the attached pre-lab by Tuesday, June 2.

Exercise 6: Determination of Hardness of Water

Synthesis of Benzoic Acid

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

By contrast, solubility equilibrium reactions are written from the perspective of the solid reactant dissolving into ions

Part II. Cu(OH)2(s) CuO(s)

CHEM Practice to be done before the lab. Experiment 9 Introduction to Volumetric Techniques II. Objectives

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

Chemistry Calibration of a Pipet and Acid Titration

Standardizing a Solution of Sodium Hydroxide. Evaluation copy

Transcription:

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE INTRODUCTION Electrolytes are compounds that are present in solution as ions. They are more likely to be soluble in water than in most other liquids that are commonly used as solvents. For example, NaCl (sodium chloride) is fairly water soluble; about 6.1 moles of NaCl will dissolve in a liter of water at 25C. But some electrolytes are only slightly water soluble; only about 10 4 mole of CaCO 3 (calcium carbonate, the main component of limestone) will dissolve in a liter of water at 25C. In this experiment you will determine the solubility of the slightly soluble electrolyte Cu(IO 3) 2, copper(ii) iodate, for which the dissolving equilibrium is Cu(IO3)2(s) Cu 2+ (aq) + 2 IO3 - (22-1) This equilibrium can be described by a solubility product constant, K sp, which is calculated from molar concentrations of ions in a saturated solution of Cu(IO 3) 2: TECHNIQUE K sp = [Cu ][IO ] (22-2) 2+ - 2 3 A saturated solution of Cu(IO 3) 2 in distilled water is prepared. Carefully measured 20-mL portions of this solution are taken, and the amounts of Cu 2+ and IO 3 contained in 20 ml are determined by a titration. Using this information, the solubility of the salt in moles/liter and the solubility product can be calculated. An indirect procedure is used to determine the amounts of Cu 2+ and IO 3 in the saturated solution. Solid KI is added to the solution causing the following reactions to occur: 2 Cu 2+ + 5 I 2 CuI(s) + I3 - (22-3) IO3 - + 8 I + 6 H3O + 3 I3-9 H2O (22-4) For each mole of Cu(IO 3) 2 that dissolves and reacts with I, 6 ½ moles of I 3 are produced: ½ mole from the reaction of one mole of Cu 2+ and six moles from the reaction of two moles of IO 3. By determining the amount of I 3 produced, the quantity of Cu(IO 3) 2 originally present in the saturated solution is calculated. The amount of I 3 produced in the reactions of EQUATIONS 22-3 and 22-4 can be determined by titration with a standardized Na 2S 2O 3 solution using a starch indicator. Iodine forms a deep-blue complex with starch; the color will disappear when all the brown I 3 has been reconverted to colorless I by its reaction with S 2O 3 2 2 S2O3 2 + I3 - S4O6 2- + 3 I (22-5) EQUATION 22-5 states that for each mole of I 3 in the solution, two moles of S 2O 3 2 will be needed for the titration. Since each mole of Cu(IO 3) 2 produces 6½ moles of I 3, each mole of Cu(IO 3) 2 originally present in the solution will require 13 moles of S 2O 3 2. Knowing the molarity and the volume of the Na 2S 2O 3 solution used in the titration EXPERIMENT 22 22-1

permits the calculation of the number of moles of S 2O 2 3 used and of the number of moles of Cu(IO 3) 2 originally present in the solution. First you must determine the molarity of the Na 2S 2O 3 solution; this is called standardizing the solution. For a Na 2S 2O 3 solution, this must be done shortly before the solution is used, for S 2O 2 3 is not stable in solution for extended periods of time. The solution that will be supplied is ~0.08 M, but its molarity must be determined to a greater number of significant figures. Weighed samples of KIO 3 are dissolved in distilled water and then treated with excess I to produce I 3 via the reaction of EQUATION 22-4. The I 3 is then titrated with Na 2S 2O 3 solution. Since the number of moles of IO 3 is known from weighing, the number of moles of S 2O 2 3 required for the titration can be calculated from EQUATIONS 22-4 and 22-5. Because this number of moles must be contained in whatever volume of Na 2S 2O 3 solution was used in the titration, the molarity can then be calculated. EQUIPMENT NEEDED balance graduated cylinder beaker buret 10-mL volumetric pipet buret clamp pipet pump or bulb Erlenmeyer flasks funnel CHEMICALS NEEDED Cu(IO 3) 2; copper(ii) iodate (or a saturated solution) HC 2H 3O 2; glacial acetic acid KI; potassium iodide KIO 3; potassium iodate 0.08M Na 2S 2O 3; sodium thiosulfate 0.2% starch solution PROCEDURE A. Preparation of Saturated Cu(IO3)2 Solution Omit this part of the experiment if a saturated solution is supplied. B. Standardization of Na2S2O3 Solution Obtain about 150 ml of ~0.08 M Na 2S 2O 3 in a beaker. The beaker must be clean, but it need not be dry; if it is wet, swirl the solution over the entire inside wall to wash all the water into the solution homogeneously. This is all of the Na 2S 2O 3 solution that you will use for the entire experiment and is more than you should need. After the standardization, save the remaining Na 2S 2O 3 solution. Clean a buret and rinse it with three 3- ml portions of the Na 2S 2O 3 solution; then fill the buret with this solution. Place a 125 ml Erlenmeyer flask on an analytical balance and tare the balance. Weigh 0.10 0.11 g of KIO 3 into the flask and record the exact mass. Dissolve the KIO 3 in 25 30 ml of distilled water. Weigh ~0.8g of KI into a beaker, add it to the KIO 3 solution, and swirl the flask until all of it dissolves. Add 2 ml of glacial acetic acid to this mixture and swirl the flask to mix it in homogeneously. The mixture should be brown in color because I 3 is formed in the reaction of IO 3 and I. EXPERIMENT 22 22-2

CAUTION!: Glacial acetic acid is corrosive. If you get it on your skin, wash it off immediately under lots of cold, running water; if you spill any on the outside of the bottle or on the table top, sponge it off and wash out the sponge. Immediately begin to titrate this mixture with the Na 2S 2O 3 solution. The brown color will gradually become lighter as S 2O 3 2 converts I 3 to colorless I. When the solution is pale yellow, add 2 ml of starch solution to the mixture. (The cylinder that you used to measure acid does not have to be rinsed out before you measure starch, but it does have to be rinsed out before you measure acid again after measuring starch.) The remaining I 3 will form a deep-blue complex with the starch; if the color is brownish instead of blue, you can continue with the titration, but for the next titration you should let the solution become a lighter yellow before you add the starch. Titrate until the blue color just disappears showing that all of the I 3 has reacted. Weigh out and titrate two more portions of KIO 3. If you have time, calculate the molarity of the Na 2S 2O 3 solution for each trial (see the Calculations and Results section below). If you do not have two consecutive titrations that agree within 1% for the molarity of the Na 2S 2O 3 solution, repeat the titration with new portions of KIO 3 until you do have this agreement. Note: you will record your three best trials onto the Chem21 report sheet. To discard a solution after you finish a titration, wash it down the drain with lots of water. C. Determination Of Cu(IO3)2 Solubility Obtain ~40 ml (no more!) of the saturated Cu(IO 3) 2 solution. If the solution is cloudy, begin by removing any undissolved solid from the solution by filtration. Be sure the funnel and all glassware that you use in this filtration are clean and dry; do not wet the filter paper with water before you begin the filtration. Because you want to know the concentration of the solute in a saturated solution, it is essential that you do not dilute the solution. If the filtrate is cloudy, repeat the filtration. Filter all of the solution before you begin the titrations. Pipet 10.00 ml of the clear filtrate, the saturated Cu(IO 3) 2 solution, into an Erlenmeyer flask (which must be clean, but not necessarily dry). Add about 10 ml of distilled water, 0.2 g of KI, and 1.0 ml of glacial acetic acid. Immediately titrate this solution with your standardized Na 2S 2O 3 solution following the same procedure you used in the standardization. Repeat the titration with two more 10.00-mL portions of the saturated Cu(IO 3) 2 solution. If you have time, calculate the molarity of the Cu(IO 3) 2 solution for each trial (see the Calculations and Results section below). If you do not have two consecutive titrations that agree within 1% for the molarity of the Cu(IO 3) 2 solution, repeat the titration with new portions of Cu(IO 3) 2 until you do have this agreement. Note: you will record your three best trials onto the Chem21 report sheet. To discard a solution after you finish a titration, wash it down the drain with lots of water. Any unused Na 2S 2O 3 solution and Cu(IO 3) 2 solution may also be washed down the drain. EXPERIMENT 22 22-3

CALCULATIONS AND RESULTS B. Standardization of Na2S2O3 Solution Calculate the number of moles of KIO 3 in each sample that you weighed. EQUATION 22-5 shows that two moles of S 2O 3 2 are required to titrate each mole of I 3, and EQUATION 22-4 shows that each mole of IO 3 in your sample KIO 3 produces three moles of I 3. Thus, the number of moles of S 2O 3 2 used in a titration is six times the number of moles of KIO 3. This is the number of moles of S 2O 3 2 contained in the volume of Na 2S 2O 3 solution used in the titration. The molarity of the Na 2S 2O 3 solution can be calculated from the definition 2 moles S2O3 6 (moles KIO 3) M = = liters of solution liters of Na S O solution 2 2 3 (22-6) Average your trials that agree within 1% and use this value as the molarity of the Na 2S 2O 3 solution in the remaining calculations. C. Determination of Cu(IO3)2 Concentration From the volume of Na 2S 2O 3 solution required to titrate the 10-mL portions of saturated Cu(IO 3) 2 and from the molarity of the Na 2S 2O 3 solution, calculate the number of moles of S 2O 3 2 used: moles S O = M (liters of S O used) 2 2 2 3 2 3 From the information given in the INTRODUCTION moles S O moles Cu(IO 3) 2= 13 2 2 3 (22-7) (22-8) This is the number of moles of Cu(IO 3) 2 contained in 10.00 ml of solution; use this to calculate the number of moles of Cu(IO 3) 2 in 1.000 L of solution, that is, the molarity of Cu(IO 3) 2 in a saturated solution. Because the solution is saturated, this concentration represents the molar solubility of Cu(IO 3) 2. Write the concentration expression for K sp of Cu(IO 3) 2, first in terms of molar concentrations of Cu 2+ and IO 3, and then in terms of molar solubility, s. For each of the titrations you carried out with the saturated Cu(IO 3) 2 solution, calculate K sp using the value of s that you determined. For your reported value of K sp take the average of the values you obtained for your best three trials. EXPERIMENT 22 22-4

EXPERIMENT 22 REPORT SHEET Name: Date: B. STANDARDIZATION OF Na2S2O3 SOLUTION TRIAL 1 TRIAL 2 TRIAL 3 Mass of KIO3 Moles of KIO3 Moles of S2O3 2 needed Volume of Na2S2O3 used (ml) Molarity of Na2S2O3 Average molarity For TRIAL 1, show the calculation of the molarity of the Na2S2O3 solution. EXPERIMENT 22 22-5

C. DETERMINATION OF Cu(IO3)2 SOLUBILITY Average molarity of Na2S2O3 TRIAL 1 TRIAL 2 TRIAL 3 Volume of Na2S2O3 used (ml) Moles of S2O3 2 used Moles of Cu(IO3)2 present Volume of Cu(IO3)2 (ml) Molarity of Cu(IO3)2 Molar solubility of Cu(IO3)2 Ksp Average Ksp For TRIAL 1, show the calculation of moles of Cu(IO3)2 present. For TRIAL 1, show the calculation of molar solubility of Cu(IO3)2. For TRIAL 1, show the calculation of Ksp. EXPERIMENT 22 22-6

Notes Experiment 22 Changes in Procedure: Omit Part A. The Cu(IO 3 ) 2 solution has already been prepared. Obtain ~40 ml of the Cu(IO 3 ) 2 solution you shouldn t any more than that, and it s an expensive material! You should filter the Cu(IO 3 ) 2 solution prior to titration only if it is cloudy. You will work in pairs on this experiment. Helpful Hints: Use a disposable pipet to deliver the glacial acetic acid to the titration mixture. Bureting tips: - Make sure the buret is clean. Rinse the buret with water and then a small amount of thiosulfate solution before filling the buret. - Remember to open the stopcock so that the buret tip is filled with solution before recording your initial volume reading. Record the initial volume at the bottom of the meniscus to two decimal places. Your initial volume does not have to be 0.00 ml. - Swirl the flask continuously as you titrate. - Rinse out the buret with water before returning! Titrate carefully! Part of your grade will be determined by how close your calculate K sp is to the actual value. EXPERIMENT 22 22-7