Lecture 4. Feshbach resonances Ultracold molecules

Similar documents
Lecture 3. Bose-Einstein condensation Ultracold molecules

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Evidence for Efimov Quantum states

Ultracold molecules - a new frontier for quantum & chemical physics

Modeling cold collisions Atoms Molecules

A study of the BEC-BCS crossover region with Lithium 6

Cold fermions, Feshbach resonance, and molecular condensates (II)

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

1. Cold Collision Basics

Reference for most of this talk:

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

arxiv: v1 [physics.atom-ph] 30 Jul 2018

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

NanoKelvin Quantum Engineering

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Why ultracold molecules?

Experiments with an Ultracold Three-Component Fermi Gas

BEC and superfluidity in ultracold Fermi gases

Effective Field Theory and Ultracold Atoms

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

YbRb A Candidate for an Ultracold Paramagnetic Molecule

Condensation of pairs of fermionic lithium atoms

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

A.4 - Elements of collision theory 181

Laser induced manipulation of atom pair interaction

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Pomiędzy nadprzewodnictwem a kondensacją Bosego-Einsteina. Piotr Magierski (Wydział Fizyki Politechniki Warszawskiej)

F. Chevy Seattle May 2011

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

Universal van der Waals Physics for Three Ultracold Atoms

First Observations of an S-wave Contact on the Repulsive Side of a Feshbach Resonance. Scott Smale University of Toronto

Condensate fraction for a polarized three-dimensional Fermi gas

A few issues on molecular condensates

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

A Mixture of Bose and Fermi Superfluids. C. Salomon

Three-body recombination at vanishing scattering lengths

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

Experimental realization of spin-orbit coupling in degenerate Fermi gas. Jing Zhang

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T.

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

arxiv: v2 [cond-mat.quant-gas] 1 Sep 2010

High-Temperature Superfluidity

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Path Integral (Auxiliary Field) Monte Carlo approach to ultracold atomic gases. Piotr Magierski Warsaw University of Technology

Observation of Feshbach resonances in ultracold

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dimensional BCS-BEC crossover

Fermi Condensates ULTRACOLD QUANTUM GASES

Microcavity Exciton-Polariton

Confining ultracold atoms on a ring in reduced dimensions

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

What do we know about the state of cold fermions in the unitary regime?

Lecture 2: Ultracold fermions

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

Fermi gases in an optical lattice. Michael Köhl

Superfluidity in interacting Fermi gases

Introduction to cold atoms and Bose-Einstein condensation (II)

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Lecture 3 : ultracold Fermi Gases

Quantum superpositions and correlations in coupled atomic-molecular BECs

Two-dimensional atomic Fermi gases. Michael Köhl Universität Bonn

Cooperative Phenomena

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

From laser cooling to BEC First experiments of superfluid hydrodynamics

A Mixture of Bose and Fermi Superfluids. C. Salomon

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Search. Search and Discovery Ultracold Fermionic Atoms Team up as Molecules: Can They Form Cooper Pairs as Well? 1 of 10 11/12/2003 4:57 PM

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

COPYRIGHTED MATERIAL. Index

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Photoassociation spectroscopy of a spin-1 Bose-Einstein condensate

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Ultracold Fermi Gases with unbalanced spin populations

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Path-integrals and the BEC/BCS crossover in dilute atomic gases

arxiv: v3 [cond-mat.quant-gas] 19 Nov 2014

arxiv: v2 [cond-mat.other] 15 Sep 2008

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

Production of Efimov molecules in an optical lattice

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Lecture 2: Double quantum dots

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Cold Controlled Chemistry. Roman Krems University of British Columbia

Quantum simulations, adiabatic transformations,

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Transcription:

Lecture 4 Feshbach resonances Ultracold molecules 95

Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96

Multi-channel scattering alkali-metal atom: electron spin s=1/2 nuclear spin i total spin f=s+i=i-1/2, i+1/2 example Na: i=3/2: f=1, 2 a 3 S u- : triplet f=2 f=1 m f 2 1 0-1 -2-1 0 1 ~ 100 THz ~10 THz X 1 S g+ : singlet S) Fl, S two alkali-metal atoms (s=1/2) can interact via a singlet S=0 or triplet S=1 potential s s, i i, F S ( 1 2 1 2 97

V(r) Feshbach resonance bound state a coupling incident channel hyperfine interaction r a 3 S u- : triplet Feshbach, Ann. Phys. 5, 357 (1958) in ultracold quantum gases: Tiesinga, Verhaar, Stoof, PRA 47, 4114 (1993) X 1 S g+ : singlet 98

Energy scales molecular potential 2+2 1+2 1+1 Vibrational states Hyperfine states Rotational states ~ 100 THz 2+2 1+2 1+1 ~ 1 GHz ~ 3300 cm -1 (wavenumbers) / ~ 0.4 ev 99

Magnetically induced Feshbach resonance (2,1)+(2,1) F=2 E Zeeman effect m F 2 1 0-1 -2 (1,1)+(1,1) F=1-1 0 1 E B B 100

scattering length a/a bg N atoms (x 10 5 ) Feshbach resonance E 0 B two atoms molecule B a( B) a bg 1 B B 0 Feshbach resonances in ultracold gases Chin, Grimm, Julienne, Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) B(G) nouye et al, Nature 392, 151 (1998) 101

Near threshold molecular states Na 2 a 3 S u- : triplet X 1 S g+ : singlet M S =+1 M S =0 M S =-1 M S =0 E Zeeman =g S M S m B B 102

Hamiltonian of molecular states H H int V Central H int V HFS V Zeeman a HFS i s g J m s B g m i B B V Central V0 r) P0 V1 ( r) ( P 1 Asymptotically: V Central =0 103

Zeeman HF,1 0 V V E H 2 1 2 1 HF 2 1 2 1 HF 2 2 1 1 HF HF 2 2 s s i i a s s i i a s i s i a V V HF V HF S S a M M a S a V S 4 2 2 HF HF HF HF i S s z B M g M g B V m Zeeman conserves S: no singlet/triplet mixing S F M M M S F 2 1 2 1,, ) ( i i s s S Fl S Hamiltonian of molecular states: Moerdijk model 104

Example Na+Na: (f=1,m f =1)+ (f=1,m f =1) Spin quantum numbers of relevant singlet and triplet molecular states? m f1 +m f2 =M F =2=M S +M max =3 +S=even (identical bosons) S=0 M S =0 2 2 S=1 M S =1 3 1 1 1 M M S =0 3 2 M S =-1 3 3 H E0,1 mbb z a 2 a 4 HF HF g M g M M M S S s S i S Diagonal Non-Diagonal 105

H E1 mbb z a 2 a 4 HF HF g M g M M M S S s S i S M S=1 M S =1 3 1 1 1 M S =0 3 2 M S =-1 3 3 M S =1 v=14 M S =0 M S =-1 106

H E1 mbb z a 2 a 4 HF HF g M g M M M S S s S i S M S=1 M S =1 3 1 1 1 M S =0 3 2 M S =-1 3 3 nouye et al, Nature 1998 (Ketterle, MT): F=1, mf=1: 907 G & 853 G Fixes E 1 (v=14) 107

Near threshold molecular states Na 2 a 3 S u- : triplet X 1 S g+ : singlet 108

a/a bg N atoms (x 10 5 ) Feshbach spectroscopy three-body recombination loss (L 3 ~ a 4 ) B(G) Chin et al, PRA (2004) 109

Example: BEC 85 Rb Cornish et al, PRL 2000 110

Quantum chaos in ultracold collisions of Er Frisch et al, Nature 2014 many Feshbach resonances in Er alkali: ns L=0, J=1/2 2 potentials (singlet and triplet) Er: 4f12 6s2 L=6, J=6 91 potentials 111

scattering length Feshbach molecules E 0 B two atoms molecule Feshbach resonance B E Ultracold Feshbach Molecules Ferlaino, Knoop, Grimm arxiv:0809.3920 Chapter of Cold Molecules: Theory, Experiment, Applications two atoms molecule (Taylor & Francis, London, 2009) 112 B

Adiabatic magnetic field ramp E two atoms dissociation molecule B maging: fast magnetic field backramp Separation: e.g. magnetic field gradient 113

Adiabatic magnetic field ramp E two atoms molecule B maging: fast magnetic field backramp Separation: e.g. magnetic field gradient 114

Purification E B resonant laser light / microwave pulse 115

First Feshbach molecules from BECs Cs 2 Na 2 nnsbruck, Science 301, 1510 (2003) 87 Rb 2 MT, PRL 91, 210402 (2003) MPQ, PRL 92, 020406 (2004) 116

Properties Feshbach molecules single rovibrational quantum state - highly excited vibrational state (n=-1) - rotationally cold s-wave (l=0) even l (BB) odd l (FF) all l (BB,BF,FF ) weakly bound (khz-mhz-ghz)

Properties Feshbach molecules atom-molecule, molecule-molecule collisions relaxation to lower vibrational states 118

Properties Feshbach molecules atom-molecule, molecule-molecule collisions relaxation to lower vibrational states limited lifetime molecule-molecule atom-molecule MT, PRL 92, 180402 (2003) 119

Properties Feshbach molecules Scattering length E/(mB) a/a bg E b B Binding energy (B-B 0 )/B Quantum halo state a/2 120

Feshbach molecules from fermions Pauli blocking atom-dimer and dimer-dimer relaxation suppressed for large a 6 Li 2 forming Feshbach molecules by three-body recombination trap depth 121

molecular BEC gallery (2003-2004) 40 K 2 JLA, Jin et al. 6 Li 2 MT, Ketterle et al. 6 Li 2 6 Li 2 6 Li 2 nnsbruck, Grimm et al. Rice, Hulet et al. ENS Paris, Salomon et 122 al.

BEC/BCS crossover T BCS 0.277T F exp 2k a F C a ~ 0. TF T 2 123

BEC/BCS crossover Vortices and superfluidity in strongly interacting Fermi gas Zwierlein et al, Science 2005 124

Making ultracold ground-state molecules a 3 S u- : triplet S+P n=0, J=0 X 1 S g+ : singlet Recipe make Feshbach molecules coherent two-photon transfer (STRAP) polar molecules -> atomic mixture S+S r 125

Ultracold ground state polar molecules STRAP (Stimulated Raman Adiabatic Passage) KRb Ni et al, Science 2008 126

Key experiments with ultracold polar molecules Quantum-State Controlled Chemical Reactions Ospelkaus et al, Science 2010 127

Key experiments with ultracold polar molecules Dipolar collisions of polar molecules in the quantum regime Ni et al, Nature 2010 De Miranda et al, Nature Physics 2011 128

Key experiments with ultracold polar molecules collisional stability KRb+KRb -> K 2 +Rb 2 Zuchowski & Hutson, PRA 2010 new candidates: NaK, RbCs,... RbCs (Takekoshi et al, arxiv:1405.6037) 129