Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Similar documents
Dark Matter. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

MICROPHYSICS AND THE DARK UNIVERSE

Overview of Dark Matter models. Kai Schmidt-Hoberg

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

Project Paper May 13, A Selection of Dark Matter Candidates

Dark Matter in Particle Physics

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

Constraining minimal U(1) B L model from dark matter observations

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Particle Cosmology. V.A. Rubakov. Institute for Nuclear Research of the Russian Academy of Sciences, Moscow and Moscow State University

DARK MATTER MEETS THE SUSY FLAVOR PROBLEM

The Story of Wino Dark matter

Dark Matter from Non-Standard Cosmology

Asymmetric WIMP DM. Luca Vecchi. Aspen (CO) 2/2011. in collaboration with Michael Graesser and Ian Shoemaker (LANL)

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Week 3 - Part 2 Recombination and Dark Matter. Joel Primack

Dark Matter and Dark Energy components chapter 7

Non-Thermal Dark Matter from Moduli Decay. Bhaskar Dutta. Texas A&M University

Cosmology/DM - I. Konstantin Matchev

Asymmetric Sneutrino Dark Matter

INTRODUCTION TO DARK MATTER

Thermal Dark Matter Below an MeV

Big-Bang nucleosynthesis, early Universe and relic particles. Alexandre Arbey. Moriond Cosmology La Thuile, Italy March 23rd, 2018

New Physics beyond the Standard Model: from the Earth to the Sky

Supersymmetric dark matter with low reheating temperature of the Universe

Learning from WIMPs. Manuel Drees. Bonn University. Learning from WIMPs p. 1/29

Introduction Motivation WIMP models. WIMP models. Sebastian Belkner. University of Bonn - University of Cologne. June 24, 2016

Thermal decoupling of WIMPs

Dark Matter Decay and Cosmic Rays

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

The Four Basic Ways of Creating Dark Matter Through a Portal

The WIMPless Miracle and the DAMA Puzzle

SUPERSYMETRY FOR ASTROPHYSICISTS

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

Astroparticle Physics at Colliders

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

DM Signatures generated by anomalies in hidden sectors

Chern-Simons portal Dark Matter

Wino dark matter breaks the siege

Beyond the WIMP Alternative dark matter candidates. Riccardo Catena. Chalmers University

arxiv: v2 [hep-ph] 19 Nov 2013

Dark-matter bound states

Models of New Physics for Dark Matter

Supersymmetry in Cosmology

Symmetric WIMP Dark Matter and Baryogenesis

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Gravitino LSP as Dark Matter in the Constrained MSSM

On Symmetric/Asymmetric Light Dark Matter

Particle Physics and Cosmology II: Dark Matter

Revisiting gravitino dark matter in thermal leptogenesis

The Linear Collider and the Preposterous Universe

LHC searches for momentum dependent DM interactions

DARK MATTERS. Jonathan Feng University of California, Irvine. 2 June 2005 UCSC Colloquium

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Astroparticle Physics and the LC

PoS(idm2008)089. Minimal Dark Matter (15 +5 )

The first one second of the early universe and physics beyond the Standard Model

Distinguishing Dark Matter Candidates from Direct Detection Experiments

3.5 kev X-ray line and Supersymmetry

LHC searches for dark matter.! Uli Haisch

Dark Matter WIMP and SuperWIMP

Measuring Dark Matter Properties with High-Energy Colliders

Kaluza-Klein Dark Matter

Dark matter: evidence and candidates

Dark matter and LHC: complementarities and limitations

Cosmological Production of Dark Matter

The Dark Matter Puzzle and a Supersymmetric Solution. Andrew Box UH Physics

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

f (R) Cosmology and Dark Matter

A Minimal Supersymmetric Cosmological Model

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

Decaying Dark Matter and the PAMELA anomaly

Invisible Sterile Neutrinos

Dark Matter and Dark Energy components chapter 7

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Production of WIMPS in early Universe

Surprises in (Inelastic) Dark Matter

Dark Matter Electron Anisotropy: A universal upper limit

LHC Impact on DM searches

The inert doublet model in light of LHC and XENON

Cosmological Constraint on the Minimal Universal Extra Dimension Model

Dark Radiation from Particle Decay

components Particle Astrophysics, chapter 7

Antiproton Limits on Decaying Gravitino Dark Matter

Signatures of clumpy dark matter in the global 21 cm background signal D.T. Cumberland, M. Lattanzi, and J.Silk arxiv:

RECENT DEVELOPMENTS IN PARTICLE DARK MATTER

Searching for sneutrinos at the bottom of the MSSM spectrum

SFB 676 selected theory issues (with a broad brush)

Feebly Interacting Massive Particles and their signatures

SUSY Phenomenology & Experimental searches

Lecture 12. Dark Matter. Part II What it could be and what it could do

The Standard Model of particle physics and beyond

Possible Connections in Colliders, Dark Matter, and Dark Energy

Physics Enters the Dark Age

Transcription:

10-14 December 2012 6 th TRR Winter School - Passo del Tonale Dark Matter II Marco Cirelli (CNRS IPhT Saclay) in collaboration with: A.Strumia (Pisa) N.Fornengo (Torino) M.Tamburini (Pisa) R.Franceschini (Pisa) M.Raidal (Tallin) M.Kadastik (Tallin) Gf.Bertone (IAP Paris) M.Taoso (Padova) C.Bräuninger (Saclay) P.Panci (L Aquila + Saclay + CERN) F.Iocco (Saclay + IAP Paris) P.Serpico (CERN) NewDark Reviews on Dark Matter: Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996 Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632 Bergstrom 0903.4849, 1205.48821202.1170 Cirelli, Strumia arxiv: yymm.nnnn (upcoming)

How was Dark Matter produced?

Contents 1. Introduction and 'cosmology' - basic properties of - evidences -- galactic rotation curves -- weak lensing [qualitative idea] -- 'precision cosmology' [qualitative] - alternatives (Machos, MOND) - production -- freeze-out & the WIMP miracle -- asymmetric - particle physics candidates 2. Indirect Detection - basics - observables -- charged particle fluxes: production & propagation -- gamma rays: production & propagation -- neutrinos: production & propagation - current status: hints, constraints 3. Direct Detection - basics - observables (recoil spectrum, detection strategies) - current status: hints, constraints 4. Collider Searches - basics - observables (missing energy, monojets) - complementarity

A thermal relic from the Early Universe Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - symmetric abundance

A thermal relic from the Early Universe Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - symmetric abundance Kolb,Turner, The Early Universe, 1995

A thermal relic from the Early Universe Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - symmetric abundance f f Kolb,Turner, The Early Universe, 1995

A thermal relic from the Early Universe Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - symmetric abundance f f f f Kolb,Turner, The Early Universe, 1995

A thermal relic from the Early Universe Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - symmetric abundance f f f f... Kolb,Turner, The Early Universe, 1995

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt cosmology particle physics

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) H freeze-out

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N tot freeze-out

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 rad = 2 30 g T 4 g = X bos g i Ti T 4 + 7 8 X fer g i Ti T 4

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 n X ' r 8 3 90 g M Pl T 2 f.o. ann

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 n X ' r 8 3 90 g Tf.o. 2 Define Y X = n X M Pl ann s s = 2 2 45 g st 3

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = n X ' ann H = r 8 3 90 g Y today Y f.o. = r 8 3 G N rad = 1 M Pl T 2 f.o. r 8 3 90 g T 2 Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s M Pl 1 ann T f.o.

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 n X ' r 8 3 90 g Y today Y f.o. = T 2 f.o. Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s 1 = M Pl ann T f.o. M Pl ann T f.o. M Pl T f.o. m X /20 g ' g s ' 100 # ann m X

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = n X ' ann H = r 8 3 90 g Y today Y f.o. = r 8 3 G N rad = 1 M Pl T 2 f.o. r 8 3 90 g T 2 Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s X = X crit = m Xn X crit 1 = M Pl ann T f.o. M Pl ann T f.o. = m XY today s today crit M Pl = m X # ann m X M Pl # ann m X s today crit

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = n X ' ann H = r 8 3 90 g Y today Y f.o. = r 8 3 G N rad = 1 M Pl T 2 f.o. r 8 3 90 g T 2 Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s X = X crit = m Xn X crit 1 = M Pl ann T f.o. M Pl ann T f.o. = m XY today s today crit M Pl = m X # ann m X M Pl # m X cancels out ann m X s today crit

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 n X ' r 8 3 90 g Y today Y f.o. = T 2 f.o. Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s 1 = M Pl ann T f.o. M Pl ann T f.o. M Pl # ann m X X ' 0.2 pb ann

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: dn X +3Hn X = h ann vi n 2 X n eq X dt Shortcut (NB: includes cheating) n X = ann H = r 8 3 G N rad = 1 M Pl r 8 3 90 g T 2 n X ' r 8 3 90 g Y today Y f.o. = T 2 f.o. Define Y X = n X M Pl ann s q 8 3 90 g 2 2 45 g s 1 = M Pl ann T f.o. M Pl ann T f.o. M Pl # ann m X X ' 0.2 pb ann or Ω X 610 27 cm 3 s 1 σ ann v

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: f f f f... Ω X 610 27 cm 3 s 1 σ ann v Relic 0.23 for ann v =3 10 26 cm 3 /sec

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: f f f f... Ω X 610 27 cm 3 s 1 σ ann v Relic 0.23 for ann v =3 10 26 cm 3 /sec Weak cross section: g w g w f M f

A thermal relic from the Early Universe Boltzmann equation in the Early Universe: f f f f... Ω X 610 27 cm 3 s 1 σ ann v Relic 0.23 for ann v =3 10 26 cm 3 /sec Weak cross section: g w g w f M f h ann vi (g2 w/4 ) 2 M 2 3 10 26 cm 3 /sec WIMP miracle!

Asymmetric : a completely different relic B ' 5 Just coincidence? Or: signal of a link? Possibly a common production mechanism:

Asymmetric : a completely different relic B ' 5 Just coincidence? Or: signal of a link? Possibly a common production mechanism: Baryogenesis: B = n B n n B Darko genesis: =6 10 10 = n n n BBN, CMB...? = B B / m B B / m

Asymmetric : a completely different relic B ' 5 Just coincidence? Or: signal of a link? Possibly a common production mechanism: Baryogenesis: B = n B n n B Darko genesis: =6 10 10 = n n n BBN, CMB...? = B B / m B B / m m ' 5 GeV Is this the of DAMA, CoGeNT, CRESST?!?

Asymmetric : a completely different relic B ' 5 Just coincidence? Or: signal of a link? Possibly a common production mechanism: Baryogenesis: B = n B n n B Darko genesis: =6 10 10 = n n n BBN, CMB...? = B A variety of specific models/ideas: transferring or co-genesis cfr J. March-Russell via leptogenesis stores the anti-b number connection to neutrino masses

Asymmetric : a completely different relic Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - Asymmetric abundance - large annihilation cross sec Comoving density Y x 10 8 10 9 10 10 10 11 10 12 f f! f f? 9... 0 0 Y Y 20 40 60 80 100 x m T Y 0 0 0 1.02 10 10 0 7 pb m 4.5 GeV density Y x 10 7 10 8 10 9 0 Y Y no osc 0 1.02 10 10 0 25 pb m 1000 GeV m 10 4 ev 2

Asymmetric : a completely different relic Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - Asymmetric abundance - large annihilation cross sec Comoving density Y x 10 8 10 9 10 10 10 11 10 12 f f! f f? 9... 0 0 Y Y 20 40 60 80 100 x m T Y 0 0 0 1.02 10 10 0 7 pb m 4.5 GeV density Y x 10 7 10 8 10 9 0 Y Y no osc 0 1.02 10 10 0 25 pb m 1000 GeV m 10 4 ev 2

Asymmetric : a completely different relic Consider a particle χ:!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - Asymmetric abundance - large annihilation cross sec Comoving density Y x 10 8 10 9 10 10 10 11 10 12 f f! f f? 9... 0 0 Y Y 20 40 60 80 100 x m T Y 0 0 0 1.02 10 10 0 7 pb m 4.5 GeV density Y x 10 7 10 8 10 9 0 Y Y no osc 0 1.02 10 10 0 25 pb m 1000 GeV m 10 4 ev 2

Asymmetric : a completely different relic Consider a particle χ: X ' m X s crit 0!... - subject to - heavy (e.g. 100 GeV) - stable - in an expanding Universe - Asymmetric abundance - large annihilation cross sec Comoving density Y x density Y x 10 8 10 9 10 10 10 11 10 12 f f! f f? 9... 10 7 10 8 10 9 0 0 0 Y Y 20 40 60 80 100 Y Y x m T no osc Y 0 0 0 1.02 10 10 0 7 pb m 4.5 GeV 0 1.02 10 10 0 m 25 pb m 1000 X GeV m 10 4 ev The relic abundance is determined by and. 0 2

Particle Physics candidates for Dark Matter

Contents 1. Introduction and 'cosmology' - basic properties of - evidences -- galactic rotation curves -- weak lensing [qualitative idea] -- 'precision cosmology' [qualitative] - alternatives (Machos, MOND) - production -- freeze-out & the WIMP miracle -- asymmetric - particle physics candidates 2. Indirect Detection - basics - observables -- charged particle fluxes: production & propagation -- gamma rays: production & propagation -- neutrinos: production & propagation - current status: hints, constraints 3. Direct Detection - basics - observables (recoil spectrum, detection strategies) - current status: hints, constraints 4. Collider Searches - basics - observables (missing energy, monojets) - complementarity

Candidates A matter of perspective:

Candidates A matter of perspective: SuSy Non SuSy

Candidates A matter of perspective: SuSy Non SuSy?

Candidates A matter of perspective: SuSy neutralino other exotic candidates

SuSy in 2 minutes h

SuSy in 2 minutes h m h ' 125 GeV

SuSy in 2 minutes h m h ' 125 GeV h t h m h 10 19 GeV

SuSy in 2 minutes ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ h h2 h1 ~ h2 ~ m h ' 125 GeV h t h m h 10 19 GeV h ~t h m h 10 19 GeV

SuSy in 2 minutes 200 GeV ~ ~ ~ ~ ~ ~ ~ ~ h h2 ~ ~ ~ ~ ~ ~ ~ ~ h1 ~ h2 ~ m h ' 125 GeV h t h m h 10 19 GeV h ~t h m h 10 19 GeV

SuSy in 2 minutes 200 GeV ~ ~ ~ ~ ~ ~ ~ ~ h h2 ~ ~ ~ ~ ~ ~ ~ ~ R = +1 h1 ~ h2 ~ m h ' 125 GeV R = 1 h t h m h 10 19 GeV h ~t h m h 10 19 GeV

SuSy in 2 minutes 200 GeV ~ ~ ~ ~ ~ ~ ~ ~ h h2 ~ ~ ~ ~ ~ ~ ~ ~ R = +1 h1 ~ h2 ~ m h ' 125 GeV R = 1 h t h m h 10 19 GeV h ~t h m h 10 19 GeV

SuSy in 2 minutes 2 TeV ~ ~ ~ ~ h h2 ~ ~ ~ ~ ~ ~ ~ ~ R = +1 ~ ~ ~ ~ m h ' 125 GeV R = 1 h1 ~ h2 ~ h t h m h 10 19 GeV h ~t h m h 10 19 GeV

Candidates A matter of perspective: SuSy neutralino other exotic candidates

Candidates A matter of perspective: SuSy neutralino

Candidates A matter of perspective: SuSy neutralino

Candidates A matter of perspective: SuSy neutralino SuSy e.g. RH sneutrino

Candidates A matter of perspective: SuSy neutralino SuSy Weak e.g. RH sneutrino WIMP

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV e.g. RH sneutrino WIMP TC some KK

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle e.g. RH sneutrino WIMP TC some KK

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP axion TC some KK

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP axion TC some KK gravitino?

Candidates A matter of perspective: SuSy neutralino SuSy gravitino? e.g. RH sneutrino Weak WIMP TeV particle sub-gev axion TC some KK

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP gravitino? axion TC some KK

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP axion TC some KK axino? gravitino?

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP axion TC some KK axino? gravitino?

Candidates A matter of perspective: SuSy neutralino SuSy Weak TeV particle sub-gev e.g. RH sneutrino WIMP axion TC some KK axino? gravitino?

Candidates A matter of perspective: Caveat: no categorization is perfect.

Candidates A matter of perspective: Caveat: no categorization is perfect. Interactions: em weak strong-ish other none (other than gravity)

Candidates A matter of perspective: Caveat: no categorization is perfect. Interactions: em weak strong-ish other none (other than gravity)

Candidates A matter of perspective: Caveat: no categorization is perfect. Interactions: em weak strong-ish neutralino etc Little Higgs KK Inert Doublet Minimal TC mirror } a other none (other than gravity) secluded WIMPless singlet scalar sterile neutrino gravitino axion

Candidates A matter of perspective: Caveat: no categorization is perfect. Interactions: naturalness-inspired em weak strong-ish neutralino etc Little Higgs KK Inert Doublet Minimal TC mirror } a other none (other than gravity) secluded WIMPless singlet scalar sterile neutrino gravitino axion

Candidates A matter of perspective: Interactions: em weak strong-ish naturalness-inspired neutralino etc Little Higgs KK Inert Doublet Minimal TC mirror } a Caveat: no categorization is perfect. Production mechanism? thermal freeze out thermal freeze out thermal freeze out thermal freeze out thermal freeze out exhaustion Stability? R parity T parity K parity Z2 symmetry gauge sym Tbaryon # Z2 symmetry other secluded WIMPless sort of freeze out sort of freeze out some symmetry some symmetry singlet scalar thermal freeze out Z2 symmetry none (other than gravity) sterile neutrino gravitino mixing thermal or decay just long lived R parity or just long lived axion misalignment? just long lived

Candidates A matter of perspective: plausible mass ranges (1 TeV) ev

Candidates A matter of perspective: plausible mass ranges only 90 orders of magnitude!

How do we search for Dark Matter?