Solenoid valve Types EVR 2 - EVR 40

Similar documents
Solenoid valves Type EVR 2 g 40 NC/ NO New EVR 6 with Steel cover design

Solenoid valve Types CSV 2 - CSV 22 (NC) and solenoid coil

Solenoid valves Type EVUL

Thermostatic expansion valves TUA/TUAE

Direct-operated 2/2-way solenoid valves Type EV210B

Direct-operated 2/2-way compact solenoid valves Type EV210A

Solenoid valves 2/2-way direct-operated type EV210A

Eliminator Liquid line filter driers, Type DCL and DML

4 Way Reversing Valve

MAKING MODERN LIVING POSSIBLE. Thermostatic expansion valve Type TUB/TUBE and TUC/TUCE REFRIGERATION AND AIR CONDITIONING.

P303 Pressure Regulator

Thermostatic expansion valves TUB/TUBE and TUC/TUCE

TYPE EMC. Thermostatic Expansion Valve

5/2-5/3 SPOOL VALVES MULTIFUNCTION air operated or solenoid air operated with subbase ISO 5599/1 sizes 1, 2 and 3

AIR CONDITIONING STANDARD COMMERCIAL REFRIGERATION HEAT PUMP PRODUCT CATALOGUE

A wide selection of pipe and orifice sizes is offered. Valves are available with threaded ports in brass and stainless steel.

AIR CONDITIONING COMMERCIAL REFRIGERATION HEAT PUMP STANDARD PRODUCT CATALOGUE

Normally Closed (N.C.), Normally Open (N.O.), Common (C.O.)

Pressure Measurement. Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level 2/27

Series P0 Electronic Metering Pump. Specification Sheet and Assembly Details Manual No : 1934, 1843 Rev. : C, D Rev. Date : 6/01, 10/2015

/2 way valves (solenoid actuated diaphragm with forced lifting) 1/4... 2

nufacturing Company, L.P San Felipe, Suite

Its modular concept allows to build up a ball valve for any degree of automation and any kind of application

Cooling Water Flow Regulator

Pressure Measurement Single-range transmitters for general applications

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

PARTS LIST E Qty. Description Alternative Price Q.ty per pck.

JDV CONTROL VALVES CO., LTD. JCT/JCTM Series 3/4 Way Trunnion Type Valve Manual

TOLERANCES AND UNCERTAINTIES IN PERFORMANCE DATA OF REFRIGERANT COMPRESSORS JANUARY 2017

Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level

Pressure. 1 Fitting PA R - N R2

98 Series Backpressure Regulators and Relief Valves

AIR PREPARATION. ELECTRONICALLY CONTROLLED PRESSURE REGULATING VALVE (PROPORTIONAL PRESSURE REGULATING VALVE) SERIES control

EXPLODED DIAGRAM - PARTS VIEW

American Zettler AZ742 RELAY Datasheet

G 1/8 - G 3/8 G 1/2 - G 1 1/2. Poppet valves for compressed air 3/2

4/4-way servo solenoid directional control valves, directly operated, with electrical position feedback and on-board electronics (OBE)

Pressure transmitters for industrial applications MBS 32 and MBS 33

Accumulators Virginia KMP Suction Line Accumulators

2-way proportional throttle valve for block installation

MODEL: WB009GMFI19HLD (120V) Wall Mount DC Inverter Fan Coil Unit 9,000 BTUH

4/3-way servo solenoid directional control valves with electrical position feedback (Lvdt DC/DC) (ruggedized design)

15.0 UNDERCOUNTER CUBERS EUC150B2 EUC200B3-EUC200-UC20B-UC20 AIR AND WATER COOLED

400 Volts, 50HZ 480 Volts, 60HZ 600 Volts, 60HZ TECHNICAL REFERENCE MANUAL

LO1 SERIES. compact direct solenoid actuated valves

HEAT CONTENT DECREASES U D R HEAT CONTENT INCREASESO. Btu/lb

CMA - B - C - D - CMR

PARTS LIST GAS BOILERS MODELS: CG320 (E) CG325 (E) CG330 (E)

SINGLE IMPELLER CENTRIFUGAL ELECTRIC PUMPS in cast iron

V5013B-F Three-Way Mixing & Diverting Valves

Metal oil filler and air breather filler caps. Bayonet connection. Reservoir holes. TA46 B (Materials)

2.9. Namur Valves 2.9. page 175. Namur 1/4 also called Namur 1 in accordance to VDI / VDE Namur 1/2 also called Namur 2.

Magnetic and Hydraulic-Magnetic Circuit Breaker 8340-T...

AC axial compact fan

AC axial compact fan

Check-Q-meter. Table of contents. Features. Functions. RE 27551/ /10 Replaces: Type FD

6.0 EC-SERIES CUBERS EC200-EC300-EC400-EC500-EC606 AIR, WATER AND REMOTE

Fitting PS P - B - R2

ISO mm ISO mm. Nl/min. Nl/min. Nl/min. Nl/min. ISO /2 Distributors. ISO Interface. OVERSIZED interface (UNIVER original)

TeSys enclosed starters 2

VALVES B D E B D A. ISO /2 Valves CHARACTERISTICS CODIFICATION KEY. BD 18 mm. BD 26 mm

Switches in conformity with ATEX directive

PARTS CATALOG. No. OBB702 REVISED EDITION-C. Models

Variable Displacement Plug-In Motor A6VE. Series 6, for open and closed circuits Axial tapered piston, bent axis design

General characteristics, Products

HiPace 1200, with TC 1200, DN 200 CF-F

IBV Series C Carbon Steel Inverted Bucket Vertical Steam Trap

IBV Series Z Alloy Steel Inverted Bucket Vertical Steam Trap

Installation, Maintenance and Operating Instructions

Pressure independent balancing and control valve AB QM DN

KM-1600SWH KM-1600SRH KM-1600SWH3 KM-1600SRH3

ASPT Series. Multi-Position, Internal TXV. Air Handler 1½ to 5 Tons

ELMO-G Vacuum Pumps/Compressors, Range 2BH1, Three-Phase 50 Hz

Digital AC Motors MHD

Commercial Generator Parts Catalog. PROTEC Series

Cartridge Valves Technical Information. Quick reference

VOLUMEC. Valve Position Indicator 5

DOMESTIC HOT WATER PUMPS WITH FIXED-SPEED MOTOR, 3x400V AP-, AKP- and AEP- series, threaded G1/2 G1 ¼ LOREM IPSUM JE ZULT MAAR 60 HZ.

Surface-mounting Thermostats ATH Type Series

M O D U L E - 3A Model A10V0 Piston Pump Manual A10V0 PUMP. Features

maintenance-free in continuous duty low-noise space-saving extremely tough Suction capacity in m 3 /h m 3 /h 2500 Suction capacity 30,000 10,000

ERSATZTEILE RAS-14-18FSXN

MR medium rating busbar

2.12. Ex-Linear light fittings for fluorescent lamps - max. ambient temperature + 60 C - nllk W - 58 W for Zone 2 and 22

LD-LP-LL-LC Rope Safety Switches with reset for emergency stop

Spare parts list UC-M, UC-L, UC-XL

Singer. Incremental Comfort Systems. K, EK Vintage F. Last Manufactured: Replacement Parts List No Revision C 04/2012

Number of poles 1-pole 2-pole Minimum Enclosure Contact G2R-1A-E G2R-1-E

Installation guide 862 MIT / MIR

Spare parts list UC-S

Heat Meter WR 200-D. 2 temperature inputs for Pt100 in four-wire circuit. Exact calculation of the heat parameters according IAPWS-IF97

Multifunctional Thermostatic Circulation Valve MTCV

ABB SpA COMEM Operating Unit Strada Regionale 11, Signolo Montebello Vicentino (VI) - ITALY

PARTS CATALOG MUZ-FE09NA MUZ-FE09NA - 1 MUZ-FE09NAH MUZ-FE12NA MUZ-FE12NA1 MUZ-FE12NAH MUZ-FE18NA OUTDOOR UNIT. No. OBB543 REVISED EDITION-C.

GRUNDFOS DATA BOOKLET MAGNA, UPE. Series 2000 circulator pumps

E8EB-N0C2B E8EB-N0B2B

Contents. Identification LHC. Horizontal split case pumps. Type key. Identification Type key

compact ejector, Series ECS with release valve with silencer with non-return valve, With filter vacuum switch: electronic 1x PNP and 1x analog

nufacturing Company, L.P San Felipe, Suite

Universal type Port size: M5, Rc1/8, Rc1/4. Max. working. pressure

Transcription:

Data sheet Solenoid valve s EVR 2 - EVR 40 EVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with HCFC and HFC refrigerants. EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately. Features y A complete range of solenoid valves for refrigeration, freezing and air conditioning systems y Normally closed () and normally open (NO) versions available y AC and DC coils are interchangeable on all valve body versions y Use with any fluorinated refrigerant y Designed for media temperatures up to 220 F y Flare connections up to in y Solder connections up to 2 in y Solder versions have extended connections; there is no need to dismantle the valve when soldering Approvals UL listed, file MH 648 Note: These approvals are only recognized when one of the EVR series of solenoid valves found in this leaflet is combined with a GP general purpose coil. DCS (rja) 206.02 DKRCC.PD.BB0.A9.22

Table of contents Technical data...2 Rated capacity [kw]... Ordering...4 Capacity, Liquid...8 Capacity, Suction vapor... 0 Capacity, Hot gas... Identification... 6 Design / Function... 8 Dimensions and weights... 20 Spare parts... 2 Technical data Refrigerant R22/R40C, R404A/R0, R4a, R40A, R2. For other refrigerants, please contact. Temperature of medium: -40 220 F Maximum 26 F during defrosting Maximum working pressure EVR 2 EVR 8: MWP = 6 psig EVR 0: MWP = 00 psig EVR EVR 40: MWP = 460 psig Enclosure of coil ~ NEMA 2 or ~ NEMA 4 Valve type Minimum Opening differential pressure Δp [psi] Maximum (= MOPD) liquid 2) Medium temperature Maximum working pressure MWP C v value ) AC DC [ F] [psig] [gal/min] EVR 2 0.0 0 260-40 220 6 0.9 EVR 0.0 00 260-40 220 6 0.2 EVR 4 0. 00 260-40 220 6 0.66 EVR 6 0. 00 260 ) -40 220 6 0.9 EVR 8 0. 00 260-40 220 6. EVR 0 0. 00 260 ) -40 220 00 2.2 EVR 0. 00 260 ) -40 220 460.0 EVR 8 0. 00 260-40 220 460.9 EVR 20 0. 00 4) 90-40 220 460.8 EVR 22 0. 00 4) 90-40 220 460 6.9 EVR 2.0 00 260-40 220 460 2.0 / 9 (t F - 2) = t 2 C in = 2.4 mm EVR 2.0 00 260-40 220 460 8.0 EVR 40.0 00 260-40 220 460 29.0 ) C v value is the water flow in [gal/min] at a pressure drop across valve Δp = psi. ρ = 0 lbs/gal 2) MOPD (Max. Opening Pressure Differential) for media in gas form is approximately 4 psi greater ) EVR (NO): 00 psig 4) EVR (NO): 2 psig 2 DKRCC.PD.BB0.A9.22

Rated capacities [TR] R22/R40C R4a R404A/R0 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw in = 2.4 mm US gal/min = 0.86 m /h Liquid EVR 2. 0.89 0.80 EVR 2.0..40 EVR 4 4..6 2.86 EVR 6.8 4.4 4.0 EVR 8 8.0 6.09.2 EVR 0.8 0. 9. EVR 8.9 4.4.0 EVR 8 24.6 8..0 EVR 20 6.4 2. 2. EVR 22 4.. 0. EVR 2 2.8.4 0.2 EVR 2 6. 88. 80. EVR 40 82.0 8. 2.4 Suction vapour EVR 2 0.0 0.0 0.09 EVR 0. 0. 0. EVR 4 0.4 0.26 0.0 EVR 6 0.48 0. 0.4 EVR 8 0.66 0. 0.8 EVR 0. 0.88.0 EVR..20.8 EVR 8 2.04.6.80 EVR 20.02 2. 2.66 EVR 22.62 2.8.9 EVR 2 6.04 4.6.2 EVR 2 9.66.40 8. EVR 40 6..6. Hot gas EVR 2 0.22 0.8 0. EVR 0.8 0. 0.0 EVR 4 0. 0.6 0.62 EVR 6.08 0.88 0.8 EVR 8.49.2.9 EVR 0 2. 2.0 2.06 EVR.2 2.8 2.82 EVR 8 4...6 EVR 20 6.6..4 EVR 22 8. 6.62 6.2 EVR 2..0 0.9 EVR 2 2.6..4 EVR 40.8 2.6 2.2 ) Rated liquid and suction vapor capacity are based on: Evaporating temperature t e = 40 F Liquid temperature ahead of valve t l = 00 F Pressure drop Δp across valve with liquid Δp = psi with suction vapor Δp = psi (EVR 2, 2, 40 = 2 psi) Rated hot gas capacity is based on: Condensing temperature t c = 00 F Hot gas temperature t h = 40 F Pressure drop across valve Δp = psi DKRCC.PD.BB0.A9.22

Ordering EVR solder ODF connections, Normally Closed () - separate valve bodies Connection [in] Port size [in] Manual stem C v value [gal/min] Code nos. valve body excl. coil EVR 2 / 4 / 2 No 0.9 02F00 EVR / 4 No 0.2 02F0 No 0.2 02F EVR 4 / 2 No 0.66 02F0 / 64 No 0.9 02F / 64 Yes 0.9 02F6 EVR 6 / 2 / 64 No 0.9 02F62 / 2 / 64 No 0.9 02F44 / 64 No 0.9 02F / 2 / 6 No. 02F2 EVR 8 / 2 / 6 Yes. 02F48 / 6 No. 02F22 No 2.2 02F2 / 2 No 2.2 02F66 EVR 0 / 2 Yes 2.2 02F88 No 2.2 02F68 Yes 2.2 02F49 9 / 6 No.0 02F EVR 9 / 6 Yes.0 02F2 9 / 6 No.0 02F0 EVR 8 9 / 2 Yes.9 02F004 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw in = 2.4 mm US gal/min = 0.86 m /h EVR 20 EVR 22 No.8 02F6 Yes.8 02F / 6 No 6.9 02F4 / 6 Yes 6.9 02F / 6 No 6.9 02F46 4 DKRCC.PD.BB0.A9.22

Ordering (continued) EVR solder ODF connections, Normally Closed () - separate valve bodies Connection [in] Port size [in] Manual stem C v value [gal/min] Code nos. valve body excl. coil No 2.0 02F89 EVR 2 Yes 2.0 02F90 No 2.0 02F9 Yes 2.0 02F94 No 8.0 042H6 Yes 8.0 042H psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw in = 2.4 mm US gal/min = 0.86 m /h No 8.0 042H8 EVR 2 Yes 8.0 042H9 2 No 8.0 042H80 2 Yes 8.0 042H8 EVR 40 2 Yes 29.0 042H88 EVR solder ODF connections, Normally Open (NO) - separate valve bodies Connection [in] Port size [in] C v value [gal/min] Code nos. valve body excl. coil EVR 6 / 4 0.9 02F64 EVR 0 / 2 2.2 02F69 EVR 9 / 6.0 02F4 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw in = 2.4 mm US gal/min = 0.86 m /h EVR flare connections, Normally Closed () - separate valve bodies Connection [in] Port size [in] Manual stem C v value [gal/min] Code nos. valve body excl. coil EVR / 4 No 0.2 02F806 EVR No 0.2 02F8 EVR 6 / 64 No 0.9 02F80 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw in = 2.4 mm US gal/min = 0.86 m /h DKRCC.PD.BB0.A9.22

BJ and BX coils for EVR valves Approvals Listed with EVR. MH648 Low Voltage Directive (LVD) 2006/9/EC Ordering Coil type Valve type [in] Wire length [cm] Voltage [V] AC Frequency [Hz] Power consumption [Hz] Code no. Junction box NEMA 2 AKV / EVR EVRH BJ024CS / EVRA EVRAT / EVRS EVRST 8 24 0 / 60 4 08F400 BJ20CS / EVM EV220B 6-0 0 0 / 60 6 8 EV20B 20 60 08F40 BJ240CS EV2B EV22B 208 240 60 4 8 EV20B 20 0 08F420 BJ20BS 8 20 60 6 08F40 BJ208BS AKVH / EVRH 8 208 60 6 08F42 BJ240BS 8 240 60 6 08F44 Conduit boss NEMA 4 BX024CS 8 46 24 0 / 60 4 08F402 BX024CS AKV / EVR EVRH 80 24 0 / 60 4 08F40 BX024CS / EVRA EVRAT 98 20 24 0 / 60 4 08F404 / EVRS EVRST BX20CS / EVM 8 46 08F42 BX20CS EV220B 6-0 6 9 0 0 / 60 6 08F4 BX20CS EV20B 80 20 60 08F44 EV2B BX20CS EV22B 98 20 08F4 BX240CS EV20B 8 46 208 240 60 4 08F422 BX240CS 98 20 20 0 08F42 BX20BS 98 20 20 60 6 08F4 BX208BS AKVH / EVRH 98 20 208 60 6 08F4 BX240BS 98 20 240 60 6 08F4 Technical data Design In accordance with UL 429 Power supply Alternating current (AC) Permissible voltage variation Alternating current (AC): 0 Hz and 60 Hz: -0% +% 0/60 Hz: +/- 0% Power consumption Alternating current (AC): Inrush: 49 VA; Holding: 28 VA. 6 W Insulation of coil wire Class H according to IEC 8 Connection Junction box or Conduit boss Enclosure. IEC 6029 Junction box NEMA 2 ~ IP 2 2 Conduit boss NEMA 4 ~ IP 4 Ambient temperature -40 F 22 F (-40 C 0 C) 6 DKRCC.PD.BB0.A9.22

BG coils for EVR valves (continued) Features y For high temperatures class H insulated wire y Encapsulated coils with long life time y Wide range of coils from 2 V 200 V DC with terminal box IP6 ~ NEMA 6 Approvals Low Voltage Directive (LVD) 2006/9/EC Ordering Valve type Voltage [V] DC Power consumption [W] Code no. EVR 2 to () EVR 2 to 40 (/NO) EVR 6 to (NO) EVRC 0 to EVRA to () EVRA 2 to 40 () EVRAT 0 to () EVRS/EVRST to EVM (/NO) EVR 20 to 22 (/NO) EVRC 20 EVRA 20 EVRAT 20 EVRST 20 2 20 08F686 24 20 08F68 48 20 08F689 0 20 08F6860 20 08F686 220 20 08F68 2 20 08F6886 24 20 08F688 48 20 08F6889 0 20 08F6890 220 20 08F688 Technical data Design In accordance with VDE 080 Power supply Direct current (DC) Permissible voltage variation -0 % Power consumption 20 W Insulation of coil wire Class H according to IEC 8 Connection Terminal box Enclosure. IEC 29 IP 6 NEMA 6 Ambient temperature -40 F 22 F (-40 C 0 C) DKRCC.PD.BB0.A9.22

Capacity Liquid Liquid capacity Q 0 [TR] at a pressure drop across valve Δp [psi] 2 4 6 R22/R40C EVR 2 0.8 0.82.0.6.0.4.4 EVR 0.98.9.0.9 2.20 2.4 2.60 EVR 4 2.04 2.88. 4.08 4.6 4.99.9 EVR 6 2.9 4.2.04.82 6... EVR 8 4.08..06 8. 9.2 9.99 0.9 EVR 0 6.92 9.8.98.8.4 6.94 8.0 EVR 9.46.9 6.9 8.9 2.6 2.8 2.04 EVR 8 2.8.0 2.44 24. 2.68 0.2 2. EVR 20 8.20 2.4. 6.40 40.0 44.9 48.6 EVR 22 2.84 0.89.8 4.68 48.84.0.9 EVR 2 0.28 4. 6.0 2.8 8.40 89. 96. EVR 2 0.44 4.6 00.88 6.49 0.24 42.6 4.0 EVR 40 0.6 8..6 82.02 20.0 222.9 240.9 R4a EVR 2 0.4 0. 0.94.09.22..44 EVR 0.92.0.9.84 2.0 2.2 2.4 EVR 4.90 2.69.0.8 4.26 4.66.04 EVR 6 2.2.8 4..44 6.08 6.66.20 EVR 8.8.8 6.9.6 8. 9. 0.0 Capacities are based on: Liquid temperature t l = 00 F Evaporating temperature t e = 40 F Superheat temperature (t e + 0 F) = 0 F psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 0 6.46 9..9 2.92 4.44.82.09 EVR 8.84 2.0..68 9.6 2.6 2.8 EVR 8.6 6. 20.02 2.2 2.84 28. 0.8 EVR 20.00 24.04 29.44.99 8.0 4.6 44.9 EVR 22 20.40 28.84. 40.9 4.6 49.96.96 EVR 2 0.26.89 8.88 6.99 6.0 8.2 89.94 EVR 2 0.4.02 94.2 08.8 2.62.2 4.90 EVR 40 0.6 9.0 4.20 69.9 90.0 208. 224.8 Correction factors When liquid temperature t l ahead of the expansion valve is other than 00 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. Correction factors for liquid temperature t l t l [ F] 80 90 00 0 20 Factor.0.0.00 0.9 0.90 8 DKRCC.PD.BB0.A9.22

Capacity Liquid (continued) Liquid capacity Q 0 [TR] at a pressure drop across valve Δp [psi] 2 4 6 R404A and R0 EVR 2 0.8 0.4 0.66 0. 0.86 0.94.0 EVR 0.6 0.9.2.29.4.8. EVR 4.4.90 2.2 2.68.00.28. EVR 6.92 2..2.8 4.28 4.69.0 EVR 8 2.68.9 4.6.6 6.00 6..0 Capacities are based on: Liquid temperature t l = 00 F Evaporating temperature t e = 40 F Superheat temperature (t e + 0 F) = 0 F psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 0 4. 6.4.88 9.0 0..4 2.04 EVR 6.2 8.80 0.8 2.4.92.2 6.4 EVR 8 8.4. 4.0 6.28 8.20 9.94 2.4 EVR 20.9 6.9 20.4 2.94 26. 29..68 EVR 22 4. 20.2 24.88 28. 2..9 8.0 EVR 2 0.28 22.46 4.4 4.89.4 8.6 6. EVR 2 0.44.94 66.6 6.62 8.6 9.84 0.6 EVR 40 0.6 6.4 0.68 9.2.86 46.6 8.8 Correction factors When liquid temperature tl ahead of the expansion valve is other than 00 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. Correction factors for liquid temperature t l t l [ F] 80 90 00 0 20 Factor.0.0.00 0.9 0.90 DKRCC.PD.BB0.A9.22 9

Capacity Suction vapor psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 2 EVR EVR 4 EVR 6 EVR 8 EVR 0 EVR EVR 8 EVR 20 EVR 22 EVR 2 EVR 2 EVR 40 Pressure drop across valve Δp [psi] Suction vapor capacity Q 0 [TR] at evaporating temperature t e [ F] -40-20 0 0 20 0 40 0 R22/R40C 0.0 0.04 0.0 0.06 0.0 0.08 0.08 0.09 2 0.04 0.06 0.08 0.08 0.09 0. 0.2 0. 0.0 0.0 0.09 0.0 0. 0. 0.4 0.6 0.0 0.0 0.09 0.0 0. 0. 0.4 0. 2 0.0 0.0 0. 0.4 0.6 0.8 0.20 0.22 0.09 0.2 0. 0. 0.9 0.22 0.24 0.26 0. 0. 0.9 0.2 0.24 0.26 0.29 0.2 2 0. 0.20 0.26 0.0 0. 0. 0.4 0.4 0.8 0.24 0.2 0.6 0.40 0.4 0.0 0. 0.6 0.2 0.2 0.0 0.4 0.8 0.42 0.46 2 0.22 0.29 0.8 0.42 0.4 0. 0.8 0.64 0.2 0. 0.4 0. 0. 0.64 0. 0.8 0.22 0.29 0.8 0.42 0.4 0. 0.8 0.64 2 0.0 0.4 0. 0.9 0.66 0.4 0.82 0.90 0. 0.49 0.6 0.2 0.80 0.90 0.99.0 0.8 0.0 0.64 0.2 0.80 0.89 0.99.09 2 0. 0.69 0.89.00.2.2.9. 0.60 0.82.08.22.6.2.69.86 0.2 0.68 0.88 0.98.0.22..49 2 0.0 0.94.22.8.4..90 2.09 0.82..4.66.8 2.08 2. 2. 0.68 0.89..29.44.60..94 2 0.92.2.60.80 2.0 2.24 2.48 2..08.4.9 2.8 2.44 2.2.02. 0.99..69.89 2. 2. 2.60 2.86 2..8 2. 2.64 2.96.29.6 4.02.8 2. 2.8.20.9 4.00 4.44 4.90.9.8 2.02 2.2 2.4 2.82.2.4 2.62 2.8 2.82...9 4.8 4.8.90 2.60.40.84 4.0 4.80.2.88 0.0 0.02 0.02 0.0 0.0 0.0 0.04 0.04 2.2 2..0.4.89 4.4 4.8.. 4.4.6 6.40. 8.00 8.8 9.9 0.02 0.0 0.04 0.04 0.0 0.06 0.06 0.0 2 2.6. 4.92. 6.22 6.94.69 8.49.0 6.94 9.0 0.24.48 2.80 4.9.6 0.0 0.0 0.06 0.0 0.08 0.09 0.09 0.0 2 4..88.68 8.6 9.2 0.84 2.02.26.92 0.84 4..99.94 20.00 22.8 24.48 Correction factors When liquid temperature t l ahead of the expansion valve is other than 00 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. The table values refer to evaporator capacity and are given as a function of evaporating temperature te and pressure drop Δp across the valve. Capacities are based on liquid temperature t l = 00 F ahead of the expansion valve and superheat t s = F. For each additional 0 F of superheat, the table capacities must be reduced by 2%. Correction factors for liquid temperature t l t l [ F] 80 90 00 0 20 Factor.0.0.00 0.9 0.90 0 DKRCC.PD.BB0.A9.22

Capacity Suction vapor (continued) psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 2 EVR EVR 4 EVR 6 EVR 8 EVR 0 EVR EVR 8 EVR 20 EVR 22 EVR 2 EVR 2 EVR 40 Pressure drop across valve Δp [psi] Suction vapor capacity Q 0 [TR] at evaporating temperature t e [ F] -40-20 0 0 20 0 40 0 R4a 0.02 0.0 0.04 0.04 0.0 0.06 0.06 0.0 2 0.02 0.04 0.0 0.06 0.0 0.08 0.09 0.0 0.0 0.04 0.06 0.0 0.08 0.09 0. 0.2 0.0 0.0 0.06 0.0 0.08 0.09 0. 0.2 2 0.04 0.06 0.09 0.0 0.2 0. 0. 0. 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.20 0.0 0.0 0. 0. 0. 0.20 0.22 0.2 2 0.09 0. 0.8 0.2 0.24 0.2 0. 0. 0.0 0. 0.2 0.2 0.29 0. 0.8 0.42 0.0 0.4 0.9 0.22 0.2 0.28 0.2 0.6 2 0.2 0.9 0.26 0.0 0.4 0.9 0.44 0.0 0.4 0.22 0. 0.6 0.4 0.4 0.4 0.60 0.4 0.9 0.26 0.0 0. 0.9 0.44 0.0 2 0. 0.26 0.6 0.42 0.48 0. 0.62 0.0 0.9 0.0 0.4 0.0 0.8 0.66 0. 0.8 0.2 0. 0.4 0. 0.9 0.6 0. 0.8 2 0.0 0.44 0.6 0. 0.82 0.9.0.9 0. 0. 0. 0.8 0.98.2.2.44 0.2 0.4 0.6 0.0 0.80 0.9.0.6 2 0.4 0.60 0.84 0.9.2.2.44.62 0.4 0.0.00.6.4..4.9 0.4 0.9 0.80 0.92.0.20..2 2 0. 0.9.0.2.46.66.88 2.2 0.8 0.92.0.2. 2.0 2.28 2. 0.6 0.8.8...6.98 2.2 2 0.8.6.6.8 2. 2.4 2..2 0.86..92 2.2 2.8 2.9..8 0..04.4.6.86 2. 2.8 2.6 2 0.9.9.94 2.24 2.8 2.94.2.4.0.62 2.0 2.68.09.4 4.02 4.4 0.0 0.0 0.02 0.02 0.02 0.0 0.0 0.0 2 0.94.4 2.08 2.4 2.80.20.6 4.0. 2.69.8 4.4.6.90 6.0.6 0.0 0.02 0.0 0.0 0.04 0.04 0.0 0.0 2.0 2...88 4.48.2.8 6.6 2.4 4. 6.. 8.2 9.44 0.2 2.0 0.02 0.0 0.04 0.0 0.06 0.06 0.0 0.08 2 2..66.20 6.06.00 8.00 9.08 0.24 4.28 6. 9.8. 2.90 4. 6. 8.90 Correction factors When liquid temperature t l ahead of the expansion valve is other than 00 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. The table values refer to evaporator capacity and are given as a function of evaporating temperature te and pressure drop Dp across the valve. Capacities are based on liquid temperature t l = 00 F ahead of the expansion valve and superheat t s = F. For each additional 0 F of superheat, the table capacities must be reduced by 2%. Correction factors for liquid temperature t l t l [ F] 80 90 00 0 20 Factor.0.0.00 0.9 0.90 DKRCC.PD.BB0.A9.22

Capacity Suction vapor (continued) psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 2 EVR EVR 4 EVR 6 EVR 8 EVR 0 EVR EVR 8 EVR 20 EVR 22 EVR 2 EVR 2 EVR 40 Pressure drop across valve Δp [psi] Suction vapor capacity Q 0 [TR] at evaporating temperature t e [ F] -40-20 0 0 20 0 40 0 R404A and R0 0.02 0.0 0.04 0.0 0.06 0.06 0.0 0.08 2 0.0 0.0 0.06 0.0 0.08 0.09 0.0 0. 0.04 0.0 0.0 0.08 0.09 0. 0.2 0. 0.04 0.06 0.0 0.08 0.09 0. 0.2 0. 2 0.06 0.08 0.0 0.2 0. 0. 0. 0.9 0.0 0.09 0.2 0.4 0.6 0.8 0.20 0.2 0.08 0. 0. 0. 0.20 0.22 0.2 0.2 2 0. 0.6 0.2 0.24 0.2 0. 0. 0.9 0.4 0.9 0.26 0.29 0. 0.8 0.42 0.4 0.2 0.6 0.22 0.2 0.28 0. 0. 0.9 2 0.6 0.2 0.0 0.4 0.9 0.44 0.49 0. 0.9 0.2 0. 0.42 0.4 0.4 0.60 0.6 0. 0.2 0.0 0.4 0.9 0.44 0.49 0. 2 0.2 0.2 0.42 0.48 0. 0.62 0.69 0. 0.2 0.8 0. 0.8 0.66 0. 0.84 0.94 0.28 0.9 0. 0.9 0.66 0. 0.8 0.9 2 0.9 0.4 0.2 0.82 0.9.0.. 0.46 0.6 0.8 0.99..2.4.60 0.9 0. 0.0 0.80 0.9.02.4.2 2 0. 0.4 0.98.2.2.4.6.9 0.6 0.89.9.6.4.4.96 2.9 0. 0.0 0.92.0.8..49.6 2 0.0 0.96.28.4.66.8 2.0 2. 0.82.6..8 2.02 2.28 2.6 2.86 0..02..4.4.96 2.20 2.4 2.0.42.89 2. 2.44 2..09.4.2.0 2.28 2.6 2.9..6 4.20 0.90.2.62.8 2.09 2. 2.64 2.94 2.2.0 2.2 2.9 2.9.. 4.4.46 2.04 2.4..6 4.02 4..0 0.0 0.0 0.02 0.02 0.0 0.0 0.0 0.04 2.2.8 2.48 2.8.22.6 4.08 4.6 2.4.40 4..22.9 6.0.2 8.4 0.02 0.02 0.0 0.04 0.04 0.0 0.0 0.06 2 2. 2.96.96 4...8 6.2.29.88.4. 8.6 9.49 0.2 2.04.4 0.0 0.04 0.0 0.06 0.06 0.0 0.08 0.09 2.0 4.62 6.9.08 8.04 9.0 0.9.9 6.06 8..42.06 4.8 6. 8.8 2.02 Correction factors When liquid temperature t l ahead of the expansion valve is other than 00 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. The table values refer to evaporator capacity and are given as a function of evaporating temperature t e and pressure drop Δp across the valve. Capacities are based on liquid temperature t l = 00 F ahead of the expansion valve and superheat t s = F. For each additional 0 F of superheat, the table capacities must be reduced by 2%. Correction factors for liquid temperature t l t l [ F] 80 90 00 0 20 Factor.0.0.00 0.90 0.90 2 DKRCC.PD.BB0.A9.22

Capacity Hot gas Pressure drop across valve Δp [psi] Hot gas capacity Q h [TR] Evaporating temp. t e = 40 F, hot gas temp. t h =t c +40 F, subcooling Δt u = 0 F R22/R40C R4a R404A/R0 Condensing temp. t c [ F] Condensing temp. t c [ F] Condensing temp. t c [ F] 0 00 40 0 00 40 0 00 40 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 2 EVR EVR 4 EVR 6 2 0. 0.6 0. 0.2 0.4 0.4 0.4 0.4 0. 0.24 0.26 0.2 0.9 0.2 0.22 0.22 0.2 0.2 0 0. 0.6 0.8 0.26 0.29 0.0 0. 0.2 0.29 0.9 0.4 0.46 0. 0. 0. 0. 0.8 0. 20 0.44 0.49 0.2 0.4 0.9 0.42 0.42 0.44 0.40 2 0.48 0.4 0.8 0.6 0.4 0.46 0.46 0.48 0.44 2 0.26 0.28 0.29 0.2 0.2 0.2 0.24 0.24 0.22 0.40 0.4 0.4 0.2 0.6 0. 0.8 0.8 0. 0 0. 0.6 0.64 0.44 0.49 0. 0.2 0. 0.49 0.66 0. 0. 0.2 0.9 0.62 0.62 0.6 0.9 20 0.4 0.8 0.88 0. 0.66 0.0 0. 0.4 0.68 2 0.8 0.9 0.98 0.6 0.2 0.8 0. 0.8 0. 2 0. 0. 0.60 0.44 0.4 0.49 0.0 0. 0.46 0.8 0.90 0.94 0.6 0.4 0.6 0.8 0.9 0.2 0.4.26.2 0.92.02.06.08..0..2.60.08.22.28.0.4.22 20.4.2.8.9..46.4..40 2.68.90 2.0.2.49.6.60.68.6 2 0.6 0.82 0.86 0.62 0.68 0.69 0. 0.2 0.6.8.29. 0.96.0.09...0 0.6.9.89..46.2.4.8.44.9 2.6 2.29.4.4.8.8.9. 20 2.20 2.46 2.62.0.96 2.09 2.09 2.8 2.00 2 2.40 2. 2.90.82 2. 2.0 2.29 2.4 2.22 Correction factors The table values refer to hot gas capacity and are given as a function of condensing temperature t c and pressure drop Δp across the valve. Capacities are based on a hot gas temperature superheated 40 F above condensing temperature (t h = t c + 40 F). For each additional 0 F of superheat above 40 F, the table capacities must be reduced by %. When the valve is used in a hot gas defrost circuit. evaporator temperature affects the capacity. When the evaporator temperature differs from 40 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. Correction factors for t h and t e t e [ F] -40-20 0 20 40 0 Factor.8.4.09.04 0.9 DKRCC.PD.BB0.A9.22

Capacity Hot gas (continued) Pressure drop across valve Δp [psi] Hot gas capacity Q h [TR] Evaporating temp. t e = 40 F, hot gas temp. t h = t c +40 F, subcooling Δt u = 0 F R22/R40C R4a R404A/R0 Condensing temp. t c [ F] Condensing temp. t c [ F] Condensing temp. t c [ F] 0 00 40 0 00 40 0 00 40 2.06..20 0.8 0.9 0.9.00.0 0.9.6.80.88..48.2.6.9.44 EVR 8 0 2.29 2. 2.64.8 2.04 2.2 2.6 2.22 2.0 2.4.0.2 2. 2.4 2. 2.9 2.68 2.4 20.08.4.6 2.8 2.4 2.92 2.9.0 2.8 2.6.80 4.0 2.4 2.99.22.2.. 2.80.9 2.0.48.6.6.69.2. 2.8.06.9 2.29 2.0 2.8 2.64 2.69 2.44 EVR 0 0.88 4.26 4.48..46.60.66.6.42 4.64.4.44.6 4. 4. 4.40 4. 4. 20.2.8 6.2 4.0 4.6 4.96 4.9.8 4.6 2. 6.44 6.90 4..0.4.44.2.28 2 2.46 2.6 2.8 2.02 2.20 2.2 2. 2. 2.2.84 4.8 4...4..62.69. EVR 0..8 6. 4.2 4. 4.9.0. 4.68 6..0.44 4.99.6.96 6.02 6.22.68 psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 8 20.6 8.00 8.2.2 6.6 6.9 6.8.09 6. 2.8 8.8 9.44.90 6.9.48.4.82.2 2.22.49.6 2.6 2.8 2.9.0.0 2..02.4.2 4.09 4.48 4.62 4. 4.82 4.6 0 6.94.62 8.02.6 6.8 6.4 6.6 6. 6.2 8.0 9.20 9. 6..9.9.8 8.4.4 20 9.6 0.46.4.22 8.2 8.8 8.90 9.2 8.2 2 0.2.2 2.4. 9.06 9.8 9.4 0.2 9.4 Correction factors The table values refer to hot gas capacity and are given as a function of condensing temperature t c and pressure drop Δp across the valve. Capacities are based on a hot gas temperature superheated 40 F above condensing temperature (t h =t c + 40 F). For each additional 0 F of superheat above 40 F, the table capacities must be reduced by %. When the valve is used in a hot gas defrost circuit. evaporator temperature affects the capacity. When the evaporator temperature differs from 40 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. Correction factors for t h and t e t e [ F] -40-20 0 20 40 0 Factor.8.4.09.04 0.9 4 DKRCC.PD.BB0.A9.22

Capacity Hot gas (continued) psi = 0.0 bar / 9 (t F - 2) = t 2 C TR =. kw EVR 20 EVR 22 EVR 2 EVR 2 EVR 40 Pressure drop across valve Δp [psi] Hot gas capacity Q h [TR] Evaporating temp. t e = 40 F, hot gas temp. t h =t c + 40 F, subcooling Δt u = 0 F R22/R40C R4a R404A/R0 Condensing temp. t c [ F] Condensing temp. t c [ F] Condensing temp. t c [ F] 0 00 40 0 00 40 0 00 40 2 4...4.89 4.2 4. 4.4 4.2 4.0.9 8.04 8.4 6.0 6.9 6.80 6.9.09 6.4 0 0.2.2.9 8. 9.09 9.48 9.64 9.90 8.99 2.2. 4. 9.60 0.8.46..96 0.9 20..9 6.8 0.62 2.2.0.09.6 2. 2.02 6.94 8..4. 4.9 4..04.90 2.68 6.6 6.4 4.6.0.20.4.42 4.89 8.86 9.6 0.09.22.90 8.6 8. 8.0.69 0 2.2.4 4.4 9.8 0.9.8..8 0.9 4.6 6.2..2.04..89 4.6.2 20 6.2 8.4 9.66 2.4 4.68.66. 6.6.0 2 8.02 20. 2.9.6.99.26.9 8.0 6.6 2 6.26 6.9.08..8.4.88.98.9 4. 6.09 6.8 2.0..9.9 4. 2.82 0 20.42 22.42 2. 6.4 8.9 8.9 9.28 9.9.99 24.42 2.06 28.62 9.20 2. 22.92 2.4 2.9 2.86 20 2. 0.8 2.6 2.2 24.4 26.0 26.8 2.2 2.0 2 0.04.89 6. 22.69 26.66 28. 28.66 0.08 2.9 2 0.0 0.86. 8.20 8.9 9. 9.4 9.6 8.6 2.6 2.4 26.90 9.24 2.08 2. 22.2 22.68 20. 0 2.66.8.2 26. 29.0 0. 0.8.6 28.8 9.08 4.29 4.80 0.2 4. 6.66.0 8.28 4.98 20 44.0 49.24 2.42.9 9. 4.6 4.89 4.6 40.08 2 48.06 4.22 8.09 6.0 42.6 46.04 4.8 48.4 44.46 2.6 6.9.69 2.82.9 4. 4.0 4.94.48 6.9 40.22 42.04 0.0 2.94.98 4..44 2.04 0.04 6.0 8.94 40.86 4.4 4.42 48.2 49.48 44.9 6.06 6.64.6 48.0 4..29.86 9.82 4.6 20 68.84 6.94 8.9.08 6. 6.24 6.4 68. 62.6 2.09 84.2 90. 6.2 66.64.9.64.2 69.48 Correction factors The table values refer to hot gas capacity and are given as a function of condensing temperature t c and pressure drop Δp across the valve. Capacities are based on a hot gas temperature superheated 40 F above condensing temperature (t h = t c +40 F). For each additional 0 F of superheat above 40 F, the table capacities must be reduced by %. When the valve is used in a hot gas defrost circuit. evaporator temperature affects the capacity. When the evaporator temperature differs from 40 F, adjust the table capacities by multiplying them by the appropriate correction factor found in the following table. Correction factors for t h and t e t e [ F] -40-20 0 20 40 0 Factor.8.4.09.04 0.9 DKRCC.PD.BB0.A9.22

Identification MADE IN CHINA GENERAL PURPOSE VALVE R. SWP: 460psig MOPD: 0psi Section of general-purpose valve assembly. Assembly consisting of coil: 08F400,-02,-0,-04,-0, -2,-,-4,-,-20,-22,-2,-0,-,-2,-,-4,-4. UL LISTED, R and body type: EVR MADE IN CHINA SWP: 460psig MOPD: 0psi Section of general-purpose valve assembly. Assembly consisting of coil: 08F400,-02,-0,-04,-0, -2,-,-4,-,-20,-22,-2,-0,-,-2,-,-4,-. UL LISTED, R and body type: EVR Part no: 02F GENERAL PURPOSE VALVE R. Example EVR 8 SWP 08F400 MOPD S and A Valve type and size Safe Working Pressure (MWP) in psig Coil group for the EVR Maximum Operating Pressure in psi Approvals in USA and Canada Essential valve data is given on the label. Valve selection example Note: When selecting the appropriate solenoid valve, it is easier to convert the actual required capacity to that of the rated capacities listed in the tables. Liquid line solenoid valve selection example Refrigerant R4a Condensing temperature t c = 00 F Liquid temperature ahead of valve t l = 90 F Maximum allowable pressure drop across valve Δp = 2 psi Evaporator capacity Q o = 0 TR (required valve capacity) The table capacity should be corrected by the corresponding factor as: Qtable x fliquid = Qo Step : Determine the correction factor for liquid temperature. From the correction factor table found on page 8, a liquid temperature of 90 F corresponds to a factor of.0. Step 2: Correct the required valve capacity. This is done by dividing the evaporator capacity by the liquid correction factor. Q corrected = 0/.0 = 9. TR Step : Select the appropriate capacity table and choose the first valve whose capacity is greater than or equal to Q corrected at the required pressure drop. Using the R4a liquid capacity table found on page 8, the EVR is selected as it has a capacity of 2. TR at a Δp = 2 psi. This is done by utilizing various correction factors in the selection process. The following examples illustrate how this is done. Suction line solenoid valve selection example Refrigerant R4a Liquid temperature ahead of expansion valve t l = 90 F Evaporator temperature t e = 0 F Superheat ahead of valve t s = F Maximum allowable pressure drop across valve Δp = psi Evaporator capacity Q o = 0 TR (required valve capacity) The table capacity should be corrected by the corresponding factor as: Qtable x fliquid x fsuperheat = Qo Step : Determine the correction factor for superheat ahead of the valve by increasing the required valve capacity by 2% for each 0 F of actual superheat above the table rated value of F. In the example. a superheat of F corresponds to a 0 F increase above the table value which is equivalent to a superheat correction factor of 0.98. Step 2: Determine the correction factor for liquid temperature. From the correction factor table found on page, a liquid temperature of 90 F corresponds to a factor of.0. Step : Correct the required valve capacity. This is done by first multiplying the evaporator capacity by the superheat correction factor and then dividing it by the liquid correction factor. Q corrected = 0/0.98/.0=9. Step 4: Select the appropriate capacity table and choose the first valve whose capacity is greater than or equal to Q corrected at the required evaporating temperature and pressure drop. Using the R4a suction vapor capacity table found on page, the EVR 40 is selected as it has a capacity of 4. TR at t e = 0 F and Δp = psi. 6 DKRCC.PD.BB0.A9.22

Valve selection example (continued) Hot gas line solenoid valve selection example With hot gas defrost, pressure in the evaporator quickly rises to a value near that of the condensing pressure and remains there until the defrost cycle has been completed. Therefore. when selecting valves for hot gas applications, sizing is based primarily on the condensing temperature t c and the pressure drop D p across the valve. Example (with heat recovery) Refrigerant: R4a Evaporator temperature: t e = 0 F Condensing temperature: t c = 00 F Hot gas temperature ahead of valve: t h = 80 F Maximum allowable pressure drop across valve: Δp = psi Output of heat recovery condenser: Q h = TR (required valve capacity) The table capacity should be corrected by the correspondig factor as: Qtable x fevaporator x fsuperheat = Qo Step : Determine the correction factor for hot gas temperature (t h = t c + 40 F) by increasing the required valve capacity by % for each 0 F of actual superheat above the table rated superheat value of 40 F. In the example, an actual hot gas temperature of 80 F is 40 F higher than the calculated table value of (t h = t c + 40 F = 40 F). This is equivalent to a hot gas correction factor of 0.96. Step 2: Determine the correction factor for evaporator temperature. From the correction factor table found on page 9 an evaporator temperature of 0 F corresponds to a factor of.09. Step : Correct the required valve capacity. This is done by first multiplying the heat recovery capacity by the hot gas correction factor and then dividing it by the evaporator correction factor. Q corrected = /0.96/.09=4. Step 4: Select the appropriate capacity table and choose the first valve whose capacity is greater than or equal to Q corrected at the required condensing temperature and pressure drop. Using the R4a hot gas capacity table found on pages 9 and 20, the EVR 2 is selected as it has a capacity of 2.8 TR at t c = 00 F and Δp = psi. DKRCC.PD.BB0.A9.22

Design / Function EVR 2 and EVR, EVR 4 EVR 22, 4 6 8 4 49 8 90 20 40 2F9024.0 4 6 8 29 4 4 8 80 90 49 20 40 2F902.0 EVR 6 EVR, NO 4 20 40 4. Coil 6. Armature 8. Valve plate 20. Earth terminal 29. Pilot orifice 40. Junction box 4. Valve cover 4. Gasket 49. Valve body 4. Spacer ring. Equalizing hole 80. Diaphragm 8. Valve seat 90. Fixing hole 4 6 8 29 4 4 8 80 90 49 2F9026.0 Note: The drawings are only representative. EVR solenoid valves are based on two different design principles:. Direct operation 2. Servo operation : Direct operation EVR 2 and EVR are direct operated. The valves opens to admit full flow when the armature (6) is moved up into the magnetic field of the coil. The valves operates with a minimum differential pressure of 0 psi. The valve plate (8) is fitted directly to the armature (6). Inlet pressure and spring force act to close the valve when the coil is de-energized. 2a: EVR 4 EVR 22 are servo-operated with a floating diaphragm (80). The pilot orifice (29) is located in the center of the diaphragm. The pilot valve plate (8) is fitted directly to the armature (6). When the coil is de-energized, the valve port and pilot orifice are closed and the inlet pressure acts both above and below the diaphragm. The valve port and pilot orifice are kept closed by the armature spring force and the differential pressure between inlet and outlet sides. When current is applied to the coil, the armature is pulled up into the magnetic field and the pilot orifice opens. This relieves pressure above the diaphragm because the space above it becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet presses the diaphragm away from the valve seat (8) and the valve opens to admit full flow. A minimum differential pressure (0. psi for EVR 4 EVR 22) is necessary to open the valve and keep it open. When the coil is de-energized, the pilot orifice closes. Then. via the equalizing port () the pressure above the diaphragm rises to the same value as the inlet pressure, which results in the valve port being closed by the diaphragm. EVR 6 EVR, NO, function in a manner opposite to the valves; they are open when the coil is de-energized. Normally open (NO) EVR valves are available with servo operation only. 8 DKRCC.PD.BB0.A9.22

Design / Function (continued) EVR 2 4 6 4 20 40 2F902.0 4. Coil 6. Armature 8. Pilot valve plate 20. Earth screw 28. Gasket 29. Pilot orifice 0. O-ring. Piston ring 40. Junction box 4. Valve cover 44. O-ring 4. Valve cover gasket 49. Valve body. Protective cap /blanking plug. Manual stem. Equalizing hole 4. Main passage. Pilot passage 6. Return spring 80. Servo piston 8. Main valve seat 84. Main valve plate EVR 2 and EVR 40 28 29 8 4 6 4 20 40 2F9028.0 Note: The drawings are only representative. 2b. Servo operation of EVR 2 EVR 40 EVR 2. EVR 2 and EVR 40 are servo-operated piston valves. The valves are closed when the coil is de-energized. In operation. EVR 2 is the same as for EVR 4 EVR 22. but the design is different. The pilot unit is located in the cover and the servo unit is a piston (80) with a cast iron piston ring. For EVR 2 EVR 40, piston (80) and valve plate (84) will close against the valve seat (8) due to the differential pressure between inlet and outlet plus the force from the return spring (6). When the coil is energized, the pilot orifice (29) is opened and pressure on the spring side of the piston is relieved. The pressure differential now opens the valve. The minimum differential required to keep the valve fully open is psi. DKRCC.PD.BB0.A9.22 9

H H H H H2 H2 min 29/6 min 29/6 Data sheet Solenoid valve, types EVR 2 EVR 40 Dimensions [in] and weights [lbs] EVR 2 - EVR 8, EVR 6 - EVR 8 NO, Solder connection With junction box EVR 2 - EVR 8, EVR 6 - EVR 8 NO With conduit boss EVR 2 - EVR 8, EVR 6 - EVR 8 NO L L 2F9.0 2F96.0 L L2 B B L L2 B B Coil net weight: lb Note: The drawings are only representative. : in = 2.4 mm EVR 2 EVR EVR EVR 4 EVR 4 EVR 6 /NO EVR 6 /NO EVR 6 EVR 6 EVR 8 EVR 8 EVR 8 Connection Normal size Oversize L L 2 Junction box L Conduit boss H H 2 H H 4 B B Net weight with coil / 4 4 2 9 / 6 / 20 / 6 2 / 6. / 4 4 2 9 / 6 2 / 6 / 20 / 6 2 / 6. 4 2 9 / 6 2 / 6 / 20 / 6 2 / 6. 4 2 9 / 6 / 6 / 6 2 / 6.4 / 2 2 9 / 6 / 6 / 6 2 / 6.4 4 2 9 / 6 / 6 / 6 2 / 6.4 4 2 / 6 2 / 6 / 6 2 / 6.4 / 2 2 9 / 6 / 6 / 6 2 / 6.4 6 / 2 / 2 2 9 / 6 / 6 / 6 2 / 6.4 4 2 9 / 6 / 6 / 6 2 / 6.4 / 2 2 9 / 6 / 6 / 6 2 / 6.4 6 / 2 2 9 / 6 / 6 / 6 2 / 6.4 20 DKRCC.PD.BB0.A9.22

Dimensions [in] and weights [lbs] EVR 0 /NO, Solder connection With junction box EVR 0 /NO With conduit boss EVR 0 /NO Coil net weight: lb Note: The drawings are only representative. : in = 2.4 mm EVR 0 EVR 0 /NO EVR 0 /NO EVR 0 /NO Connection Normal size Oversize L L 2 Junction box L Conduit boss H H 2 H H 4 B B 4 2 / 6 / 2 2 / 6 / 6 / 6 Net weight with coil 2 / 6.8 2 / 6.8 / 2 2 2 / 6 / 6 2 / 6.8 6 / 6 / 2 2 / 6 / 6 2 / 6.8 DKRCC.PD.BB0.A9.22 2

Dimensions [in] and weights [lbs] EVR - EVR 22, EVR NO, Solder connection With junction box EVR - EVR 22, /NO With conduit boss EVR - EVR 22, /NO L B L B H H H 2 H 2 L 2 Coil net weight: lb Note: The drawings are only representative. L L 2 B 2F89.0 L B 2F88.0 : in = 2.4 mm EVR /NO EVR /NO EVR EVR 8 EVR 8 EVR 20 EVR 20 EVR 20 EVR 22 EVR 22 Connection Normal size Oversize L L 2 Junction box L Conduit boss H H 2 H H 4 B B Net weight with coil 6 / 2 2 / 4 / 4 2 / 6 2 / 6 2.4 6 / 2 2 2 2 / 6 2 / 6 2.4 2 / 4 / 4 2 / 6 2 / 6 2.4 2 / 4 / 4 2 / 6 2 / 6 2.4 8 / 2 2 / 4 / 4 2 / 6 2 / 6 2.4 / 2 2 2 / 2 9 / 6 2 / 6 2 / 6.4 / 2 2 9 / 6 2 2 / 6 2 / 6.4 8 / 2 2 2 / 2 9 / 6 2 / 6 2 / 6.4 0 / 6 2 2 / 2 9 / 6 2 / 6 2 / 6.4 / 6 2 2 / 2 9 / 6 2 / 6 2 / 6.4 22 DKRCC.PD.BB0.A9.22

Data sheet Solenoid valve, types EVR 2 EVR 40 Dimensions [in] and weights [lbs] EVR 2 - EVR 40, Solder connection With junction box EVR 2 With conduit boss EVR 2 EVR 2 and EVR 40 EVR 2 and EVR 40 Coil net weight: lb Note: The drawings are only representative. Connection L Normal size Oversize L L 2 Junction box Conduit boss H H 2 H 4 B Net weight with coil EVR 2 0 / 6 2 ½ / 6 2 / 6 ¼ 6.9 EVR 2 / 6 2 ½ / 6 2 / 6 ¼. EVR 2 / 6 2 4 2 / 6 9. EVR 2 / 6 2 4 2 / 6 9. : in = 2.4 mm EVR 40 / 6 2 4 2 / 6 0.0 EVR 40 2 / 6 2 4 2 / 6 0.0 DKRCC.PD.BB0.A9.22 2

min 29/6 2F9.0 L H 2 min 29/6 Data sheet Solenoid valve, types EVR 2 EVR 40 Dimensions [in] and weights [lbs] EVR 2-6, Flare connection With junction box EVR 2 6 With conduit boss EVR 2 6 L 2F94.0 H 2 Coil net weight: lb H H L B B H H L B B Note: The drawings are only representative. Connection Normal size Oversize L Junction box L Conduit boss H H 2 H H 4 B B Net weight with coil EVR 2 / 4 2 / 6 2 9 / 6 2 / 6 / 6 / 6 2 / 6. EVR / 4 2 / 6 2 9 / 6 2 / 6 / 6 / 6 2 / 6. EVR 2 / 6 2 9 / 6 2 / 6 / 6 / 6 2 / 6. EVR 4 2 / 4 2 9 / 6 2 / 6 2 / 6.4 EVR 4 / 2 2 9 / 6 2 / 6 2 / 6.4 EVR 6 2 / 4 2 9 / 6 2 / 6 2 / 6.4 in = 2.4 mm EVR 6 2 / 4 2 9 / 6 2 2 / 6 / 6 2 / 6.4 EVR 6 / 2 2 9 / 6 2 / 6 2 / 6.4 24 DKRCC.PD.BB0.A9.22

Spare parts Code no. Seal kit Service kit Piston service kit Pilot service kit EVR 2 02F896 02F020 EVR 02F896 02F020 EVR 4 02F86 EVR 6 02F86 02F866 EVR 8 02F86 02F866 EVR 0 02F896 02F08 EVR 02F896 02F08 EVR 8 02F896 02F08 EVR 20 02F089 EVR 22 02F089 EVR 2 02F26 042H06 EVR 2 042H02 042H06 EVR 40 042H0 EVR 6 NO 02F86 EVR 0 NO 02F896 EVR NO 02F896 Spare parts, contents Seal kit Service kit Piston service kit Pilot service kit O-ring Gasket Diaphragm assembly Armature assembly Rubber gasket Screws Torx key Snap fastener Nut Piston assembly Plastic block Spring Piston ring Rubber gasket Snap fastener Nut Armature tube assembly Snap fastener Armature Orifice Gaskets Nut DCS (rja) 206.02 DKRCC.PD.BB0.A9.22 2