Introduction to cosmic rays

Similar documents
The Physics of Cosmic Rays

Lecture 14 Cosmic Rays

COSMIC RAYS DAY INTRODUCTION TO COSMIC RAYS WINDWARD COMMUNITY COLLEGE - SEPTEMBER 26, 2015 VERONICA BINDI - UNIVERSITY OH HAWAII

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Dr. John Kelley Radboud Universiteit, Nijmegen

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Cosmic Rays: A Way to Introduce Modern Physics Concepts. Steve Schnetzer

Cosmic Rays - R. A. Mewaldt - California Institute of Technology

Cosmic Rays. This showed that the energy of cosmic rays was many times that of any other natural or artificial radiation known at that time.

John Ellison University of California, Riverside. Quarknet 2008 at UCR

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

Ultra High Energy Cosmic Rays I

Topic 7. Relevance to the course

> News < AMS-02 will be launched onboard the Shuttle Endeavour On May 2nd 2:33 P.M. from NASA Kennedy space center!

Cosmic Rays. Discovered in 1912 by Viktor Hess using electroscopes to measure ionization at altitudes via balloon

INVASIONS IN PARTICLE PHYSICS

Supernova Remnants as Cosmic Ray Accelerants. By Jamie Overbeek Advised by Prof. J. Finley

Gamma-ray Astrophysics

Ultrahigh Energy cosmic rays II

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

The new Siderius Nuncius: Astronomy without light

The Physics of Ultrahigh Energy Cosmic Rays. Example Poster Presentation Physics 5110 Spring 2009 Reminder: Posters are due Wed April 29 in class.

STUDY OF EXTENSIVE AIR SHOWERS IN THE EARTH S ATMOSPHERE

QuarkNet 2002: Cosmic Rays Anthony Shoup, UCI. Shoup 1

Introduction to Experimental Particle Physics : Lecture 1

Mass Composition Study at the Pierre Auger Observatory

Physics HW Set 3 Spring 2015

Ultra High Energy Cosmic Rays: Observations and Analysis

Windows on the Cosmos

CSSP14, Sinaia, 25 th July, Space-atmospheric interactions of ultra-high energy. cosmic rays. Gina Isar

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

A Closer Look at the Sun

Galactic and extra-galactic cosmic rays: ground based air shower experiments

ISAPP Gran Sasso June 28-July 9, Observations of Cosmic Rays

Supernova Remnants and Cosmic. Rays

Cosmic Rays, GammaRays and the Universal. Background Radiation

Particle Detectors. How to See the Invisible

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

Neutrino Astronomy. Ph 135 Scott Wilbur

Questions 1pc = 3 ly = km

Upper Limit of the Spectrum of Cosmic Rays

² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Cosmic Rays I. Cosmic rays continually bombard the Earth. In fact, about cosmic rays pass through a person every hour! Astroparticle Course 1

energy loss Ionization + excitation of atomic energy levels Mean energy loss rate de /dx proportional to (electric charge) 2 of incident particle

Explain how the sun converts matter into energy in its core. Describe the three layers of the sun s atmosphere.

Cosmic Rays: high/low energy connections

The Pierre Auger Observatory

Those invisible neutrinos

Chapter 9 The Sun. Nuclear fusion: Combining of light nuclei into heavier ones Example: In the Sun is conversion of H into He

Chapter 14 Lecture. The Cosmic Perspective Seventh Edition. Our Star Pearson Education, Inc.

The Magnetic Sun. CESAR s Booklet

COSMIC RAYS AND AGN's

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

NUCLEAR AND PARTICLE PHYSICS (PH242) PARTICLE PHYSICS

Convection causes granules. Photosphere isn t actually smooth! Granules Up-Close: like boiling water. Corona or of the Sun. Chromosphere: sphere of

Sun s Properties. Overview: The Sun. Composition of the Sun. Sun s Properties. The outer layers. Photosphere: Surface. Nearest.

Cosmic Ray Astronomy. Qingling Ni

GAMMA-RAY ASTRONOMY: IMAGING ATMOSPHERIC CHERENKOV TECHNIQUE FABIO ZANDANEL - SESIONES CCD

Publications of Francesco Arneodo: journal articles

Chapter 10 Our Star. X-ray. visible

Chapter 14 Our Star A Closer Look at the Sun. Why was the Sun s energy source a major mystery?

Particle acceleration in the universe

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Low-Energy Cosmic Rays

Atmospheric Neutrinos and Neutrino Oscillations

Dennis Silverman UC Irvine Physics and Astronomy Talk to UC Irvine OLLI May 9, 2011

32 IONIZING RADIATION, NUCLEAR ENERGY, AND ELEMENTARY PARTICLES

Lecture 3. lecture slides are at:

ASTRONOMY AND ASTROPHYSICS - High Energy Astronomy From the Ground - Felix Aharonian HIGH ENERGY ASTRONOMY FROM THE GROUND

An Auger Observatory View of Centaurus A

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Ultrahigh Energy Cosmic Rays propagation II

ASTR 101 General Astronomy: Stars & Galaxies

Cosmic Rays in the earth s atmosphere. Ilya Usoskin Sodankylä Geophysical Observatory ReSoLVE Center of Excellence, University of Oulu, Finland

Cosmic rays. 1.1 Origin and nature of cosmic rays

Ryan Stillwell Paper: /10/2014. Neutrino Astronomy. A hidden universe. Prepared by: Ryan Stillwell. Tutor: Patrick Bowman

Relativity and Charged Particle Motion in Magnetic Fields

DIETRICH MÜLLER University of Chicago SLAC SUMMER INSTITUTE 2011

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

SEARCH FOR SPECIFIC SIGNATURES OF THE COSMIC RAY PHYSICS AT THE HIGHEST ENERGIES *

10/17/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

Sources of Radiation

10/18/ A Closer Look at the Sun. Chapter 11: Our Star. Why does the Sun shine? Lecture Outline

The Sun sends the Earth:

Chapter 8 Geospace 1

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Chapter Four (Interaction of Radiation with Matter)

8Subatomic particles. CHaPTer

The Sun. the main show in the solar system. 99.8% of the mass % of the energy. Homework due next time - will count best 5 of 6

The Sun. How are these quantities measured? Properties of the Sun. Chapter 14

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Cosmic Rays Detector. Use of Coincidence Detector for Measures of Cosmic Rays. Lodovico Lappetito. RivelatoreRaggiCosmici_ENG - 6/22/2015 Page 1

The Big Bang Theory. Rachel Fludd and Matthijs Hoekstra

Particle Physics Beyond Laboratory Energies

Chapter 14 Lecture. Chapter 14: Our Star Pearson Education, Inc.

Stellar Explosions (ch. 21)

Weight of upper layers compresses lower layers

Transcription:

Introduction to cosmic rays 1

COSMIC RAYS: Messages from exploding stars and even more powerful objects What are cosmic rays? How were they discovered? How do we detect them? What can we learn from them? Where do they come from? 2

Cosmic rays Discovered by Victor Hess (1912) Observations on mountains and in balloon: intensity of cosmic radiation increases with height above surface of Earth must come from outer space Much of cosmic radiation from sun (rather low energy protons) Very high energy radiation from outside solar system, but probably from within galaxy 3

Role in Physics and Astrophysics Part of the rise of modern physics: early radiation detectors (ionization chambers, electroscopes) showed a dark current in the absence of sources. Until 1952, cosmic ray research = experimental particle physics discoveries: muon, pion, and other particles Energy of highest energy cosmic rays (> 10 20 ev) >> energy available with accelerators extraterrestrial nature of cosmic rays confronted astronomers, but challenge could not be faced until mid 20th century. Today, cosmic rays are an important part of research of solar system and galactic astrophysics, including the ISM 4

History of CR's: 1785-1902 1785 Charles Coulomb Discovered that charged body in the air becomes discharged there are ions in the atmosphere 1902 Rutherford, McLennan, Burton Discovered that penetrating radiation passes through the atmosphere 5

Victor Hess Balloon ride 1912 6

History of Cosmic Rays: Hess 1912 Victor Hess Investigated sources of radiation took balloon up to 5000 meters Found radiation increased after 2500 meters Hess & Kohlhörster (by 1914): balloon flights to 9 km Studies of the variation with height, latitude & longitude confirmed the particle nature of cosmic rays (name by Millikan) originating above the Earth s atmosphere. radiation is coming from space... cosmic radiation Nobel Prize in 1936 Hess after his flight, which he took without breathing apparatus in very cold and thin air! 7

History of Cosmic Rays: 1932-1947 1932 discovery of positron 1933 Arthur Compton Radiation intensity depends on magnetic latitude 1937 Street and Stevenson, Anderson and Neddermeyer Discovery of the muon particle in cosmic rays (207 x heavier than an electron) 1938: extensive air showers (Auger) 1946 Kaons ( V particles ) 1947 pion (Lattes, Occhialini and Powell) 8

Positron Positron (anti-electron) Predicted by Dirac (1928) -- needed for relativistic quantum mechanics existence of antiparticles doubled the number of known particles!!! Positron track going upward through lead o Photographed by Carl Anderson (Aug. 2, 1932) o Particle moving upward, as determined by increase in curvature top half of the it passed o and curving to the left, meaning its charge is plate of the track after through lead plate, positive 9

Anderson and his cloud chamber 10

More particles: Muon 1937: mesotron is observed in cosmic rays (J. Curry Street, Edward C. Stevenson and Carl Anderson, Seth Neddermeyer mesotron -- mass between that of electron and proton New particle first interpreted to be the particle predicted by Yukawa as mediator of strong nuclear interaction However it was shown in 1941 that mesotrons didn t interact strongly with matter. 11

History of Cosmic Rays: 1938 Pierre Auger and Roland Maze - Extensive Air Showers Rays in detectors separated by 20m (later 200m) arrive simultaneously coincidence 12

13

Discovery of pion Lattes, Occhialini and Powell (Bristol, 1947) (+ graduate student Hugh Muirhead): observed decay of a new particle into two particles decay products: muon (discovered 1937), the other is invisible (Pauli's neutrino). muon in turn also decays into electron and neutrino 14

Kaons First observation of Kaons: Experiment by Clifford Butler and George Rochester at Manchester Cloud chamber exposed to cosmic rays Left picture: neutral Kaon decay (1946) Right picture: charged Kaon decay into muon and neutrino Kaons first called V particles Called strange because they behaved differently from others 15

What are cosmic rays? Cosmic rays are high energy particles from outer space. About 1000 cosmic rays per second strike each square meter area of Earth's atmosphere. Most cosmic rays are produced in our Galaxy by supernova explosions and by objects such as neutron stars and black holes. Large fraction of very low energy cosmic rays produced by the Sun, with maxima during violent events called flares and coronal mass ejections (solar storms). About 89 % of Galactic cosmic rays are protons, 9 % are helium nuclei, and the rest are nuclei of heavier atoms. Extragalactic CR: origin unknown, composition unknown, but probably mostly protons 16

CR showers (artist s impression) Flux vs energy <1010 ev: many solar <1015 ev: mostly galactic >1015 ev: extragalactic 17 https://commons.wikimedia.org/wiki/file:cosmic_ray_flux_versus_pa rticle_energy.svg#/media/file:cosmic_ray_flux_versus_particle_ener gy.svg

CRs from Supernovae Cosmic rays produced by supernova explosions neutron stars AGNs ( active galactic nuclei ) ( with black holes) Quasars Gamma ray bursts.? Photo of the remains of Supernova 1987A: taken by Hubble Space Telescope in 1994 (7 years after observation of SN explosion) 18

Solar contribution Beyond 1GeV/nucleon, I(E) decreases rapidly with E (approximate power law, (E/GeV)-2.75 low-energy behavior more complicated, strongly influenced by what happens in the Sun figure shows spectra at three levels of solar activity: Sun changes the CR intensity at low energies 19

CRs from Sun Cosmic rays are also produced by the Sun during violent events called coronal mass ejections. Sequence of SOHO images showing a coronal mass ejection (CME) exploding outward20 from the Sun (http://sohowww.nascom.nasa.gov/home.html) (ESA + NASA)

Solar Wind S.W. = stream of plasma released from the upper atmosphere of the Sun. mostly electrons, protons and alpha particles Mass loss of Sun: 1 Mton/s energies usually between 1.5 and 10 kev. Speeds 400km/s varies in density, temperature, and speed over time and over solar longitude. emitted from the corona (outermost layer of Sun s atmosphere, very hot ( 1.5 106 K)) The Sun's corona, taken by the SOHO satellite with a special camera that blocks out light from the Sun's main disk. Courtesy of SOHO consortium. SOHO is a project of international cooperation between ESA and NASA." 21

Interaction of solar wind with Earth s magnetosphere Interaction of solar wind with Earth s magnetic field modification of E mag field Particles deflected, low energy particles travel around Earth some trapped in Van Allen belt Some channeled to poles (spiral around mag field lines) aurora 22

Interaction of solar wind with Earth s magnetosphere Interaction of solar wind with Earth s magnetic field modification of E mag field Particles deflected, low energy particles travel around Earth some trapped in Van Allen belt Some channeled to poles (spiral around mag field lines) aurora https://en.wikipedia.org/wiki/solar_wind http://solarscience.msfc.nasa.gov/solarwind.shtml http://helios.gsfc.nasa.gov/sw.html 23

Effects of the Earth s Magnetic Field The effects of the Earth s magnetic field have been studied extensively for more than 100 years and are reasonably well understood. Satellite observations of CRs extend beyond this region. 24

Cosmic rays and Earth cosmic ray approaching Earth first encounters Earth's magnetic field. magnetic field repels some particles altogether. Those that get through are deflected by the magnetic field. Computer simulations to determine how the starting direction ("asymptotic direction") is related to the impact point. 25

Cosmic ray showers (cascade) Collision of primary cosmic ray with atom in Earth's atmosphere, produce one or more new energetic particles -- "secondary" cosmic rays secondary particles strike other atmospheric atoms still more secondary cosmic rays atmospheric cascade If energy of primary cosmic ray high enough (>500 MeV) particles produced in cascade can reach Earth's surface 26

Cosmic Ray Showers Space Primary Cosmic Ray (Ion, for example a proton) Earth s atmosphere Atmospheric Nucleus - o e e Creating: Secondary Cosmic Rays... (about 50 produced after first collision) o e Electromagnetic Shower (mainly -rays) - neutrino muon Hadronic Shower Plus some: (mainly muons and neutrinos Neutrons27 Carbon-14 reach earth s surface)

Energy loss in atmosphere Most CRs have E < 1 GeV. particles created in showers interact primarily with atomic electrons, exciting & ionizing atoms For E>10 MeV, range scales with energy as E5/3 range of a 10 MeV proton is only ~ 112cm (1.3 g cm-2) 28

Radiocarbon dating Works up to 50,000 years Calibration and understanding time dependence of cosmic ray flux crucial 29

Primary Cosmic Rays composition: Mostly H ( 89%) and He (9%) nuclei (p, ) heavier elements ( 1%) (Li, Be, B..) Electrons ( 1%) energy spectrum: Peak at 0.3 GeV Very steep fall-off with energy, steepening at knee, resume at ankle Lower-energy CRs are common, high- energy CRs are rare Flux = nb/((unit area) (unit solid angle) (unit time)) 30 Energy achieved by man-made accelerator

Secondary Cosmic Rays Shower particles: Electrons, photons Kaons, pions muons, neutrinos Can travel faster than the speed of light in air (they are still slower than the speed of light in vacuum) 150 muons are striking every square meter of the Earth every second Not all shower particles reach ground some stopped in atmosphere 31

Matter in CR Atoms made of protons, neutrons, electrons Protons, neutrons made of quarks (+ gluons) ud (26ns ) Kaons, pions ud (26ns) (uu dd ) (10 17 s ) o made of quarks + gluons muons, neutrinos Produced when pions decay Muons make up most of secondary CR that reach Earth s surface e e ( 2 s ) Decay into electrons and neutrinos e e ( 2 s ) Muons discovered as penetrating component of CR 32

summary (primary) cosmic rays are nuclei (mostly H, He, but also some heavier) Primary cosmic rays hit the upper atmosphere, releasing showers of secondary cosmic rays Even though many CRs reach the Earth s surface, CRs can be slowed and stopped by matter (Hess found more radiation at higher altitude)! Flux falls steeply with Energy Aurora due to interaction of CR with atmosphere 33

How to detect cosmic rays observatories in space Study the primary original cosmic ray w/o interference from the atmosphere Disadvantage: o expensive detector o too small to catch a lot of them observatories on the ground Good: cheaper, bigger, and detect a lot more! Bad: measure cascades induced by primary it takes some work to figure out what the primary is like. Can either detect the particles, or look for the light as those particles bounce off the air and create fluorescence 34

Passage of particles through atmosphere ionization and excitation of the gas molecules (mostly nitrogen). some of this excitation energy is emitted in the form of visible and UV radiation use mirror arrays to collect light and focus on PMTs 35

CR detectors: bigger is better They catch more cosmic rays overall Detect more of the ones that are rare! Ultra-high-energy cosmic rays (UHECRs) with more than 1018 ev are found only one per square km per century! Big area can detect larger shower from higher-energy CRs The West Desert provides an ideal location for fluorescence observations. An altitude of ~4,500 feet where the nearest population centers are more than 30 miles away Light pollution is mostly blocked by the surrounding mountains. For 347 days per year, the visibility is better than 10 miles. 36

Particle detector arrays Casa Mia, Utah (pictured below) one of the first big CR detectors: 1089 detectors spaced 15 meters 37

Large Observatories STACEE: Albuquerque, New Mexico STACEE uses some of the facility's 212 heliostats to collect Cherenkov light. Cherenkov light is like a sonic boom, but for light. It s produced by electrons in air showers generated by high energy gamma rays. 38

Air scintillation detector 1981 1992: Fly s Eye, Utah 1999 - present: HiRes, then Telescope Array, same site 2 detector systems for stereo view 42 and 22 mirrors a 2m diameter Each mirror reflects light into 256 photomultipliers Sees showers up to 20-30 km high http://www.physics.adelaide.edu.au/astrophysics/hires/example.html 39

Telescope Array 40

Pierre Auger Project Pierre Auger Observatory in Las Pampas around Malargue, Argentina. Auger North was planned for installation in Eastern Colorado (and reached the status of the Highest Priority of the European Space Agency at one point), but later cancelled. PAO comprises 1600 surface detectors covering an area roughly 3000 square kilometers observes 103 showers/day 41

What can we learn from Cosmic Rays? Where they come from How they are produced How they are accelerated What elementsare in the universe 42

Elements in the universe Abundance of elements: Abundance of elements in CR abundance in universe Elements heavier than He more frequent in CR than expected Due to collisions of CR with other atoms somewhere in space These collisions are a major source of lithium, beryllium and boron in the universe ( spallation reactions ) 43

Source of cosmic rays Stars produce lowenergy CRs e.g., Solar wind - protons, and other particles Supernovae produce medium - energy CRs But what makes Ultra High Energy Cosmic Rays (UHECRs), i.e. cosmic rays with E > 1018 ev??? 44

CR from SuperNovae X-ray image by Chandra of Supernova 1006 Blue: XC-rays from high energy particles Red: X-rays from heated gas Shockwave from the supernova hits gas surrounding the explosion, possibly accelerating CRs to 1015 ev. Not enough energy for UHECRs! 45

Sources of HE cosmic rays cosmic rays with E < 1018 ev deflected in the galactic magnetic field sources cannot be determined But UHECRs (with E > 1018 ev) much less deflected (travel straighter) their direction should point towards their origin Galactic magnetic field M83 spiral galaxy 46

UHECRs very rare UHECR: E>1018 ev <1 per km2 per year! UHECR detection: very rare need very large detectors to see them Telescope arrays, large collaborations 47

Energy range of Cosmic Ray Spectrum (108-1021 ev) Power law defined from 1010-1015 ev steepens at the knee and recovers beyond the ankle. The puzzle of ultra highenergy CRs:. energy too high for them to be confined by the Galactic Bfield, can t be produced by SNe, can t come from very large distances because of interaction with CMB photons I p (E) 1.67 10 3 ( E 2.75 2 1 1 ) cm s sr GeV 1 GeV knee GZK ankle limit 48

Ultra High Energy Cosmic Rays: GZK cut-off UHECRs we have detected appear to come from all directions, probably come from far away (only sources nearby are galaxies in few directions) Problem: UHECRs should lose energy when traveling long distances (> 50Mpc) Interaction with CMB GZK cut-off Another problem: have no working model of mechanism of acceleration to such 49

GZK cut-off Interaction between CR and CMB (cosmic background radiation): For proton energy > EGZK = 5 1019 ev, formation of resonance becomes energetically possible p p o or CMB p CMB n energy of primary protons drained off into pion production CR proton of energy > EGZK cannot travel farther than 50Mpc (= 162ly) 50

Sources of UHECRs Colliding galaxies Supermagnetized neutron stars Giant black holes spinning rapidly Sources of gamma ray bursts Supernova or hypernova o Collapse into neutron star or quark star or black hole Merging neutron stars??? Something else we haven t thought about yet? 51

Future of CR research Understand origin of UHECRs Sources and production mechanisms Are there really EECRs (> EGZK )? (AGASA controversy) Space based large detectors to view atmosphere from above A composite image showing cosmic ray distribution in the sky 52