Li + ion conduction mechanism in poly (e-caprolactone)-based polymer electrolyte

Similar documents
AC impedance and dielectric spectroscopic studies of Mg 2+ ion conducting PVA PEG blended polymer electrolytes

ANALYSIS OF DIELECTRIC, MODULUS, ELECTRO CHEMICAL STABILITY OF PVP ABSA POLYMER ELECTROLYTE SYSTEMS

Research & Reviews In. Impedance spectroscopy studies of PVA/PEG based polymer blend electrolytes

Effect of plasticizer on Poly (vinyl alcohol): Poly (vinylidene fluoride) blend polymer electrolyte

Studies on dielectric properties of a conducting polymer nanocomposite system

Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

Development and Characterization of Poly-ε-Caprolactone- Based Polymer Electrolyte for Lithium Rechargeable Battery

Preparation And Studies Of Polyacrylonitrile Polymer Electrolytes

Conductivity and Dielectric Behavior of Polyethylene Oxide-Lithium Perchlorate Solid Polymer Electrolyte Films

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-2, Issue-1, Jan ] ISSN:

Morphological and Electrical Studies Of Plasticized Biopolymer Electrolytes Based On Potato Starch : NH4Cl

EFFECT OF ZnO ON DIELECTRIC PROPERTIES AND ELECTRICAL CONDUCTIVITY OF TERNARY ZINC MAGNESIUM PHOSPHATE GLASSES

Preparation, Characterizations and Conductivity of PEO-PMMA Based Polymer Blend Electrolyte for Lithium Ion Battery

CHAPTER 3. EXPERIMENTAL STUDIES ON PVdF(HFP)-PMMA-NaX [X=I -, SCN - ] POLYMER BLEND ELECTROLYTES

Characterization of PVC/PEMA Based Polymer Blend Electrolytes

Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic. conductivity of a polymer electrolyte composite

Ion Conducting Behaviour of Nano Dispersed Polymer Gel Electrolytes Containing NH 4 PF 6

Effect of the reduction of silver ions to silver nanoparticles on the dielectric properties of chitosan-silver triflate electrolyte

Comparison of filler free and nano composite polymer electrolyte in the discharge characteristics of proton battery

Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte

H NMR Study on PVP-NH 4

Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

Electrical and Optical Properties of PVA/LiI Polymer Electrolyte Films

Na + Ion Conducting Hot-pressed Nano Composite Polymer Electrolytes

Study on Lithium Ion- Conducting Blend Polymer Electrolytes

Ion-Conducting Polymer Electrolyte Based on Poly (Ethylene Glycol) Complexed with Mg(CH 3 COO) 2 - Application as an Electrochemical Cell

Conductivity Enhancement of (Epoxidized Natural Rubber 50)/Poly(Ethyl Methacrylate) Ionic Liquid-Ammonium Triflate

DSC and conductivity studies on PVA based proton conducting gel electrolytes

A Comparative Study on the Role of the Plasticizer on (PEO+KBrO 3 ) Polymer Electrolytes

FTIR, XRD and DC Conductivity Studies of Proton Conducting Gel Polymer Electrolytes based on Polyacrylonitrile (PAN)

Structural, Microstructural and Electrochemical Properties of Dispersed Type Polymer Nanocomposite Films

Study of Transport and Electrical Properties of PEO: PVP: NaClO 2 Based Polymer Electrolyte

Suriani Ibrahim, Siti Mariah Mohd Yasin, Ng Meng Nee, Roslina Ahmad, Mohd Rafie Johan

CHAPTER 5 FTIR STUDIES

Carbon-based nanocomposite EDLC supercapacitors

IONIC CONDUCTANCE OF LITHIUM SALTS IN PMMA GEL ELECTROLYTES

American-Eurasian Journal of Sustainable Agriculture

The Dielectric Properties of (PVA-PEG-PVP-MgO) and (PVA-PEG-PVP-CoO) Biomaterials

ELECTRICAL CONDUCTION BEHAVIOUR OF PVP BASED COMPOSITE POLYMER ELECTROLYTES

AGAROSE BIOPOLYMER ELECTROLYTES: ION CONDUCTION MECHANISM AND DIELECTRIC STUDIES

Supplementary Information Improvement in LiFePO 4 /Li battery Performance via Poly(perfluoroalkylsulfonyl)imide (PFSI) Based Ionene Composite Binder

FTIR, XRD and AC Impedance Studies of the Polymer Electrolyte PEMA KSCN added with SrTiO 3

Preparation and characterization of hot-pressed solid polymer electrolytes:

The Potential of Novel Liquid PMMA Oligomer as Electrolyte in Electrochemical Devices

Chapter 6 ELECTRICAL CONDUCTIVITY ANALYSIS

Supplementary Figure 1 Supplementary Figure 2

The Evaluation of Miscibility of Poly(vinyl Chloride) and Poly(ethylene Oxide) Blends by DSC, Refractive Index and XRD Analyses

Studies on PVA based nanocomposite Proton Exchange Membrane for Direct methanol fuel cell (DMFC) applications

Structural and Ionic Conductivity Studies on Nanochitosan Incorporated Polymer Electrolytes for Rechargeable Magnesium Batteries

Study of Structural and Conduction Behaviour in Ionic Liquid based Polymeric Electrolyte Membrane with Layered Filler

Research Article Electrical and Magnetic Properties of Polymer Electrolyte (PVA:LiOH) Containing In Situ Dispersed Fe 3 O 4 Nanoparticles

PREPARATION, CHARACTERIZATION AND BATTERY APPLICATIONS OF PROTON CONDUCTING POLYMER ELECTROLYTES

Effect of plasticizer and fumed silica on ionic conductivity behaviour of proton conducting polymer electrolytes containing HPF 6

Synthesis of Electrolyte Polymer Based on Natural Polymer Chitosan by Ion Implantation Technique

Structural and Electrical Properties of Plasticized Radiation Induced Chitosan Grafted Poly(methylmethacrylate) Polymer Electrolytes

Electrical Conductivity and Dielectric Behavior of Pure and Fe 3+ doped poly (vinyl chloride) Solid Polymer Electrolyte Films

Polymer Electrolytes Based on Poly(vinylidenefluoride-hexafluoropropylene) and Cyanoresin

Numerical model of planar heterojunction organic solar cells

Conclusion and Future Work

Investigation of on Lithium Ion-Conducting Blend Polymer Electrolytes Based On PVA, PAN and PVdF

Polymer electrolytes from plasticized polymobs and their gel forms

Conductivity and Transport Analysis CHAPTER 6 CONDUCTIVITY AND TRANSPORT ANALYSIS

Preparation and characterization of PVC/PMMA blend polymer electrolytes complexed with LiN(CF 3 SO 2 ) 2

Effects of various LiPF 6 salt concentrations on PEO-based solid polymer electrolytes

Conductivity and Relaxation in Polymer Based Solid Electrolytes. Master s thesis in Applied Physics MANSOUREH SHOJAATALHOSSEINI

CH5715 Energy Conversion and Storage. Electrolytes. For lecture notes: energy-conversion-and-storage/

Supporting information

Conductivity and Electrical Properties of Chitosan - Methylcellulose Blend Biopolymer Electrolyte Incorporated with Lithium Tetrafluoroborate

AC CONDUCTIVITY AND DIELECTRIC PROPERTIES OF PMMA/FULLERENE COMPOSITES

Characterization of Plasticized PEO Based Solid Polymer Electrolyte by XRD and AC Impedance Methods

Impedance Analysis and Low-Frequency Dispersion Behavior of Bi 4 Ti 3 O 12 Glass

Ionic Conductivity and Diffusion Coefficient of Barium Chloride Based Polymer Electrolyte with PSSA/PVA Polymer Complex

Characterization of PEO-X Ionic Conductive Polymer for Anodic

Poly-acrylonitrile-based gel-polymer electrolytes for sodium-ion batteries

FTIR and 1 H NMR Study on PAN-NH 4 SCN Based Fuel cell Applications

Broadband Dielectric Spectroscopy as a Tool for Polymer Analysis

Correlation between ionic conductivity and fluidity of polymer gel electrolytes containing NH 4 CF 3 SO 3

Conductivity studies of lithium zinc silicate glasses with varying lithium contents

Canadian Journal of Physics. Dielectric Properties and Conductivity of PVdF-co- HFP/LiClO 4 Polymer Electrolytes

SOLID BIOPOLYMER ELECTROLYTES BASED ON CARBOXYMETHYL CELLULOSE FOR USE IN COIN CELL PROTON BATTERIES

Priyanka Dhatarwal & R J Sengwa* Received 14 November 2016; revised 8 December 2016; accepted 22 December 2016

Solid State electrochemistry

Ionic Conductivity and Dielectric Studies of Chitin Nanofiber (CNF) Incorporated PMMA Based Polymer Electrolytes

Structure, dynamics and heterogeneity: solid-state NMR of polymers. Jeremy Titman, School of Chemistry, University of Nottingham

htp:/doi.org/ /sljp.v18i0.8047

Temperature dependent dielectric behaviour and structural dynamics of PEO-PMMA blend based plasticized nanocomposite solid polymer electrolyte

Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li-S Cell

Analysis and modelling of dielectric relaxation data using DCALC


Role of polyvinyl alcohol in the conductivity behaviour of polyethylene glycol-based composite gel electrolytes

Keywords: Dielectric properties; gel polymer electrolyte; non-debye type; proton conductivity

journal of August 2006 physics pp

Preface. In these systems Most of these studies have been on hlgh molecular weight [e g,

Chap. 7. Dielectric Materials and Insulation

Supporting Information

SUPPLEMENTARY INFORMATION

CHAPTER II REVIEW OF POLYMER ELECTROLYTES. characterized. PEO, PVC, PAN, PMMA, PVdF, PVA, PVAc and PEMA are some

Electrical conductivity in new imidazolium salts of dicarboxylic acids

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 3, Issue 4, July 2014

Supporting Information

Transcription:

Iran Polym J (2013) 22:877 883 DOI 10.1007/s13726-013-0186-7 ORIGINAL PAPER Li + ion conduction mechanism in poly (e-caprolactone)-based polymer electrolyte Shujahadeen B. Aziz Received: 16 April 2013 / Accepted: 9 September 2013 / Published online: 26 September 2013 Ó The Author(s) 2013. This article is published with open access at Springerlink.com Abstract In this work, solid polymer electrolytes based on poly(e-caprolactone) (PCL) with lithium bis(oxalato)borate as a doping salt were prepared by solution cast technique using DMF as a solvent. The electrical DC conductivity and dielectric constant of the solid polymer electrolyte samples were investigated by electrochemical impedance spectroscopy over a frequency range from 50 Hz to 1 MHz. It was found that the DC conductivity increased with increase in the salt concentration to up to 4 wt% and thereafter decreased. Dielectric constant versus salt concentration was used to interpret the decrease in DC conductivity with increase in salt concentration. The DC conductivity as a function of temperature follows Arrhenius behavior in low temperature region, which reveals that ion conduction occurs through successful hopping. The curvature of DC conductivity at high temperatures indicates the contribution of segmental motion to ion conduction. High values for dielectric constant and dielectric loss were observed at low frequencies. The plateau of dielectric constant and dielectric loss at high frequencies can be observed as a result of rapid oscillation of the AC electric field. The HN dielectric function was utilized to study the dielectric relaxation. The experimental and theoretical data of dielectric constant are very close to each other at low temperatures. At high temperatures, the simulated data are more deviated from the experimental curve of dielectric constant due to the dominance of electrode polarization. The non-unity of relaxation parameters (a and b) reveals S. B. Aziz (&) Department of Physics, Faculty of Science and Science Education, University of Sulaimani, Sulaimani, Kurdistan Regional Government, Iraq e-mail: shujaadeen78@yahoo.com that the relaxation processes in PCL-based solid electrolyte is a non-debye type of relaxation. Keywords Poly(e-caprolactone) LiBOB DC conductivity Dielectric permittivity Introduction The knowledge of polymer electrolytes is a highly specialized interdisciplinary field which encompasses the disciplines of electrochemistry, polymer science, organic chemistry, and inorganic chemistry. This field has attracted the attention of many researchers in both academia and industry, due to its potentially promising applications [1]. Polymer electrolytes which are complexes of solvent-free polar polymers and inorganic metal salts are prepared by dissolving salts in high-molecular-weight polymer hosts. Polymer electrolytes have been studied extensively by researchers because of their potential applications, namely, in high-energy density batteries and fuel cells [2]. The key advantages of solid polymeric electrolytes over liquid electrolytes are good mechanical properties, ease of fabrication to thin films, desirable sizes, and their capability to form proper electrode electrolyte contact [3, 4]. Polymer electrolytes with sufficiently high room temperature conductivity have attained considerable interest in recent years in the area of polymer research due to theoretical concerns as well as practical importance for the development of electrochemical devices [5]. The choice of a polymer host depends mainly on the presence of polar groups with large sufficient electron donor power to form coordination with cations and a low hindrance to bond rotation [6]. Some polymers are successfully used as a host material to prepare polymer electrolytes for specific applications; among these

878 Iran Polym J (2013) 22:877 883 polymers are poly(methyl methacrylate), poly(ethylene oxide), and poly(vinyldine fluoride) [7]. Poly(e-caprolactone) (PCL) is a promising synthetic biodegradable polymer because of its marked degradation in aqueous medium and in contact with microorganisms [8]. Biodegradable polymers have attracted much attention in biomedical application [9]. Previous studies [2] have shown that PCL can be used as a polymer matrix for the preparation of polymer electrolytes due to the existence of carbonyl functional groups in its backbone structure. Thus, the ability of PCL as a host polymer is due to the presence of carbonyl groups in its structure that can dissolve inorganic salt as a result of electrostatic interaction. Fonseca et al. [8], for the first time, prepared the PCL:LiClO 4 -based polymer electrolyte for rechargeable batteries. Due to its low cost, low toxicity, stability, and ease of preparation, lithium bis(oxalato)borate (LiBOB) is currently being evaluated as a suitable salt for use in lithium ion battery technology [10]. Also compared with other Li salts, LiBOB salt has low lattice energy making it more suitable to participate in the formation of polymer electrolytes [10, 11]. Ionic transport in polymer electrolyte is, however, not completely understood and remains an obstacle to achieving the required ambient conductivity [12]. Electrochemical impedance spectroscopy (EIS) has been used as a powerful technique to study the electrical properties of materials such as double-layer capacitance, diffusion layer, and charge transfer resistance [13]. Dielectric relaxation and ion conduction mechanism in solids are the most intensively researched topics in condensed matter physics [14]. Particularly, the study of dielectric relaxation in solid polymer electrolytes is a powerful approach for obtaining information about the characteristics of cation polymer interactions, and the dielectric constant plays a fundamental role which shows the ability of the polymer material to dissolve salts [15]. Electrical impedance studies of polymers reveal some structural details and add valuable complementary information to the electrical application of polymer materials [16]. Thus, the study of DC conductivity and dielectric permittivity (e) is important to understand the ion conduction mechanism in polymer electrolytes. In view of the above statements, the main objective of the present work is to investigate the ion conduction mechanism in PCL as a polymer host and LiBOB as a doping salt by EIS. Experimental Materials and methods Poly(e-caprolactone) with M n = 80 kda from Sigma- Aldrich (USA) and LiBOB with M w = 193.79 g/mol from Sigma-Aldrich (USA) were used as raw materials in this Table 1 Composition of PCL:LiBOB polymer electrolytes Designation Poly(e-caprolactone) (g) LiBOB (wt%) LiBOB (g) PE1 1.0 1.0 0.0101 PE2 1.0 2.0 0.0204 PE3 1.0 3.0 0.0309 PE4 1.0 4.0 0.0416 PE5 1.0 5.0 0.0526 work. The solid polymer electrolyte (SPE) films were prepared by the solution cast technique with N, N- dimethylformamide (DMF) as a solvent. To prepare the samples, 1 g of PCL was fixed and dissolved in DMF solvent. To this system, LiBOB salt was added and varied from 1 to 5 wt% in steps of 1 wt% to prepare various compositions of PCL:LiBOB polymer electrolytes. The mixtures were stirred continuously until homogeneous solutions were obtained. After casting in different Petri dishes, the solutions were left to dry at 50 C. The films were transferred into a desiccator for continuous drying. This procedure produces a solvent-free film. Table 1 shows the concentration of the prepared samples. Complex impedance spectroscopy The complex impedance spectroscopy is widely used to characterize the electrical properties of the materials. The impedance of the films was measured using the HIOKI 3522-01 LCR Hi-tester (Japan) that was interfaced to a computer in the frequency range from 50 Hz to 1,000 khz. The software controls the measurements and calculates the real and imaginary parts of the impedance. The SPE films were cut into small discs of 2 cm diameter and sandwiched between two stainless steel electrodes under spring pressure. The complex impedance parameters (i.e., real (Z 0 ) and imaginary (Z 00 ) components of impedance) were used to calculate the DC conductivity (r dc ), dielectric constant (e 0 ), and dielectric loss (e 00 ) using the following relations, r dc ¼ 1 d ð1þ R b A e 0 Z 00 ¼ xcðz 02 þ Z 002 ð2þ Þ e 00 Z 0 ¼ xcðz 02 þ Z 002 ð3þ Þ where d is the thickness and A is the area of the film. C is vacuum capacitance of the cell and is equal to e o A/d, where e o is the permittivity of the free space and x = 2pf, in which f is the frequency.

Iran Polym J (2013) 22:877 883 879 Results and discussion Composition dependence of r dc and e 0 Figure 1 shows the conductivity of PCL films with various LiBOB salt contents at room temperature. It can be seen that the DC ionic conductivity of the PCL-based electrolyte increased with increasing LiBOB concentration up to 4 wt%. It was observed that conductivity values increased by more than five orders of magnitude from 1.79 9 10-11 Scm -1 for pure PCL film to 6.50 9 10-6 Scm -1 for PCL film containing 4 wt% of LiBOB salt. The reported conductivity by Ohki et al. [17] for pure PCL is very close (similar order) to that obtained in our study. The maximum DC conductivity reported by Fonseca et al. [8] was 1.2 9 10-6 Scm -1 for PCL complexed with 10 wt% LiClO 4 at room temperature, which is comparable to that obtained in this work (for PCL film with 4 wt% LiBOB). The increase in conductivity is attributed to the increase in the number density of mobile ions provided by the salt. According to Liang et al. [18], the salt can be completely dissociated at low concentration, and thus the number of mobile ions which participate in DC conductivity increases with increase in salt concentration. Similar behavior of DC conductivity with salt concentration was reported by Fonseca et al. [19] for PCL:LiTf polymer electrolyte. The decrease in DC conductivity at 5 wt% can be ascribed to ion association. Ion conduction in polymer electrolytes is quite difficult to understand. The dissolved ions can associate into ion pairs, triplets, and larger aggregates. The formation of neutral ion pairs can weaken the electrical conductivity. Thus, it is important to detect and study such entities. The ion pairs have a permanent dipole moment, which is stronger than that of the other types. Because the host polymer has a comparably low dielectric constant, the ion pairs can be detectable in dielectric measurement [20]. Hence, the study of dielectric constant can be used to investigate and interpret the conductivity behavior of polymer electrolytes. From the above discussion, it is understood that the dielectric study can be used to detect the conductivity behavior of polymer electrolytes. The physics behind the relationship between DC conductivity and dielectric constant can be explained as follows. The general expression for conductivity is: r ¼ X nql ð4þ where n is the charge carrier density, q is 1.6 9 10-19 C, and l is the mobility of the ions. Thus, the rapid increase in DC conductivity for the salt concentration from 1 to 4 wt% can be explained by an increase in either ionic mobility or concentration of charge carriers, but the latter is preferred because more salt is added. Fig. 1 DC ionic conductivity of PCL films at various concentrations of LiBOB salt Fig. 2 Composition dependence of dielectric constant (at 1 khz) for PCL films as a function of LiBOB concentration (wt%) at room temperature It is important to notice that the carrier density is directly related to the dissociation energy U and dielectric constant e 0, which can be understood through this relation (n = n o exp(-u/e 0 KT)). The increase in the value of dielectric constant with salt concentration indicates that there is an increase in charge carrier concentration and hence an increase in DC conductivity [21]. Figure 2 shows the variation of dielectric constant versus salt concentration. It is obvious that this dielectric constant variation against salt concentration follows the same trend as observed for DC conductivity correlation with salt concentration (Fig. 1). Thus, the room temperature study of DC conductivity and dielectric constant as a function of salt concentration indicated the powerful ability of dielectric spectroscopy to study the conductivity behavior of solid polymer electrolytes. Temperature dependence of r dc and e* Figure 3 shows the variation of DC conductivity as a function of reciprocal temperature for PCL LiBOB

880 Iran Polym J (2013) 22:877 883 Fig. 3 Temperature dependence of ionic conductivity of PCL:LiBOB films for (a) 1,(b) 2,(c) 3,(d) 4 and (e) 5 wt% of LiBOB salt polymer electrolytes. It can be seen that the DC conductivity increased with increasing temperature. The overall conductivity versus 1,000/T can be separated into two regions for all solid electrolyte samples (Fig. 3). The first region (region I) follows the Arrhenius behavior from 303 to 323 K and the second region (region II) follows the VTF behavior from 323 to 353 K, with a rapid increase in conductivity. A slow rate of increasing DC conductivity in region I may be due to the hopping of mobile ions thermally, while the fast rate of rise in DC conductivity in region II can be linked to the phase transition of the electrolyte system from semi-crystalline to amorphous [22]. The appearance of curvature in DC conductivity at 323 K reveals the decrease in melting temperature (T m = 329 K) of PCL [8] as a result of complexation between the PCL and LiBOB salt. It was reported that high ionic conductivity can be observed above the melting temperature (T m ), as obvious in Fig. 3, in which the amorphous concentration was higher than the crystalline region. Above T m, the connected network of amorphous regions can provide fast ion conducting pathways leading to the enhancement in ion mobility and consequently yield a high ionic conductivity [23]. The temperature-dependant curvature (region II) reveals that the PCL LiBOB electrolytes obey the Vogel Tamman Fulcher (VTF) behavior, i.e., region II can be interpreted in terms of the VTF model. The VTF model suggests that ion conduction follows free volume model and is dependent on segmental motions of the polymer. As temperature increased, the amorphous phase expanded due to the phase transition of the electrolyte system and produced free volume around polymer chains. Thus, ion solvated molecules or polymer segments can move into the free volume. The resulting conductivity is represented by the overall mobility of ion and polymer, which is determined by the free volume around the polymer chain. The larger the free volume, the greater is the ability of the chain to rotate; hence, ions can transport more rapidly [24]. Fig. 4 Frequency dependence of dielectric constant at different temperatures for PCL:LiBOB electrolyte (4 wt% LiBOB) Fig. 5 Frequency dependence of dielectric loss at different temperatures for PCL:LiBOB electrolyte (4 wt% LiBOB) Figures 4 and 5 show the frequency dependence of dielectric constant and dielectric loss at different temperatures for the highest conducting PCL:LiBOB sample (4 wt%). From these figures, it is seen that both dielectric constant and dielectric loss decrease with increasing frequency, but increase with increasing temperature. At all temperatures, high values of e 0 and e 00 were observed at low frequencies, but at higher temperatures and frequencies became relatively constant. The higher values of e 0 and e 00 can be ascribed to the accumulation of charged species at the electrode/electrolyte interface [25]. The variation of dielectric constant versus temperature is different for non-polar and polar polymers. For non-polar polymers, dielectric constant is generally independent of temperature. But in the case of polar polymers, the dielectric constant increases with the increase of temperature. This behavior can be ascribed to the fact that the orientation of dipoles was facilitated with the rise in temperature and thus permittivity increased [26]. At high

Iran Polym J (2013) 22:877 883 881 frequencies, there was no excess ion diffusion in the direction of the field due to the fast periodic reversal of the electric field. Thus, polarization due to charge accumulation decreased and led to the decrease in the values of e 0 and e 00, which were almost constant as depicted in Figs. 4 and 5 [27]. The higher value of dielectric loss (*10 5 ) at lower frequencies was due to the free charge motion (DC conductivity) within the material. These values do not correspond to the bulk property of the material, but only due to the free charge buildup at the electrode electrolyte interface. At low frequencies, there was enough time for the charges to build up at the interface before the electric field was reversed and contributed to a large apparent value of e 00. With increasing frequency, there was no time for the buildup of charges at the interface, but only for the buildup of charges at the boundaries of conducting species in the material and at the ends of conducting paths. This phenomenon led to the so-called conductivity relaxation [28]. The dielectric relaxation study in polymer electrolytes is a powerful approach for understanding the ionic transport properties and relaxation behavior of these materials [29]. The dielectric loss spectra can be further studied by applying the well-known Havriliak Negami (HN) function [30] as follows, e De ¼ ½1 þðixsþ b Š a ð5þ where De is the dielectric relaxation strength, s is the relaxation time, x is the angular frequency, i is the imaginary unit, and a and b are fractional parameters. Both a and b are between 0 and 1. The experimental values of dielectric loss (e 00 ) at 303, 308, and 313 K were simulated by the HN equation as shown in Fig. 6. It can be seen that the experimental and simulated data are well fitted at high frequencies. However, at low frequencies the simulated data deviated from the experimental data. The values of a and b are listed in Table 2 for PCL:LiBOB (4 wt% of LiBOB). The a and b exponents are usually referred to as measures of symmetry and asymmetry of relaxation [31]. The deviation of a and b values (Table 2) from unity reveal the non-debye relaxation in the PCL:LiBOB system [32]. Understanding the relationship between a and b parameters is important. The a and b exponents are dependent on temperature (Table 2) and other physical parameters of the system under study. However, there is no complete Fig. 6 Experimental and simulated data of dielectric loss (e 00 ) for PCL:LiBOB samples (4 wt% LiBOB) at a 303 K, b 308 K and c 313 K

882 Iran Polym J (2013) 22:877 883 Table 2 Values a and b at different temperatures for PCL:LiBOB (4 wt% of LiBOB) Temperature (K) a b 303 0.1 0.2 308 0.4 0.6 313 0.5 0.7 understanding of these dependencies for the time being [31]. It can be noticed that with increasing temperature the simulated data deviate more from the experimental data. This can be ascribed to the increase of charge carrier motion and DC conductivity contribution. Similar behavior was reported by other researchers for polymer blending based on PVA:chitosan [32]. Conclusion The electrical properties of PCL:LiBOB solid polymer electrolytes have been characterized by EIS. The behavior of DC conductivity and dielectric constant with LiBOB salt concentration revealed that DC conductivity was strongly dependent on the dielectric constant. Extra research is required to show the validity of the relationship between DC conductivity and dielectric constant. The Arrhenius behavior of DC conductivity at the low temperature region is due to ion hopping. The VTF manner of DC conductivity at high temperatures revealed the chain mobility contribution to the conductivity. A high value for the dielectric constant and dielectric loss at low frequencies can be ascribed to electrode polarization (electrical double-layer capacitance). The plateau of dielectric constant and dielectric loss at high frequencies can be observed as a result of rapid oscillation of the AC electric field and thus the Li? ions could not follow them due to ion mass inertia. The non-unity of a and b exponents reveals that the dielectric relaxation in PCL-based solid electrolyte is a non-debye relaxation process due to the distribution of relaxation times. Acknowledgments The author gratefully acknowledges the Ministry of Higher Education and Scientific Research, Kurdistan Regional Government, Iraq, and University of Sulaimani for financial support. Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. References 1. Wang YP, Gao XH, Li HK, Li HJ, Liu HG, Guo HX (2009) Effect of active filler addition on the ionic conductivity of PVDF PEG polymer electrolyte. J Macromol Sci A 46:461 467 2. Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC (2004) Investigating the effect of miscibility on the ionic conductivity of LiClO 4 /PEO/PCL ternary blends. Macromolecules 37:8424 8430 3. Oh JS, Ko JM, Kim DW (2004) Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries. Electrochim Acta 50:903 906 4. Bhargav PB, Sarada BA, Sharma AK, Rao VVRN (2009) Electrical conduction and dielectric relaxation phenomena of PVA based polymer electrolyte films. J Macromol Sci A 47:131 137 5. Anantha PS, Hariharan K (2005) Physical and ionic transport studies on poly(ethylene oxide) NaNO 3 polymer electrolyte system. Solid State Ionics 176:155 162 6. Rao CVS, Ravi M, Raja V, Bhargav PB, Sharma AK, Rao VVRN (2012) Preparation and characterization of PVP-based polymer electrolytes for solid-state battery applications. Iran Polym J 21:531 536 7. Xiao W, Li X, Wang Z, Guo H, Li Y, Yang B (2012) Performance of PVDF HFP-based gel polymer electrolytes with different pore forming agents. Iran Polym J 21:755 761 8. Fonseca CP, Rosa DS, Gaboardi F, Neves S (2006) Development of a biodegradable polymer electrolyte for rechargeable batteries. J Power Sources 155:381 384 9. Zhou J, Wang X, Hua K, Duan C, Zhang W, Ji J, Yang X (2013) Enhanced mechanical properties and degradability of poly(butylene succinate) and poly(lactic acid) blends. Iran Polym J 22:267 275 10. Holomb R, Xu W, Markusson H, Johansson P, Jacobsson P (2006) Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents. J Phys Chem A 110:11467 11472 11. Aravindan V, Vickraman P (2007) A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for lithium-ion batteries. Ionics 13:277 280 12. Natesan B, Karan NK, Katiyar RS (2006) Ion relaxation dynamics and nearly constant loss behavior in polymer electrolyte. Phys Rev E 74:042801/1 042801/4 13. Ates M, Karazehir T, Arican F, Eren N (2013) Electrolyte type and concentration effects on poly(3-(2- aminoethyl thiophene) electro-coated on glassy carbon electrode via impedimetric study. Iran Polym J 22:199 208 14. Yuan F, Peng Z, Liu JM (2005) Dielectric behaviors of relaxor ferroelectric Pb(Mg 1/2 Nb 1/2 )O 3 35 % PbTiO 3 :temperature and frequency dependences. Mater Sci Eng B 117:265 270 15. Singh KP, Gupta PN (1998) Study of dielectric relaxation in polymer electrolytes. Eur Polym J 34:1023 1029 16. Bassiouni ME, Al-Shamy F, Madi NK, Kassem ME (2003) Temperature and electric field effects on the dielectric dispersion of modified polyvinyl chloride. Mater Lett 57:1595 1603 17. Ohki Y, Hirai N (2007) Electrical conduction and breakdown properties of several biodegradable polymers. IEEE T Dielect El In 14:1559 1566 18. Liang YH, Wang CC, Chen CY (2008) Synthesis and characterization of a new network polymer electrolyte containing polyether in the main chains and side chains. Eur Polym J 44:2376 2384 19. Fonseca CP, Cavalcante F Jr, Amaral FA, Souza CAZ, Neves S (2007) Thermal and conduction properties of a PCL-biodegradable gel polymer electrolyte with LiClO4, LiF3CSO3, and LiBF4 salts. Int J Electrochem Sci 2:52 63 20. Eliasson H, Albinsson I, Mellander BE (2000) Conductivity and dielectric properties of AgCF 3 SO 3 -PPG. Mater Res Bull 35: 1053 1065 21. Ramya CS, Selvasekarapandian S, Hirankumar G, Savitha T, Angelo PC (2008) Investigation on dielectric relaxations of PVP NH4SCN polymer electrolyte. J Non-Cryst Solids 354: 1494 1502

Iran Polym J (2013) 22:877 883 883 22. Prajapati GK, Gupta PN (2011) Comparative study of the electrical and dielectric properties of PVA PEG Al 2 O 3 MI (M = Na, K, Ag) complex polymer electrolytes. Phys B 406:3108 3113 23. Patel M, Chandrappa KG, Bhattacharyya AJ (2010) Increasing ionic conductivity of polymer sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ionics 181:844 848 24. Ramesh S, Ng KY (2009) Characterization of polymer electrolytes based on high molecular weight PVC and Li 2 SO 4. Curr Appl Phys 9:329 332 25. Osman Z, Ibrahim ZA, Arof AK (2001) Conductivity enhancement due to ion dissociation in plasticized chitosan based polymer electrolytes. Carbohyd Polym 44:167 173 26. Bhargav PB, Mohan VM, Sharma AK, Rao VVRN (2009) Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr Appl Phys 9:165 171 27. Reddy CVS, Han X, Zhu QY, Mai LQ, Chen W (2006) Dielectric spectroscopy studies on (PVP? PVA) polyblend film. Microelectron Eng 83:281 285 28. Nithya H, Selvasekarapandian S, Kumar DA, Sakunthala A, Hema M, Christopherselvin P, Kawamura J, Baskaran R, Sanjeeviraja C (2011) Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO). Mater Chem Phys 126:404 408 29. Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO) LiClO 4 composite electrolytes. Curr Appl Phys 12:539 543 30. Becker O, Simon GP, Rieckmann T, Forsythe J, Rosu R, Völker S, O Shea M (2001) Dielectric relaxation spectroscopy of reactively blended amorphous poly(ethylene terephthalate) poly(ethylene naphthalate) films. Polymer 42:1921 1929 31. Feldman Y, Puzenko A, Ryabov Y (2002) Non-Debye dielectric relaxation in complex materials. Chem Phys 284:139 168 32. Ryabov Y, Feldman Y (2002) Novel approach to the analysis of the non-debye dielectric spectrum broadening. Phys A 314: 370 378