Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Similar documents
Statistical Properties of the OLS Coefficient Estimators. 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information

Predictors Using Partially Conditional 2 Stage Response Error Ed Stanek

Additional File 1 - Detailed explanation of the expression level CPD

Predicting Random Effects from a Finite Population of Unequal Size Clusters based on Two Stage Sampling

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Predicting Random Effects from a Finite Population of Unequal Size Clusters based. on Two-Stage Sampling. Edward J. Stanek III

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Confidence intervals for the difference and the ratio of Lognormal means with bounded parameters

Discussion of Extensions of the Gauss-Markov Theorem to the Case of Stochastic Regression Coefficients Ed Stanek

Chapter 2 - The Simple Linear Regression Model S =0. e i is a random error. S β2 β. This is a minimization problem. Solution is a calculus exercise.

e i is a random error

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

Improvements on Waring s Problem

Estimation: Part 2. Chapter GREG estimation

Root Locus Techniques

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

The multivariate Gaussian probability density function for random vector X (X 1,,X ) T. diagonal term of, denoted

AP Statistics Ch 3 Examining Relationships

Harmonic oscillator approximation

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

Improvements on Waring s Problem

Estimating Realized Random Effects in Mixed Models

Scattering of two identical particles in the center-of. of-mass frame. (b)

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

On Outlier Robust Small Area Mean Estimate Based on Prediction of Empirical Distribution Function

Chapter 11: Simple Linear Regression and Correlation

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Simple Linear Regression Analysis

Economics 130. Lecture 4 Simple Linear Regression Continued

Maximum Likelihood Estimation of Binary Dependent Variables Models: Probit and Logit. 1. General Formulation of Binary Dependent Variables Models

Lecture outline. Optimal Experimental Design: Where to find basic information. Theory of D-optimal design

2.3 Least-Square regressions

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Introduction to Analysis of Variance (ANOVA) Part 1

Start Point and Trajectory Analysis for the Minimal Time System Design Algorithm

The Ordinary Least Squares (OLS) Estimator

Reduced slides. Introduction to Analysis of Variance (ANOVA) Part 1. Single factor

Bias-correction under a semi-parametric model for small area estimation

Adaptive Centering with Random Effects in Studies of Time-Varying Treatments. by Stephen W. Raudenbush University of Chicago.

Properties of Umass Boston

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Variable Structure Control ~ Basics

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

JAB Chain. Long-tail claims development. ASTIN - September 2005 B.Verdier A. Klinger

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

Small signal analysis

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

Lecture 9: Linear regression: centering, hypothesis testing, multiple covariates, and confounding

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

Lecture 6: Introduction to Linear Regression

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Properties of Least Squares

Generalized Linear Methods

Statistics Chapter 4

Marginal Effects in Probit Models: Interpretation and Testing. 1. Interpreting Probit Coefficients

j=0 s t t+1 + q t are vectors of length equal to the number of assets (c t+1 ) q t +1 + d i t+1 (1) (c t+1 ) R t+1 1= E t β u0 (c t+1 ) R u 0 (c t )

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

Regression Analysis. Regression Analysis

A New Inverse Reliability Analysis Method Using MPP-Based Dimension Reduction Method (DRM)

Solution Methods for Time-indexed MIP Models for Chemical Production Scheduling

Two Approaches to Proving. Goldbach s Conjecture

17 - LINEAR REGRESSION II

Introduction. Modeling Data. Approach. Quality of Fit. Likelihood. Probabilistic Approach

4.3 Poisson Regression

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

Econ107 Applied Econometrics Topic 9: Heteroskedasticity (Studenmund, Chapter 10)

Two-factor model. Statistical Models. Least Squares estimation in LM two-factor model. Rats

Comparison of Regression Lines

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 3. Two-Variable Regression Model: The Problem of Estimation

T E C O L O T E R E S E A R C H, I N C.

Numerical Algorithms for Visual Computing 2008/09 Example Solutions for Assignment 4. Problem 1 (Shift invariance of the Laplace operator)

Pythagorean triples. Leen Noordzij.

Scattering cross section (scattering width)

Interval Estimation in the Classical Normal Linear Regression Model. 1. Introduction

Chapter 4: Regression With One Regressor

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Chapter 14 Simple Linear Regression Page 1. Introduction to regression analysis 14-2

Optimal inference of sameness Supporting information

Learning Objectives for Chapter 11

10.34 Fall 2015 Metropolis Monte Carlo Algorithm

Basically, if you have a dummy dependent variable you will be estimating a probability.

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

Chapter 7 Generalized and Weighted Least Squares Estimation. In this method, the deviation between the observed and expected values of

Systems of Equations (SUR, GMM, and 3SLS)

Lecture 4 Hypothesis Testing

Estimation of a proportion under a certain two-stage sampling design

NUMERICAL DIFFERENTIATION

Variance Estimation for Measures of Income Inequality and Polarization ± The Estimating Equations Approach

since [1-( 0+ 1x1i+ 2x2 i)] [ 0+ 1x1i+ assumed to be a reasonable approximation

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

Numerical Heat and Mass Transfer

Chapter 5 Multilevel Models

β0 + β1xi and want to estimate the unknown

Physics 120. Exam #1. April 15, 2011

Transcription:

Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed Random Effect. Fnte Populaton Mxed Model 4. Reult on Fnte Populaton Predctor of Realzed Subject True Value 5. llutraton and Dlemma 6. Godambe Lnear Etmator 7. Extence of BLUE for pecal parameter pace 8. Example of SRS w/o Rep. When n, 9. Obervaton/Drecton for the Future 9/5/8. Example: Doe-repone Model Threhold v ormetc Model eat data- 89 chemcal, yeat tran, 5 doe x replcaton- Focu on doe below BMD Repone (% control 8 6 4 ormetc Doe-Repone 5 5 Doe Threhold Doe-Repone 9/5/8 4 Repone (% control 8 6 4 5 5 Doe What orme? Goal: Evaluate orme for each Chemcal ormetc Doe-Repone ormetc Regon Repone (% control 8 6 4 5 5 Doe Repone (above % 8 6 4 4 5 6 7 8 Doe The Problem: Data generaton: a) of chemcal b) For elected chemcal, ample doe c) Meaure repone (n replcate) orme Average Repone (over % Control) n ormetc Regon chemcal J doe ( μ ) B E jk jk k replcaton Fxed Random Aume Repone Error heterogeneou (Bologc Aumpton) ow hould we evaluate orme?

Bet Lnear Unbaed Predctor from Mxed Model μ B Latent Repone of th Selected Chemcal Predctor ( μ ) P ˆ ˆ μ k ˆ or Shrnkage Contant k e / m Per cent of SC 9 8 7 6 5 4 ( μ ) Pˆ ˆ μ k ˆ k e / m - - 4 5 6 7 8 9 95%Pr ed ct on nt er val 9/5/8 7 hme7p4. a 9/ / 7 by EJS 9/5/8 8 Per cent of SC Whch predctor hould be ued? 9 8 7 6 f mxed model developed drectly ung amplng from a fnte populaton: Ue Average of Repone Error Varance- Even f RE heterogenou 5 4 f mxed model developed from a heterogenou varance uperpopulaton model: Ue Chemcal Specfc Repone Error Var. - 7-6 - 5-4 - - - 4 5 6 7 8 9 95%Pr ed ct on nt er val 9/5/8 hme7p4. a 9/ / 7 by EJS 9 Bac Reearch Queton Can Fnte Populaton Mxed Model be developed that ncorporate Realzed Random Effect (chemcal) Specfc nformaton n the Predctor? nvolve dentfablty of chemcal n model (abent n mxed model) Very cloely connected to predctng realzed random effect n mxed model. Relate to fnte populaton amplng model where label are dentfable. Fnte Populaton Mxed Model Populaton, ubject, true repone Subject Label:,..., True Repone: Populaton Parameter Mean: μ μ Subject Devaton: β μ μ Varance: μ μ μ on Stochatc Model: μ μ β

Data for Subject : Repone Error Model: (, k ) μ β E k k Repone Error k,..., r E E R ( k) ( E ) var R k Samplng Select n of ubject wthout Replacement Aume all ample are equally lkely. # of Set : # of Mean:! n ( n)! n!! n! Sequence: ote dfference wth: k n " ample" n k n 9/5/8 9/5/8 4 a part of a Sequence (part of a Permutaton) Populaton Repreent Poton n a Permutaton:,...,! Aume all Permutaton Equally Lkely: P ( Permutaton " p" ) Defne: poton,..., n n k n Mean: 9/5/8 5 Julo Ed Wenjun 9/5/8 6 Poton n Permutaton Poton n Permutaton 9/5/8 7 9/5/8 8

Poton n Permutaton Poton n Permutaton 9/5/8 9 9/5/8 Poton n Permutaton 9/5/8 Remander Remander 9/5/8 Poton n Permutaton Populaton ze () mot lkely > We only ee n ubject n the ample For example: Suppoe n, and 7 We may ee 9/5/8 5 4 9/5/8 4 Poton n Permutaton Remander 4 4

Poton n Permutaton 4 7 9/5/8 5 Remander Mean: T Tradtonal Samplng Approach (ung a ample et) " ample" y n " ample" orvtz-thompon Etmator: y π 9/5/8 6 Mng Data y y y y y π π π π Tradtonal Model Approach Wth Repone Error: Mean: (ung a ample equence) μ β E k k n k n,..., n poton equence: k U k 9/5/8 7 k U k Poton n Permutaton k k 9/5/8 8 Poton n Sequence k U U U k U U U Remander k k k U U U k 9/5/8 9 Bac Random Varable U U U U U U U U U k k k k k k k k k 9/5/8 Remander ( ) k k k Populaton k k k Degn Baed Model Baed 5

Repone Error Model Smple Repone Error Model k β Wk μ β W k k k β W k Fxed Random Fnte Populaton Mxed Model k B W k U UW k μ B W k k B W k 9/5/8 Fxed Random (ung a ample equence) Mxed Model k B W k U k μ B W k k B W k k U k Xα ZB W 9/5/8 B U β Properte of Bac Random Varable () U k U k U k U k U k U k U k U k U k Sum ( k k k) Expected Value Sum k k k y y y Average Expected Value μ μ μ Average 9/5/8 μ Sum Random Varable (n) U U U U U U k k k k k k n n n U U U k k k k k Expected n n n Value y y y k T " ample" π 9/5/8 4 Sum Expected Value μ μ Predcton of Mean n a Smple Cae: o Repone Error (, n) B U μ B B Remander ote: μ ( ) n Crtera: Lnear Functon of ample Unbaed Smallet Mean Squared Error ( n ) 9/5/8 5 Predcton of Mean o Repone Error (, n) μ Β Target P L μ n n y Data Realzed y y Bet Lnear Unbaed ˆ n P y n Predctor: n 9/5/8 n 6 6

Target Data Predcton of a Subject Mean n Poton wth o Rep. Error (, n) Bet Lnear Unbaed Predctor: P L μ Β μ Β Realzed y y y 9/5/8 7 Predcton of a Subject Mean n Poton wth Repone Error k k Target P L μ Β L L Realzed Bet Lnear ˆ Pˆ k P y f n ( y ) f n Unbaed Predctor: f > n k 9/5/8 8 f > n e μ Β W y y w UW Xμ ZB W Data Predcton of Realzed Random Effect Other Example SRS Subject Pˆ k( y ) Rep. Error SRS Poton P ˆ k Rep. Error ( y ) Cluter Samplng: Balanced Cluter Samplng: Un-Balanced k k e e n n P ˆ k k e Smlar form, more complcated 9/5/8 9 Per cent of SC 9 8 7 6 5 4 - - 4 5 6 7 8 9 95%Pr ed ct on nt er val hme7p4. a 9/ / 7 by EJS 9/5/8 4 Per cent of SC Delmma 9 8 7 6 5 4 Pooled Subject Repone Error Varance hould be ued for K (Ung theoretcal Reult) Emprcal example llutrate maller MSE reult wth K dependng on realzed Subject -- but no theory! - 7-6 - 5-4 - - - 4 5 6 7 8 9 95%Pr ed ct on nt er val 9/5/8 hme7p4. a 9/ / 7 by EJS 4 Can fnte populaton model nclude nformaton on realzed ubject? 9/5/8 4 7

Godambe Lnear Etmator of a Total: et: h,..., ndcator RV for ample et h : Etmate for ample et h : Godambe Lnear Etmator : h n e β y h hj hj j e h h h E T y Clam Etmator general, wth pecal cae correpondng to degn baed etmator and model baed etmator. Coeffcent n the etmator depend on the ample and the ubject (label) t uffcent to ue ample et of ubject. The equence doe not contrbute addtonal nformaton. There no unque bet lnear unbaed etmator of the populaton total. (on-extance reult) 9/5/8 4 9/5/8 44 Current Reearch dea Godambe etmator (f baed on equence) nclude poton and label. We are tudyng the etmator n a mple cae (SRS wth or wthout replacement, n, ). ntal Obervaton Godambe etmator doe not make ene f y Godambe etmator doe not make ene f y y n ettng where all y and are dtnct, the model over-parameterzed. Removng the overpararmeterzaton, a unque oluton ext wth zero MSE. 9/5/8 45 Example: SRS wthout Replacement: n, otaton otaton (et) h,..., {, } uh uh uh uh uh uh u h β β β h h h e h yu hβh β hj β vec β β β ( ) S h h uhj h {, } h {, } u u u j,..., n h {,} poton n et E S yu h β h y ( S ) u β h 9/5/8 h 46 Example: SRS w/o Rep- Contrant: n, Etmator E y ( S ) u hβ T y h Snce Ep( h) p E S p Unbaed Contrant: E E T y puβ [ ] p p Addtonal Contrant: p u β p β 9/5/8 47 u u u... u Example: SRS w/o Rep.- Etmatng Equaton: n, Contrant Summary: Varance pl β u L ( ) E E T p T p( ) β uh( yy ) u hβ h h φ pβ uh( yy ) u hβ T λ pl β h h Etmatng Equaton: n ˆ uh yy u h L h h β ˆ p L λ 9/5/8 48 8

Example: SRS w/o Rep.- General Soluton: n, Ung QR Decompoton of L We olve the etmatng equaton: where XX L S L S T ( ) Q Q XXQ Q R L Q ˆ n XX L β ˆ L λ p SQR -Q QXXQ QXXQR ˆ β S 9/5/8 49 Example: SRS w/o Rep.- Specfc Soluton: n, y y Ung QR Decompoton of L y y ˆ β () y y ˆ β y y Q L R 4 y y ˆ β () y y ˆ β ˆ β y y ˆ β y y 9/5/8 5 Obervaton: The oluton unque, but the coeffcent depend on all populaton value. Emprcal oluton (formed by replacng unknown value by an etmate equal to the ample mean) wll reult n an etmator equal to the ample mean. Dfferent oluton wll reult when the populaton ha zero value or nclude te. on-homogeneou etmator eem to be poble (ubtractng a contant). A oluton can be explctly developed for mple random amplng wth replacement where n and. That oluton requre the ame addtonal over-parameterzaton contrant. 9/5/8 5 Addtonal Obervaton: t appear poble to generalze the oluton to n and when amplng wthout replacement. Coeffcent n Godambe lnear etmator can be factored nto coeffcent that depend on poton, coeffcent that depend on ubject, common factor, and cro term. Repone error can be added. Un-equal probablty amplng can be ncorporated. Specal ettng where repone or wll gve re to pecal oluton. Auxlary varable attached to ubject may be ncorporated. 9/5/8 5 All thee area and more need addtonal work! Thank 9/5/8 5 9