Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., Warszawa, Poland 2

Similar documents
Electronic Supplementary information

Supplementary information

3,4-Ethylenedioxythiophene (EDOT) and 3,4- Ethylenedioxyselenophene (EDOS): Synthesis and Reactivity of

A dominant homolytic O-Cl bond cleavage with low-spin triplet-state Fe(IV)=O formed is revealed in the mechanism of heme-dependent chlorite dismutase

Decomposition!of!Malonic!Anhydrides. Charles L. Perrin,* Agnes Flach, and Marlon N. Manalo SUPPORTING INFORMATION

Planar Pentacoordinate Carbon in CAl 5 + : A Global Minimum

SUPPORTING INFORMATION

Methionine Ligand selectively promotes monofunctional adducts between Trans-EE platinum anticancer drug and Guanine DNA base

Truong Ba Tai, Long Van Duong, Hung Tan Pham, Dang Thi Tuyet Mai and Minh Tho Nguyen*

Supporting Information

Metal Enhanced Interactions of Graphene with Monosaccharides. A Manuscript Submitted for publication to. Chemical Physics Letters.

Synergistic Effects of Water and SO 2 on Degradation of MIL-125 in the Presence of Acid Gases

Aluminum Siting in the ZSM-5 Framework by Combination of

Spin contamination as a major problem in the calculation of spin-spin coupling in triplet biradicals

Supporting Information

Supplemental Material

Supporting Information. for. Silylation of Iron-Bound Carbon Monoxide. Affords a Terminal Fe Carbyne

Supporting Information. spectroscopy and ab initio calculations of a large. amplitude intramolecular motion

A theoretical study on the thermodynamic parameters for some imidazolium crystals

Group 13 BN dehydrocoupling reagents, similar to transition metal catalysts but with unique reactivity. Part A: NMR Studies

Electronic supplementary information (ESI) Infrared spectroscopy of nucleotides in the gas phase 2. The protonated cyclic 3,5 -adenosine monophosphate

Dynamics of H-atom loss in adenine: Supplementary information

University of Groningen

Supporting Information

Photoinduced intramolecular charge transfer in trans-2-[4 -(N,Ndimethylamino)styryl]imidazo[4,5-b]pyridine:

The Chemist Journal of the American Institute of Chemists

Supporting Information For. metal-free methods for preparation of 2-acylbenzothiazoles and. dialkyl benzothiazole-2-yl phosphonates

Effect of Ionic Size on Solvate Stability of Glyme- Based Solvate Ionic Liquids

Electronic Supplementary Information (ESI) for Chem. Commun.

Supporting Information

China; University of Science and Technology, Nanjing , P R China.

Supporting Information. 4-Pyridylnitrene and 2-pyrazinylcarbene

Supporting Information For

A Computational Model for the Dimerization of Allene: Supporting Information

Quantum Chemical DFT study of the fulvene halides molecules (Fluoro, Chloro, Bromo, Iodo, and stato fulvenes)

ЖУРНАЛ СТРУКТУРНОЙ ХИМИИ Том 51, 2 Март апрель С

Concerted halogen and hydrogen bonding in RuI 2 (H 2 dcbpy)(co) 2 ] I 2 (CH 3 OH) I 2 [RuI 2 (H 2 dcbpy)(co) 2 ]

Ferromagnetic Coupling of [Ni(dmit) 2 ] - Anions in. (m-fluoroanilinium)(dicyclohexano[18]crown-6)[ni(dmit) 2 ]

SUPPLEMENTARY INFORMATION

Comparison of molecular structure of alkali metal ortho substituted benzoates

(1) 2. Thermochemical calculations [2,3]

Superacid promoted reactions of N-acyliminium salts and evidence for the involvement of superelectrophiles

Supporting Information

Supporting Information

Supplementary Material

Computational Material Science Part II

Ali Rostami, Alexis Colin, Xiao Yu Li, Michael G. Chudzinski, Alan J. Lough and Mark S. Taylor*

Supporting Information

Analysis of Permanent Electric Dipole Moments of Aliphatic Amines.

Calculating Accurate Proton Chemical Shifts of Organic Molecules with Density Functional Methods and Modest Basis Sets

Phosphine Oxide Jointed Electron Transporters for Reducing Interfacial

Electronic Supplementary Information for:

Supporting information on. Singlet Diradical Character from Experiment

Molecular Modeling of Photoluminescent Copper(I) Cyanide Materials. Jasprina L Ming Advisor: Craig A Bayse

Supporting Information. O-Acetyl Side-chains in Saccharides: NMR J-Couplings and Statistical Models for Acetate Ester Conformational Analysis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Journal of Chemical and Pharmaceutical Research, 2017, 9(2): Research Article

Supporting information

Supporting Information. Synthesis, Molecular Structure, and Facile Ring Flipping of a Bicyclo[1.1.0]tetrasilane

STRUCTURAL DETERMINATION OF A SYNTHETIC POLYMER BY GAUSSIAN COMPUTATIONAL MODELING SOFTWARE

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene

Supporting Information. A rare three-coordinated zinc cluster-organic framework

Supporting Information

Ligand-to-Metal Ratio Controlled Assembly of Nanoporous Metal-Organic Frameworks

Out-Basicity of 1,8-bis(dimethylamino)naphthalene: The experimental and theoretical challenge

Concerted Attack of Frustrated Lewis Acid Base Pairs on Olefinic Double Bonds: A Theoretical Study

Hanane HAMANI 1, Tahar DOUADI 2

A Redox-Fluorescent Molecular Switch Based on a. Heterobimetallic Ir(III) Complex with a Ferrocenyl. Azaheterocycle as Ancillary Ligand.

The Activation of Carboxylic Acids via Self Assembly Asymmetric Organocatalysis: A Combined Experimental and Computational Investigation

Does the Co + -assisted decarbonylation of acetaldehyde occur via C-C or C-H activation? A theoretical investigation using density functional theory

DFT STUDY OF THE ADDITION CYCLIZATION ISOMERIZATION REACTION BETWEEN PROPARGYL CYANAMIDES AND THIOL OR ALCOHOL: THE ROLE OF CATALYST

Supporting Information

Which NICS Aromaticity Index for Planar π Rings is Best?

CICECO, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal

Supporting Information

A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome

Supporting Information

Supporting Information

1,5,2,4,6,8-dithiatetrazocine. Synthesis, computation, crystallography and voltammetry of the parent heterocycle. Supplemental Information

Experimental Evidence for Non-Canonical Thymine Cation Radicals in the Gas Phase

Reversible intercyclobutadiene haptotropism in cyclopentadienylcobalt linear [4]phenylene

Preprint. This is the submitted version of a paper published in Journal of Computational Chemistry.

Theoretical Study of the Reaction Mechanism for SiF 2 Radical with HNCO

Supplementary Information

Supplementary Information:

Ab Initio and Density Functional Study

SUPPORTING INFORMATION. Ammonia-Borane Dehydrogenation Promoted by a Pincer-Square- Planar Rhodium(I)-Monohydride: A Stepwise Hydrogen Transfer

Diphosphene Photobehaviour

Supporting Information

Supporting Information

Supporting Information. {RuNO} 6 vs. Co-Ligand Oxidation: Two Non-Innocent Groups in One Ruthenium Nitrosyl Complex

Tuning the electron transport band gap of bovine serum. albumin by doping with Vb12

Molecular Engineering towards Safer Lithium-Ion Batteries: A. Highly Stable and Compatible Redox Shuttle for Overcharge.

Supporting Information

Supporting Information

Highly sensitive cyanide anion detection with a coumarin-spiropyran conjugate as a fluorescent receptor. Electronic Supplementary Information (ESI )

» ß π«õß 1 H-NMR 13 C-NMR ª ªï Õß

Non-Radiative Decay Paths in Rhodamines: New. Theoretical Insights

INTERNATIONAL JOURNAL OF RESEARCH IN COMPUTER APPLICATIONS AND ROBOTICS ISSN

Transcription:

Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 70 No. 4 pp. 659ñ665, 2013 ISSN 0001-6837 Polish Pharmaceutical Society ENDOHEDRAL COMPLEXES OF FULLERENE C 60 WITH SMALL CONVALENT MOLECULES (H 2 O, NH 3, H 2, 2H 2, 3H 2, 4H 2, O 2,O 3 ) IN THE CONTEXT OF POTENTIAL DRUG TRANSPORTER SYSTEM MARZENA M DREK 1 *, FRANCISZEK PLUCI SKI 2 and ALEKSANDER P. MAZUREK 1, 2. 1 Medical University of Warsaw, Faculty of Pharmacy, 1 Banacha St., 02-097 Warszawa, Poland 2 National Medicines Institute, 30/34 Che mska St., 00-725 Warszawa, Poland Abstract: The fullerene C 60 has chemical properties which seem to predestinate it to be effective transporter of drugs in biological system. To prove this, the DFT/B3LYP (6-31G*) calculations were performed especially in order to determine the structures and energies of the inclusion complexes of C 60 with small molecules. It was found that the small molecule is more compact when it is located in the centre of the C 60 cage than as isolated molecule. The calculated inclusion energies in case of: H 2 O, NH 3,O 2, O 3, H 2, 2H 2, 3H 2,4H 2 are: 1.84, 3.81, 3.75, 21.07, 1.97, 20.10, 47.78 and 77.54 kcal/mol, respectively. The charge transfer and the influence of the complexed small molecules on the electrostatic potential distribution inside and outside of the C 60 cavity are discussed. Keywords: endohedral fullerene, drug transporter, charge transfer Cislowski found that C 60 cage could act as a polarizable sphere that stabilizes the polar molecules and destabilizes the non-polar (or weakly polar) ones. These results indicate that formation of the endohedral complexes, from nonpolar or slightly polar molecules such as H 2, N 2 and CO separated molecules is an endothermic process. The C 60 can stabilize molecules such as HF and LiH, encased inside its skeleton (1). Pupysheva et al. studied the possible structure and stability of nh 2 O@C 60 where n represents the number of H 2 O molecules encapsulated in C 60 (2). Ren and Liu (3) investigated the endohedral complex of fullerene C 60 with N 4 using hybrid DFT- B3LYP functional in conjunction with 6-31G (d) basis sets. Their results prove that formation of the endohedral complexes consisting of N 4 and C 60 is an endothermic process with destabilization energies of 37.92 kcal/mol (3). Shameema et al. studied the encapsulation of molecule NH 3 inside the C 60 cage (4). Ganji et al. studied the possibility of formation of endohedral complexes of NH 3 and C 60. The DFT calculations showed that maximum of 7 ammonia molecules inside the C 60 cage have metastable structures (5). Their observations are in contrast with the semi-empirical results of Erkoc and T rker (6) that have demonstrated that (NH 3 )n@c 60, where n = 1-6 are thermodynamically unstable but kinetically stable. T rker and Erkoc studied the possible structure and stability of n H 2 @C 60 where n represents the number of H 2 molecules encapsulated in C 60. Their calculations at the level of AM1 (RHF) level show that the structures of n H 2 @C 60 (n: 9, 12, 15, 19, 21, 24) are stable but highly endothermic (7). One of the most important challenges for todayís medicinal chemistry seems to be development of effective transporter of drug molecules on the whole their pathway to the therapeutic target. Taking into account the desirable structural properties one expects that just fullerenes may be effective transporter of many drugs. Drug placed inside fullerene cage could be isolated from external environment and due to that protected from inactivation during transport. Additionally, such transport of drug might significantly reduce its toxicity and, at the same time, the relatively strong intermolecular interaction may extra activated transported molecules by increasing their energy (8). It is also worthy to notice the important property of such transporter system, from toxicological point of view, that the endohedral fullerenes can * Corresponding author: e-mail: marzenamedrek@onet.eu 659

660 MARZENA M DREK et al. Figure 1. The B3LYP/6-31G(d) optimized geometries of endohedral complexes

Endohedral complexes of fullerene C60 with small covalent molecules... 661 be removed from organism after the drug has been released (9, 10). Here, we studied the endohedral complexes of fullerene C60 with small molecules. The molecular characteristics like stabilization energy, electrostatic potential of C60 cage and the charge-transfer mechanism are studied and discussed here. of endohedral complexes were optimized with the hybrid functional B3LYP in 6-31G* basis set. The minimum of total potential energy of endohedral complexes we determined by full geometry optimization with B3LYP/6-31G* method. METHODOLOGY Optimized equilibrium parameters The B3LYP/6-31G (d) optimized equilibrium structures of endohedral complexes are shown in Figure 1. The equilibrium parameters of isolated small molecules and encaged small molecules are listed in Table 1. The fullerene cage and the encaged small molecules undergo small structural changes what is an indication of the weak interaction. Calculations of energies of the inclusion complexes of C60 with small molecules were carried out with the GAUSSIAN 03W (11) and the Spartan 08 (12) program packages. Quantum mechanics provides an efficient theory to describe and understand the structures of endohedral complexes. The success of a computational study depends on the careful selection of the methodology. Here the geometries RESULTS AND DISCUSSION Figure 2. Electron density from total density (mapped with electrostatic potential) for endohedral fullerenes.

662 MARZENA M DREK et al. Table 1. The B3LYP/6ñ31G(d) optimized geometry parameters (length of bond in Å and bond angles in degrees). H 2 O H 2 O@C 60 NH 3 NH 3 @C 60 r H-O 0.969 0.968 r N-H 1.020 1.017 α 103.659 104.395 α 105.751 105.277 O 3 O 3 @C60 O 2 O 2 @C 60 r O-O 1.264 1.264 r O-O 1.216 1.216 α 117.939 115.241 H 2 H 2 @C 60 r H-H 0.743 0.741 Table 2. Total energies (E tot in a.u.) and distortion energies in kcal/mol of covalent molecules at the B3LYP/6-31G (d) level. E tot of covalent E tot of covalent molecule Distortion energies molecule calculated calculated in distorted of covalent in optimized geometry geometry of the complex molecule (E tot in a.u.) (E tot in a.u.) (in kcal/mol) H 2 O -76.408946-76.408932 0.01 H 2-1.175484-1.175482 0.00 O 2-150.257426-150.257426 0.00 NH 3-56.547941-56.547903 0.02 O 3-225.406422-225.405847 0.36 2H 2-2.350931-2.342239 5.45 3H 2-3.526445-3.501990 15.34 4H 2-4.701916-4.658330 27.35 Table 3.Total energies (E tot in a.u.) of C 60 and distortion energies of C 60 in kcal/mol at the B3LYP /6-31G (d) level. E tot of C 60 calculated E tot of C 60 calculated Distortion in optimized in distorted geometry energies geometry of the complex of C 60 (E tot in a.u.) (E tot in a.u.) (in kcal/mol) H 2 O@C 60-2286.174171 0.12 H 2 @C 60-2286.173993 0.23 2H 2 @C 60-2286.173681 0.43 3H 2 @C 60-2286.172554 1.14-2286.174363 4H 2 @C 60-2286.171609 1.73 O 2 @C 60-2286.174334 0.02 NH 3 @C 60-2286.174312 0.03 O 3 @C 60-2286.173708 0.81

Endohedral complexes of fullerene C 60 with small covalent molecules... 663 Table 4. Distortion energies in kcal/mol at the B3LYP /6-31G (d) level. Distortion energies Distortion Sum of distortion energies of encapsulated energies of encapsulated molecules molecules of C 60 and distortion energies of C 60 in kcal/mol) (in kcal/mol) ( in kcal/mol) H 2 O@C 60 0.01 0.12 0.13 H 2 @C 60 0.00 0.23 0.23 O 2 @C 60 0.00 0.02 0.02 NH 3 @C 60 0.02 0.03 0.05 O 3 @C 60 0.36 0.81 1.17 2H 2 @C 60 5.45 0.43 5.88 3H 2 @C 60 15.34 1.14 16.48 4H 2 @C 60 27.35 1.73 29.08 Table 5. Total energies (E tot in a.u.), inclusion energies (E inclu in kcal/mol) and interaction energies in kcal/mol of the endohedral fullerenes at the B3LYP /6-31G (d) level. Interaction Complex E tot in a.u E inclu in energy in kcal/mol kcal/mol H 2 O@C 60-2362.586250-1.84-1.97 H 2 @C 60-2287.346706 1.97 1.74 2H 2 @C 60-2288.493259 20.10 14.22 3H 2 @C 60-2289.624663 47.78 31.30 4H 2 @C 60-2290.752704 77.54 48.46 O 2 @C 60-2436.425818 3.75 3.73 NH 3 @C 60-2342.716229 3.81 3.76 O 3 @C 60-2511.547214 21.07 19.90 Table 6. Natural charge populations of separated and encapsulated small molecules at the B3LYP /6-31G (d) level. Charge Total charge H 2 O O ñ 0.774 H 0.387 H 2 O 0.000 H 2 O @C 60 O ñ 0.808 H 0.409 H 2 O 0.010 H 2 H 0.000 H 2 0.000 H 2 @C 60 H -0.002 H 2-0.004 NH 3 N -0.888 H 0.296 NH 3 0.000 NH 3 @C 60 N -0.958 H 0.320 NH 3 0.002 O 3 O -0.116 O -0.116 O 0.232 O 3 0.000 O 3 @C 60 O -0.171 O -0.171 O 0.202 O 3-0.140 O 2 O 0.000 O 2 0.000 O 2 @C 60 O 0.001 O 2 0.002

664 MARZENA M DREK et al. Our observations confirm that small molecules are more compact when placed inside a fullerene cavity than when they are separated (3, 5). Ren and Liu (3) demonstrated that the shortened N-N bond length in N 4 @C 60 may suggest that the N-N bonds in N 4 are strengthened by the fullerene cage or that the fullerene cage may stabilize the highly labile tetrahedral N 4 molecule. Son and Sung (13) calculated the exohedral and endohedral complexation energies of complexes of X@ C 60 between fullerene and rare gas atoms. They found that there exist two minima energies in potential surface; exohedral complexation energy (E exo ) which is located in the outside of the C 60 molecule between 6.5 and 7.5 Å and endohedral complexation energy (E endo ) which is located in the centre of the C 60 molecule (13). Encapsulated molecule is stabilized in the centre of the carbon cage und is unbound to C 60. Stability Here we use the following notation: Inclusion energy (E inclu ) of the A@C 60 endohedral fullerenes were calculated as a difference: E inclu = E (A@C 60 ) - [E(A) + E(C 60 )]. where: E (A@C 60 ) is the total energy of the complex A@C 60, E(A) is the total energy of the isolated molecule H 2 O, NH 3, H 2, 2H 2, 3H 2, 4H 2, O 2,O 3, E(C 60 ) is the total energy of the isolated molecule C 60. The thermodynamical stability is expected to produce negative E inclu value. The more negative value of E inclu, the more stable the endohedral derivative is expected. In contrast, a positive E inclu defines an unstable endohedral derivative. The calculated energies of endohedral complexes, C 60 and small molecules are presented in Tables 2-5. Formation of the endohedral complexes from the small molecule and C 60 separated molecules is the process with the inclusion energies of -1.84 kcal/mol for H 2 O, 3.81 kcal/mol for NH 3, 3.75 kcal/mol for O 2, 21.07 kcal/mol for O 3, 1.97 kcal/mol for H 2, 20.10 kcal/mol for 2H 2, 47.78 kcal/mol for 3H 2 and 77.54 kcal/mol for 4H 2. Electron density from total density (mapped with electrostatic potential) The negative electrostatic potential corresponds to an area of concentrated electron density in the molecules. The positive electrostatic potential corresponds to an area of the low electron density in the molecules. Electron density from total density (mapped with electrostatic potential) for endohedral fullerenes are presented in Figure 2. The minimum values of molecular electrostatic potential in case of: NH 3 @C 60, H 2 O@C 60, O 3 @C 60, H 2 @C 60, O 2 @C 60 are: -15.719, -15.466, - 13.607, -12.570, -12.546 kj/mol, respectively. The maximum values of molecular electrostatic potential in case of: O 2 @C 60, NH 3 @C 60, O 3 @C 60, H 2 @C 60, H 2 O@C 60 are: 43.876, 45.651, 46.188, 49.950, 57.730 kj/mol, respectively. The value of molecular electrostatic potential of C 60 correlates with partial charges. The changes in the value of molecular electrostatic potential of endohedral fullerenes result from the value of molecular electrostatic potential around encapsulated molecule. Ren and Liu studied the molecular electrostatic potential of N 4 @C 60. Their results indicate that each N atom in encapsulated N 4 molecule gains (-0.012) of charge units from the C 60 skeleton (3). Table 6 summarizes the natural charge population of small molecules (isolated and encapsulated into the C 60 cage). Natural population analysis of endohedral fullerenes proves that the negative charge is transfered from fullerene C 60 cage to the encapsulated molecules (O 3 @C 60, H 2 @C 60 ) and from encapsulated molecules to the fullerene C 60 cage (NH 3 @C 60, O 2 @C 60,H 2 O@C 60 ). The values of natural charge population on the guest species inside the C 60 skeleton decrease in the series as follows: O 3 (-0.140), H 2 (-0.004), NH 3 (0.002), O 2 (0.002), H 2 O (0.010) (cf. Table 6). CONCLUSIONS From analysis of the obtained results the following can be concluded: (i) among the all studied complexes only H 2 O@C 60 complex has negative inclusion energy; (ii) the remained studied complexes have only slightly positive inclusive energies which, above all, do not mean that these complexes are unstable on account of the expected high energetic barrier of transfer of even small molecules through the wall of fullerene cage; (iii) all complexes are stabilized by universal interactions and all molecules forming complex are deformed in comparison with their structures in unbound state. REFERENCES 1. Cioslowski J.: J. Am. Chem. Soc. 113, 4139 (1991). 2. Pupysheva O.V., Farajian A.A., Yakobson, B.I.: Nano Lett. 8, 767 (2008). 3. Ren X.Y., Liu, Z.Y.: Struct. Chem. 16, 567 (2005).

Endohedral complexes of fullerene C 60 with small covalent molecules... 665 4. Shameema O., Ramachandran C.N., Sathyamurthy N.: J. Phys. Chem. A 110, 2 (2006). 5. Ganji M.D., Mohseni M., Goli O.: J. Mol. Struct. (Theochem) 913, 54 (2009). 6. Erkoc S., T rker L.: J. Mol. Struct. (Theochem) 640, 57 (2003). 7. T rker L., Erkoc S., J. Mol. Struct. (Theochem) 638, 37 (2003). 8. Andreev S.M., Babakhin A.A., Petrukhina A.O. et al.: Dokl. Akad. Nauk 370, 261 (2000). 9. Dugan L.L., Turetsky D.M., Du Ch., Lobner D., Wheeler M., Almli C.R., Shen C. K.-F., Luh T.- Y., Choi D.W., Lin, T.-S.: Proc. Natl. Acad. Sci. USA 94, 9434 (1997). 10. Huczko A., Bystrzewski M.: Fullerenes ñ 20 Years After Discovery, 1st edn., UW, Warszawa 2007. 11. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E, Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr.T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J.E., Hratchian H.P., Cross J.B., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Ayala P.Y., Morokuma K., Voth G.A., Salvador P., Dannenberg J.J., Zakrzewski V.G., Dapprich S., Daniels A.D., Strain M.C., Farkas O., Malick D.K., Rabuck A.D., Raghavachari K., Foresman J.B., Ortiz J.V., Cui Q., Baboul A.G., Clifford S., Cioslowski J., Stefanov B.B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T, Al-Laham M.A., Peng C.Y., Nanayakkara A., Challacombe M. Gill P.M.W., Johnson B., Chen W., Wong M.W., Gonzalez C., Pople J.A. Gaussian 03, Rev A.1. Gaussian Inc., Pittsburgh, PA 2003. 12. Wavefunction Inc. Spartan 08; Wavefunction Inc.: 18401 Von Karman Avenue, suite 370, Irvine, CA 92612, 2009. 13. Son M.S., Sung Y.K.: Chem. Phys. Lett. 245, 113 (1995). Received: 08. 08. 2012