The chemistry of snow water is

Similar documents
The Wildland Fire Chemical

Airtanker. Drop Guides

Evaluating Digital Meters for Fire Weather Observations. Greg Lemon, Project Assistant; and Dick Mangan, Program Leader

What is a published soil survey?

Management and Use of LiDAR-derived Information. Elizabeth Cook, GIS Specialist

P3.16 DEVELOPMENT OF A TRANSFER FUNCTION FOR THE ASOS ALL-WEATHER PRECIPITATION ACCUMULATION GAUGE

Abbreviated 156 Farm Record

CRP HEL CRP Ortho Imagery. Tract Cropland Total: acres

Gauge Undercatch of Two Common Snowfall Gauges in a Prairie Environment

Commentary on Factors Affecting Transverse Vibration Using an Idealized Theoretical Equation

Raindrops. Precipitation Rate. Precipitation Rate. Precipitation Measurements. Methods of Precipitation Measurement. are shaped liked hamburger buns!

Non catchment type instruments for snowfall measurement: General considerations and

Solid Precipitation Measurement Intercomparison in Bismarck, North Dakota, from 1988 through 1997

National Oceanic and Atmospheric Administration, USA (3) ABSTRACT

MATHEWS FARM TUNICA MISSISSIPPI 1130 ACRES (+/ ) TUNICA AND DESOTO COUNTY FOR SALE. List Price $6,100,000.

Applications. Remote Weather Station with Telephone Communications. Tripod Tower Weather Station with 4-20 ma Outputs

Field Indicators of Inlet Controlled Road Stream Crossing Capacity

A Century of Meteorological Observations at Fort Valley Experimental Forest: A Cooperative Observer Program Success Story

Measuring solid precipitation using heated tipping bucket gauges: an overview of performance and recommendations from WMO SPICE

2004 Report on Roadside Vegetation Management Equipment & Technology. Project 2156: Section 9

Remote and Autonomous Measurements of Precipitation in Antarctica

Soils of Hawai i Dr. Greg Bruland NREM 461

Analysis of PWD Precipitation Rate Estimates Compared to Hotplate Sensors

Table 13 Maximum dewpoint temperature (degrees Celsius), primary meteorological station, H. J. Andrews Experimental Forest, 5/10/72 through 12/31/84

NJ Community Collaborative Rain, Hail and Snow Network

Custom Soil Resource Report for Clackamas County Area, Oregon

Custom Soil Resource Report for Multnomah County Area, Oregon

160 Acres of Tillable Land, Alfalfa, Pasture, Building Site, and Rec Area in Sun Prairie Township! Thursday, November 1, 2018 at NOON

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra?

4. Which effect does a decrease in sunlight have on a pond ecosystem? 1. Why do large trees have a difficult time living in a tundra?

Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE

POSTER PRESENTATION: Comparison of manual precipitation observations with automatic observations in Oslo and Utsira

WeatherHawk Weather Station Protocol

WMO SPICE. World Meteorological Organization. Solid Precipitation Intercomparison Experiment - Overall results and recommendations

Snowfall Measurement Challenges WMO SPICE Solid Precipitation Intercomparison Experiment

Custom Soil Resource Report for Clackamas County Area, Oregon

Custom Soil Resource Report for Valley County, Montana

Development of Innovative Technology to Provide Low-Cost Surface Atmospheric Observations in Data-sparse Regions

A TEST OF THE PRECIPITATION AMOUNT AND INTENSITY MEASUREMENTS WITH THE OTT PLUVIO

Impact of Wind Direction, Wind Speed, and Particle Characteristics on the Collection Efficiency of the Double Fence Intercomparison Reference

Science - 4th grade practice test

10.5 PROBABLISTIC LIGHTNING FORECASTS AND FUEL DRYNESS LEVEL FORECASTS IN THE GRAPHICAL FOREAST EDITOR: EXPANDED DOMAIN AND DISTRIBUTION FOR 2009

STANDARD OPERATING PROCEDURES

UWM Field Station meteorological data

Crop Enterprise Budget Dry Beans, Powell Area

The following information is provided for your use in describing climate and water supply conditions in the West as of April 1, 2003.

SENSOR PLACEMENT FOR SNOW & ICE MELT APPLICATIONS

student pretest Stewardship Project middle school (Grades 7-8)

WIND INDUCED ERROR OF PRECIPITATION GAUGES. (Submitted by Vladislav Nespor) Summary and purpose of document

GIS Mapping for Hubbard Brook Experimental Forest A Service Learning Project for Plymouth Regional High School Environmental Science

Custom Soil Resource Report for Clark County, Washington

March 1, 2003 Western Snowpack Conditions and Water Supply Forecasts

Crop Progress. Corn Mature Selected States [These 18 States planted 92% of the 2017 corn acreage]

1 Introduction. Station Type No. Synoptic/GTS 17 Principal 172 Ordinary 546 Precipitation

HIGH RESOLUTION MEASUREMENT OF PRECIPITATION IN THE SIERRA

Intercomparision of snowfall measured by weighing and tipping bucket precipitation gauges at Jumla Airport, Nepal

Innovative Sustainable Technology

MAPPING THE RAINFALL EVENT FOR STORMWATER QUALITY CONTROL

Reference measurements for WMO/CIMO SPICE and on-going projects at the Formigal- Sarrios field site

Quality assurance for sensors at the Deutscher Wetterdienst (DWD)

Moisture Situation Update November 6, 2016

Total Acres: Tillable Acres: Irrigated Acres: All Improvements will be managed by Farmers National Company / CHS.

Update on Ground Icing Weather Product Development: Liquid Water Equivalent and Check Time systems

The NOAA/FAA/NCAR Winter Precipitation Test Bed: How Well Are We Measuring Snow?

Improved Precipitation Measurement in Wintertime Snowstorms. Focus Category: WQN, CP, HYDROL. Keywords: Snow Process Research.

ESTIMATION OF NEW SNOW DENSITY USING 42 SEASONS OF METEOROLOGICAL DATA FROM JACKSON HOLE MOUNTAIN RESORT, WYOMING. Inversion Labs, Wilson, WY, USA 2

Near Sledge, Mississippi. Please call to arrange a private viewing

Monitoring the world around us since Rainfall Measurement

TUNDRA. Column 1 biome name Column 2 biome description Column 3 examples of plant adaptations

LATE REQUEST FOR A SPECIAL PROJECT

Science of Global Warming and Climate Change

Your Farm Weather Station: Installation and Maintenance Guidelines 1

Where does the rain go?

Vermont Soil Climate Analysis Network (SCAN) sites at Lye Brook and Mount Mansfield

YELLOW MEDICINE COUNTY FARMS FOR SALE

Equal Employment Opportunity Data Posted Pursuant to the No FEAR Act

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

Low Cost Weather Stations for Developing Countries (Kenya)

Snow processes and their drivers in Sierra Nevada (Spain), and implications for modelling.

CLIMATE. UNIT TWO March 2019

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States.

Bias correction of global daily rain gauge measurements

WEATHER AND CLIMATE SCIENCE

Probabilistic Decision-Making and Weather Assessment

COOP Modernization: NOAA s Environmental Real-time Observation Network in New England, the Southeast and Addressing NIDIS in the West

Custom Soil Resource Report for Bell County, Texas

Complex Terrain (EDUCT) experiment, conducted by the National Center for Atmospheric

One of the coldest places in the country - Peter Sinks yet again sets this year s coldest temperature record for the contiguous United States.

Automatic Monitoring of Snow Depth

Case Study Las Vegas, Nevada By: Susan Farkas Chika Nakazawa Simona Tamutyte Zhi-ya Wu AAE/AAL 330 Design with Climate

Dr. Christopher M. Godfrey University of North Carolina at Asheville

PREDICTING SURFACE TEMPERATURES OF ROADS: Utilizing a Decaying Average in Forecasting

North Dakota Lignite Energy Industry s Contribution to the State Economy

Observing Weather: Making the Invisible Visible. Dr. Michael J. Passow

The Montague Doppler Radar, An Overview

Proceedings, International Snow Science Workshop, Banff, 2014

Pacific Area U. S. Postal Service

Eastern Area U. S. Postal Service

Custom Soil Resource Report for San Juan Area, Puerto Rico

North Dakota Lignite Energy Industry's Contribution to the State Economy for 2002 and Projected for 2003

Transcription:

Watershed, Soil, and Air United States Department of Agriculture Forest Service Technology & Development Program October 2002 2500 0225-2325 MTDC Windshields for Precipitation Gauges and Improved Measurement Techniques for Snowfall Seth Hansen, Project Assistant, and Mary Ann Davies, Project Leader The chemistry of snow water is measured by accurately collecting snowfall amounts and analyzing the snow that has been melted usually in a glycol mixture. The problem with current snow measurement techniques is that with almost any wind, collection efficiency is questionable, leading to large uncertainties in estimates of pollutant concentration. Most current combinations of windshields and gauges are ineffective, requiring the gauges to be maintained and monitored frequently. The issue of measuring snow and frozen precipitation in windy situations has been heavily researched. While many gauges and windshields have been developed and tested during the last 150 years, no combination of windshield and gauge has 100-percent catch efficiency in all wind events. The World Meteorological Organization (WMO) has organized three international intercomparisons of gauges and windshields since 1959, the most recent including data collected from 1985 to 1998. The National Center for Atmospheric Research (NCAR) recently completed a study at the Marshall Field site (Rasmussen and others. 2001. Bulletin of the American Meteorological Society. 82: 4. p. 579 595). Snow Gauges Snow gauges range from rudimentary buckets to ultrasonic depth sensors. Heated buckets that tipped to pour out water were once the most prevalent gauge, but they were inaccurate. These gauges were developed to collect rainfall before being modified for snow. They never performed well. A heating element was added to the gauge to melt the snow, but evaporation loss became a major factor. Catch efficiency for a heated tipping bucket averages only 35 percent for frozen precipitation. Alter windshield. Most modern gauges now contain a glycol solution or antifreeze topped with a thin film of low-viscosity oil. The glycol solution melts the snow and the oil reduces evaporation loss. The water measurements are taken manually or transmitted by radio signal, depending on the sophistication of the particular gauge. Although many manufacturers produce these gauges (ETI, Belfort, Campbell, and others), meteorologists in Canada and the United States are leaning toward the Geonor precipitation gauge. The Geonor vibrating-wire precipitation gauge uses a bucket suspended by wires. Glycol solution is in the bucket. As snow falls and melts in the glycol solution, the mass increases. The wires stretch and begin to vibrate, producing an electromagnetic field that is picked up by the bucket s sensor. The strength of the electromagnetic field depends on the mass in the bucket, allowing the contents to be measured accurately. Manufacturers boast superior catch efficiency, yet all contend that wind remains the largest problem. These gauges are nearly worthless without a windshield and must be sited in areas sheltered from the wind. For additional information, contact: Mary Ann Davies, Project Leader, USDA Forest Service, MTDC; 5785 Hwy. 10 West, Missoula, MT 59808 9361. Phone: 406 329 3981, fax: 406 329 3719, e-mail: mdavies@fs.fed.us 1

Windshields The Double Fence Intercomparison Reference gauge (DFIR, figure 1) was used as a standard for all other windshields in the WMO s intercomparison study and at the Marshall Field site study. The DFIR consists of For Canadian systems, the Nipher shield has long been the standard. It is a solid shield made from spun aluminum, plastic, or fiberglass in the shape of an inverted bell. Because of its solid construction, this shield tends to bridge over with snow if it is not frequently checked. This problem usually leads to precipitation overcatch. As temperatures warm, snow dumps into the gauge, which can cause problems with real-time measurements. Despite these problems, a well-maintained gauge, surrounded by a Nipher shield, has an average catch of around 90 percent of the DFIR at gauge height windspeeds of 4 meters per second. The catch falls to 60 percent of the DFIR at windspeeds above 8 meters per second. Figure 1 The double fence intercomparison reference gauge catches 92 to 96 percent of the precipitation that falls. Alter shields (figure 2) are the most common windshield in the United States, even though their efficiency is low. An Alter shield is a ring of vertically oriented slats with a radius of about 0.5 meter. Gauges equipped with Alter shields rely heavily on proper site placement to reduce the effects of wind. The catch efficiency for a Geonor gauge surrounded by an Alter shield drops to around 60 percent of the DFIR with winds of 5 meters per second, but falls to 15 to two fences, one 4 meters in diameter and the other 12 meters in diameter, circling a Tretyakov or Geonor gauge. For the Marshall Field site study, the Geonor gauge was used almost exclusively. This system s catch as a function of windspeed has consistently proven to be 92 to 96 percent of the actual snowfall in most wind events. Unfortunately, the sheer size of the system limits its placement. At the Marshall Field site a small DFIR was tested as an alternative to the larger one. The small DFIR is about two-thirds the size of the regular DFIR. The small DFIR still caught 80 to 90 percent as much precipitation as the large DFIR with winds of about 6 meters per second. Figure 2 The Alter windshield catches little of the precipitation that falls during high winds. 2

20 percent of the DFIR with winds of 8 meters per second. A double Alter shield was tested at the Marshall Field site. The double Alter shield (figure 3) has another ring of vertically oriented slats 0.5 meter from the inner ring. This system offers a significant improvement over the single Alter shield. Catch efficiency for a Geonor gauge within a double Alter shield is over 85 percent of the DFIR for windspeeds as high as 6 meters per second and may be as much as 80 percent of the DFIR for windspeeds of 10 meters per second. Wyoming windshields were also tested at the Marshall Field site. A Wyoming shield consists of two mesh fences slanting outward at the top. The outer fence is 20 feet in diameter. The catch efficiency for a Geonor gauge in the Wyoming shield decreased rapidly at windspeeds higher than 4 meters per second. A catch of about 50 percent of the DFIR was recorded at wind speeds of about 8 meters per second. Figure 3 The double Alter windshield performs well in high winds. A half-scale Wyoming shield (figure 4) was developed by Roy Rasmussen and others for the Marshall Field site study. Catch efficiency for a Geonor gauge in a small Wyoming shield is less than 50 percent of the DFIR in winds higher than 5 meters per second. Catch efficiency continues to drop to around 10 percent of the DFIR at windspeeds of 8 meters per second. Various other shields have been tested and compared, with poor results. Many are slight modifications of the popular shields and offer no Figure 4 The catch efficiency for the half-scale Wyoming windshield drops rapidly as wind increases. 3

significant improvements. Researchers have produced algorithms intended to compensate for variables when using current gauges. These algorithms can be found in: WMO Solid Precipitation Measurement Intercomparison: Final Report (Goodison, B.E.; Lonie, P.Y.T; Yang, D. 1998. Instrument and Observing Methods Report No. 67. WMO/TD No. 872. 88 p. + 211 p. annexes). New Gauges Some researchers have begun to abandon the windshield and buckettype gauge altogether. The general consensus is that it is impossible to create a shield/gauge combination with 100-percent catch efficiency in all wind events. Researchers have decided that since wind cannot be controlled, it needs to be eliminated as a factor. Some innovative ideas have resulted. The hotplate snow gauge (figure 5) consists of two heated metal plates. One plate faces up, exposing it to precipitation, and the other, just below the top plate, faces down. The plates are heated to an identical temperature. Any precipitation landing on and evaporating off of the gauge cools the top plate. The energy used to maintain the temperature of the top plate is compared to the energy used to heat the bottom plate. Because the Figure 5 The hotplate snow gauge does not require a windshield. bottom plate is not exposed to the precipitation, it is used as a reference. This snow gauge is still in the testing process, but shows promise. It is inexpensive and easy to maintain. It does require power, so wilderness applications could be limited. It does not collect the precipitation that it measures, which means that it could not be used to gather samples for chemical evaluation. The hotplate gauge may become commercially available. The Eastern Cereal and Oilseed Research Centre in Ottawa, ON, has also developed a gauge that requires no windshield (figure 6). It consists of a revolving ball, half submerged in a catchment area full of automotive Figure 6 This Canadian rotating ball gauge does not require a windshield. 4

antifreeze. As the ball rotates, it is wetted in the antifreeze to improve catch efficiency. A pump and reservoir maintain the level of liquid to prevent evaporation loss. Because this device does not rely on a bucket-shaped catch area, it does not require a windshield. This gauge can be equipped with a data logger and is battery powered. No data were available for catch efficiency, although the inventors claim that it compares well with the Nipher shield and gauge. The inventors are still looking for a manufacturer. Canadian (2,147,700) and United States (5,571,963) patents have been granted. Site Selection Site selection is a major factor in the effectiveness of a precipitation gauge. Most remote weather stations must be exposed to the elements, so the precipitation gauge must be exposed to wind. One potential solution is to separate the precipitation gauge from the weather station so a more sheltered site can be selected for the precipitation gauge. This technique can be costly, but if the precipitation gauge is properly sited, measurements can be much more accurate. A precipitation gauge should be placed in a level, open clearing in the trees. No vegetation should be above the level of the gauge. The distance of the gauge to the trees should roughly equal the height of the trees. In other words, an angle of roughly 40 to 45 degrees from the gauge s orifice to the tops of the surrounding trees is ideal. Conclusions While major steps are being taken to solve the problem of the effects of wind on precipitation measurements, the only solution that is universally approved is the DFIR. The larger fence for the DFIR is 12 meters in diameter, making this windshield impractical in some situations. The alternative windshields described in this Tech Tip are readily available or easily constructed. Finding a reasonably accurate combination of windshield and gauge is possible for most applications, even though a universal solution is not available. Acknowledgments I would like to thank these contributors to this project: Daging Yang for help with the WMO s solid precipitation measurement intercomparison Roy Rasmussen, Scott Landolt, and everyone else involved in the Marshall Field site study for their help Doug Balchen at the Eastern Cereal and Oilseed Research Centre in Canada About the Authors Seth Hansen is a smokejumper who worked at the Missoula Technology and Development Center as a project assistant during the summer of 2002. Seth began working for the Forest Service in 1994 as a forestry technician. He is a biology student at the University of Montana. Mary Ann Davies is a project leader working for the facilities, recreation, fire, and watershed, soil, and air programs. She received a bachelor s degree in mechanical engineering with a minor in management and industrial engineering from Montana State University in 1988. Her Forest Service career began in the Pacific Northwest Region where she worked with facilities, tramways, fire, and recreation. Mary Ann worked for the Rocky Mountain Research Station s Fire Sciences Laboratory in Missoula before coming to the Missoula Technology and Development Center in 1998. 5

Hansen, Seth; Davies, Mary Ann. 2002. Windshields for precipitation gauges and improved measurement techniques for snowfall. Tech Tip 0225 2325 MTDC. Missoula, MT: U.S. Department of Agriculture, Forest Service, Missoula Technology and Development Center. 6 p. Describes the results of several studies that have shown that most windshields used with precipitation gauges are not very effective. The standard by which windshields are Library Card measured is the double fence intercomparison reference gauge. That windshield consists of two fences. The inner fence is 4 meters in diameter. The outer fence is 12 meters in diameter. Other windshields that are discussed include the Nipher shield, the Alter shield, and the Wyoming shield. The gauge that seems to be the most popular for measuring snowfall in Canada and the United States is the Geonor precipitation gauge. Glycol solution is in a bucket that is suspended by wires. As snow falls and melts in the glycol solution, the mass increases. The wires stretch and begin to vibrate, producing an electromagnetic field that is picked up by the bucket s sensor. The strength of the electromagnetic field depends on the mass in the bucket, allowing the contents to be measured accurately. Keywords: deposition, instruments, meteorology, precipitation, snow Additional single copies of this document may be ordered from: USDA Forest Service, MTDC 5785 Hwy. 10 West Missoula, MT 59808 9361 Phone: 406 329 3978 Fax: 406 329 3719 E-mail: wo_mtdc_pubs@fs.fed.us Electronic copies of MTDC S documents are available on the Forest Service s FSWeb intranet at: http://fsweb.mtdc.wo.fs.fed.us For further technical information, contact Mary Ann Davies at MTDC. Phone: 406 329 3981 Fax: 406 329 3719 E-mail: mdavies@fs.fed.us The Forest Service, United States Department of Agriculture (USDA), has developed this information for the guidance of its employees, its contractors, and its cooperating Federal and State agencies, and is not responsible for the interpretation or use of this information by anyone except its own employees. The use of trade, firm, or corporation names in this document is for the information and convenience of the reader, and does not constitute 6 an endorsement by the Department of any product or service to the exclusion of others that may be suitable. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250 9410, or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.