Hart Notes. Matthew Basilico. April, Chapter 15 - General Equilibrium Theory: Examples. Pure exchange economy with Edgeworth Box

Similar documents
Introduction to General Equilibrium

Notes on General Equilibrium

First Welfare Theorem

Introduction to General Equilibrium: Framework.

General Equilibrium and Welfare

Second Welfare Theorem

Competitive Equilibrium

Notes IV General Equilibrium and Welfare Properties

General Equilibrium. General Equilibrium, Berardino. Cesi, MSc Tor Vergata

Market Equilibrium and the Core

1 Second Welfare Theorem

1 Jan 28: Overview and Review of Equilibrium

Microeconomics, Block I Part 2

In the Name of God. Sharif University of Technology. Microeconomics 1. Graduate School of Management and Economics. Dr. S.

The Debreu-Scarf Theorem: The Core Converges to the Walrasian Allocations

Economics 501B Final Exam Fall 2017 Solutions

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program June 2016

Economics 201b Spring 2010 Solutions to Problem Set 1 John Zhu

Differentiable Welfare Theorems Existence of a Competitive Equilibrium: Preliminaries

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice

Economics 201B Second Half. Lecture 12-4/22/10. Core is the most commonly used. The core is the set of all allocations such that no coalition (set of

Uniqueness, Stability, and Gross Substitutes

Contracts under Asymmetric Information

Uncertainty Per Krusell & D. Krueger Lecture Notes Chapter 6

Simon Fraser University, Department of Economics, Econ 201, Prof. Karaivanov FINAL EXAM Answer key

Advanced Microeconomics

Adding Production to the Theory

The Ohio State University Department of Economics. Homework Set Questions and Answers

Short correct answers are sufficient and get full credit. Including irrelevant (though correct) information in an answer will not increase the score.

Question 1. (p p) (x(p, w ) x(p, w)) 0. with strict inequality if x(p, w) x(p, w ).

1 General Equilibrium

EC487 Advanced Microeconomics, Part I: Lecture 5

Lecture 7: General Equilibrium - Existence, Uniqueness, Stability

Economics 200A part 2 UCSD Fall quarter 2011 Prof. R. Starr Mr. Troy Kravitz1 FINAL EXAMINATION SUGGESTED ANSWERS

General idea. Firms can use competition between agents for. We mainly focus on incentives. 1 incentive and. 2 selection purposes 3 / 101

Lecture #3. General equilibrium

Positive Theory of Equilibrium: Existence, Uniqueness, and Stability

The Consumer, the Firm, and an Economy

Indeterminacy and Sunspots in Macroeconomics

Advanced Microeconomics Problem Set 1

Final Examination with Answers: Economics 210A

Lecture Notes October 18, Reading assignment for this lecture: Syllabus, section I.

ECONOMICS 001 Microeconomic Theory Summer Mid-semester Exam 2. There are two questions. Answer both. Marks are given in parentheses.

Microeconomic Theory -1- Introduction

KIER DISCUSSION PAPER SERIES

Tilburg University. Core Equivalence in Economies With Satiation Konovalov, A. Publication date: Link to publication

Microeconomics II. MOSEC, LUISS Guido Carli Problem Set n 3

We set up the basic model of two-sided, one-to-one matching

Department of Economics The Ohio State University Final Exam Questions and Answers Econ 8712

Fundamental Theorems of Welfare Economics

EconS Microeconomic Theory II Homework #9 - Answer key

Rice University. Answer Key to Mid-Semester Examination Fall ECON 501: Advanced Microeconomic Theory. Part A

EC476 Contracts and Organizations, Part III: Lecture 2

Algorithmic Game Theory and Applications

Short correct answers are sufficient and get full credit. Including irrelevant (though correct) information in an answer will not increase the score.

ECON FINANCIAL ECONOMICS

Structural Properties of Utility Functions Walrasian Demand

Some Notes on Adverse Selection

problem. max Both k (0) and h (0) are given at time 0. (a) Write down the Hamilton-Jacobi-Bellman (HJB) Equation in the dynamic programming

ANSWER KEY. University of California, Davis Date: June 22, 2015

Economic Growth: Lecture 8, Overlapping Generations

The Fundamental Welfare Theorems

Kevin X.D. Huang and Jan Werner. Department of Economics, University of Minnesota

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry!

Advanced Microeconomic Theory. Chapter 6: Partial and General Equilibrium

Lecture 1. History of general equilibrium theory

Microeconomic Theory I Midterm October 2017

Mathematical models in economy. Short descriptions

5. Externalities and Public Goods

Mechanism Design: Basic Concepts

On the Maximal Domain Theorem

Winter Lecture 10. Convexity and Concavity

Discussion Papers in Economics

Duality. for The New Palgrave Dictionary of Economics, 2nd ed. Lawrence E. Blume

5. Externalities and Public Goods. Externalities. Public Goods types. Public Goods

Firms and returns to scale -1- John Riley

Economics 201B Second Half. Lecture 10, 4/15/10. F (ˆp, ω) =ẑ(ˆp) when the endowment is ω. : F (ˆp, ω) =0}

Microeconomic Theory (501b) Problem Set 10. Auctions and Moral Hazard Suggested Solution: Tibor Heumann

Rice University. Fall Semester Final Examination ECON501 Advanced Microeconomic Theory. Writing Period: Three Hours

Deviant Behavior in Monetary Economics

Competitive Equilibrium and the Welfare Theorems

Problem Set 1 Welfare Economics

Microeconomic theory focuses on a small number of concepts. The most fundamental concept is the notion of opportunity cost.

Math Camp Notes: Everything Else

Econ 201: Problem Set 3 Answers

1 Two elementary results on aggregation of technologies and preferences

Firms and returns to scale -1- Firms and returns to scale

Can everyone benefit from innovation?

Economic Core, Fair Allocations, and Social Choice Theory

ECON4515 Finance theory 1 Diderik Lund, 5 May Perold: The CAPM

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Fall Final Examination Solutions Thursday 10 January 2012

Pareto Efficiency (also called Pareto Optimality)

Core equivalence and welfare properties without divisible goods

Game Theory. Bargaining Theory. ordi Massó. International Doctorate in Economic Analysis (IDEA) Universitat Autònoma de Barcelona (UAB)

Business Cycles: The Classical Approach

Microeconomics, Block I Part 1

x 1 1 and p 1 1 Two points if you just talk about monotonicity (u (c) > 0).

Core. Ichiro Obara. December 3, 2008 UCLA. Obara (UCLA) Core December 3, / 22

Optimal Monopoly Mechanisms with Demand. Uncertainty. 1 Introduction. James Peck and Jeevant Rampal. December 27, 2017

Transcription:

Hart Notes Matthew Basilico April, 2013 Part I General Equilibrium Chapter 15 - General Equilibrium Theory: Examples Pure exchange economy with Edgeworth Box Production with One-Firm, One-Consumer [Small Open Economy] 15B. Pure Exchange: The Edgeworth Box Denitions and Set Up Pure Exchange Economy An economy in which there are no production opportunities. Agents possess endowments, economic activity consists of trading and consumption Edgeworth Box Economy Preliminaries Assume consumers act as price takers Two consumers i = 1, 2; Two commodities l = 1, 2 Consumption and Endowment Consumer i s consumption vector is x i = (x 1i, x 2i ) Consumer i s consumption set is R 2 + Consumer i has preference relation i over consumption vectors in this set Consumer i s endowment vector is ω i = (ω 1i, ω 2i ) Allocation Total endowment of good l is ω l = ω l1 + ω l2 1

An allocation x R 4 + is an assignment of a nonnegative consumption vector to each consumer x = (x 1, x 2 ) = ((x 11, x 21 ), (x 12, x 22 )) A feasible allocation is x l1 + x l2 ω l for l = 1, 2 A nonwasteful allocation is x l1 + x l2 = ω l for l = 1, 2 These can be depicted in Edgeworth Box Wealth and Budget Sets Wealth: Not given exogenously, only endowments are given. Wealth is determined by by prices. p ω i = p 1 ω 1i + p 2 ω 2i Budget Set: Given endowment, budget set is a function of prices B i (p) = { x i R 2 + : p x i p ω i } Graph: Graphically, draw budget line [slope = ( p1 p 2 )]. Consumer 1's budget set consists of all nonnegative vectors below and to the left; consumer 2's is above and to the right Axes: horizontal is good 1, vertial is good 2 Origins: consumer 1 in SW corner (as usual), consumer 2 in NE corner (unique to Edgeworth boxes) Oer Curve = Demand (as a function of p) (A depiction of preferences i of each consumer) Asume strictly convex, continuous, strongly monotone 2

As p varies, budget line pivots around ω. Given this line, consumer demands most preferred point in B (p). This set of demanded consumptions makes up oer curve Just like demand function: x 1 (p, p ω 1 ) Curve passes through the endowment point. Also, since at each point endowment is aordable, every point on oer curve must be at least as good as ω i. Walrasian Equilibrium (a.k.a. Competitive Equilibrium), for an Edgeworth Box: Denition: Price vector p and an allocation x = (x 1, x 2) in the Edgeworth box such that for i = 1, 2 x i i x i for all x i B i (p ) At equilibrium, the oer curves of the two consumers intersect Any intersection of the oer curves outside of ω corresponds to a WE ( ) Only relative prices p 1 p 2 are determined in equilibrium, since each consumer's demand is homogenous of degree zero p = (p 1, p 2) is a WE Solving for WE strategy: = αp = (αp 1, αp 2) is a WE 1. Optimization: Max utility, using budget constraint to reduce number of variables 2. Demand: Solve for Demand (OC) as a function of price x li (p) 3. Market Clearing: Set total demand for a good equal to endowment: x l1 + x l2 = ω l (a) AKA solve for excess demand function z l (p) = x l1 + x l2 ω l, and then set it equal to 0. ( ) 4. Solve for price ratio p 1 p 2 (a) To determine p, only need to nd that for which one market clears. Other will necessarily clear at these prices. See PS1 Q6 3

Multple WE Can certainly have multiple WE, as you will have a WE any time the Oer Curves intersect more than once i.e. quasilinear utility with respect to dierent numeraires (doctored a bit, MWG 521) Non-existance of WE Two classic examples 1. Non-monotonic Preferences (a) Endowment on the boundary (b) Consumer 2 only desires good 1 and has all good 1. (c) Price of good 2 is zero. Consumer 2 strictly prefers receiving more of good 1 (but won't). But also prefers to receive more of good 2 at price 0. (d) No p at which demands are compatible i. [Since Consumer 1's demand for good 2 is innite at p 2 = 0] ii. Can also say: there is an x 1 1 x 1, x 1 B (p ), hence not a WE 2. Nonconvex Preferences (a) In example, consumer 1's oer curve is disconnected, so it does not intersect consumer 2's 4

Pareto Optimum Denition: An allocation x in the EWB is Pareto Optimal if there is no other allocation x in the Edgeworth box with x i i x i and i = 1, 2 and x i i x i for some i. An economic outcome is Pareto optimal if there is no alternative feasible outcome at which every individual in the economy is at least as well o, and some individual is strictly better o. Interior solution: consumers' indierence curves through x must be tangent Corner solution: tangency need not hold Pareto Set Set of all Pareto Optimal allocations Contract Curve The part of the Pareto Set where both consumers do at least as well as at their initial endowments 1st Welfare Theorem Any Walrasian equilibirum allocation x necessarily belongs to the Pareto Set 2nd Welfare Theorem Verbally: Under convexity assumptions (not required for 1st WT), a planner can achieve any desired Pareto optimal allocation by appropriately redistributing wealth in a lump-sum fashion and then letting the market work Denition: An allocation x in the EWB is supportable as an equilibrium with transfers if there is a price system p and wealth transfers T 1 and T 2 satisfying T 1 + T 2 = 0 such that for each consumer i we have: x i x i x i R2 + such that p x i p ω i + T i Note that p doesn't change; it is essentially the endowment ω that is moved by the transfers to get to the new x Failures Nonconvexities: May fail when preferences aren't convex (given budget line, consumer with nonconvex preference may prefer dierent point to intended x ) Monotonicity: (Figure 10(a) above). ω is PO, but cannot be supported as an equilibrium with transfers 5

15C: The One-Consumer, One-Producer Economy Set up Single producer, single rm; both are price taking. x 1 = leisure (and labor = z = L x 1 ); x 2 = good produced by rm Endowment: L of leisure, 0 of x2 (although consumer owns rm and gets prots, which are positive) Continuous, convex and strongly monotone dened over x 1 (leisure) and x 2 Production max pf (z) wz z 0 Given prices (p, w), [p is price of x 2, w is wage] rm has optimal labor demand z (p, w), output q (p, w) and π (p, w) Consumption max u (x 1, x 2 ) (x 1,x 2) R 2 + s.t. px 2 w ( L x1 ) + π (p, w) Budget constraint is from wage earning and prot from rm Walrasian Equilibrium Price vector (p, w ) at which consumption and labor markets clear: x 2 (p, w ) = q (p, w ) L x 1 (p, w ) = z (p, w ) 6

Graph Graphically: 15.C.1(b) is not an equilibrium; 15.C.2 is A particular consumption-leisure combination is an WE it maximizes the consumer's utility subject to the economy's technological and endowment constraints O f (producer's origin) in SE corner; takes x axis as z O c (consumer's origin) in SW corner as usual Budget constraint line has slope w π(p,w) p and intercept p. This is the isoprot line of the rm's prot maximization problem: ( z, q) : pq wz = π (p, w) 16: Equilibrium and Its Basic Welfare Properties Basic Model Denitions I consumers, J consumers, L goods Consumer i consumption set X i R L Preferences i dened on X i, rational (complete & transitive) Endowment vector ω = (ω 1,..., ω L ) R L Firm production set (or technology) Y j R L. Every Y j (nonempty), closed. ) Basic data on preferences, technologies and resources for this economy are summarized by ({(X i, i )} Ii=1, {Y j} Jj=1, ω Feasible Allocation (x, y) Denition: A feasible allocation is a vector (x 1,..., x I, y 1,..., y I ) s.t. 1. x i X i i 7

2. y j Y j j 3. i x i = ω + j y j The set of feasible allocations is denoted by A = R L(I+J) { (x, y) X 1 X I Y 1 Y I : i x i = ω + } j y j Pareto Optimum Denition: A feasible allocation (x, y) A is Pareto Optimal if (x, y ) A s.t. x i i x i and x i x i for some i. i Private Ownership Economies Endowment: Each consumer i has initial endowment ω i R L Shareholding: Each consumer i has shareholding θ ij in rm j θ ij [0, 1] i, j i θ ij = 1 j Data on preferences, technology, resources and ownership are summarized by ( ) {(X i, i )} I i=1, {Y j} J j=1, {ω i, θ i1,... θ ij } I i=1 Walrasian Equilibrium { }) Given a private ownership economy specied by ({(X i, i )} Ii=1, {Y j} Jj=1, (ω i, θ i1,..., θ ij ) I i=1, An allocation (x, y ) and a price vector p = (p 1,... p L ) constitute a Walrasian (or competitive) Equilibrium if: 1. p y j p y j y j Y j (a) [π max: That is, for every j, yj maximizes prots in y j] { 2. For every i, x i is maximal for i in the budget set x i X i : p x i p ω i + } j θ ijp yj (a) [Hence x i i x i = p x i > p ω i + j θ ijp y j ] (b) [Consumers maximize utility subject to budet constraint, and anything strictly better is unattainable] 3. i x i = ω + j y j (a) [Demand = supply (L equations, one for each good)] Note that if p = 0, then all are satised except (2), since can be another bundle with more of a good that is aordable. Local Nonsatiation Denition: The preference relation i on the consumption set X i is LNS if for every x i x i and every ε > 0, x i X i s.t. x i x i ε and x i i x i Note that this assumes divisibility of goods, so it can't happen in a real economy. 8

1st Theorem of Welfare Economics Statement: Suppose i is LNS i Let (x, y, p ) be a WE Then (x, y ) is PO Proof: Suppose that (x, y, p) is a price equilibrium with transfers and that the associated wealth levels are (w 1,..., w I ). Recall that i w i = p ω + j p y j. 1. We have that if x i i x i = p x i > w i 2. LNS implies (which can be veried) x i i x i = p x i w i Consider an allocation ( x, y ) that Pareto dominates (x, y ). That is, x i i x i x i i x i for some i. By (2) we must have p x i w i i, and by (1) we must have p x i > w i for some i. for all i and Hence, i px i > i w i (and since i w i = p ω + j p y j ) we have px i > i i w i = p ω + j p y j Moreover, because y j is prot maximizing for rm j at price vector p,we have p ω + j py j p ω + j py j Thus i p x i > p ω + j p y j = contradiction of (3) in WE denition; ( x, y ) cannot be feasible Since (3), i x i = ω + j y j, implies i p x i = p ω + j p y j [Right Argument: [ By feasibility, x ω y = 0 i x i = ω + ] j y j [ p (x ω y) = 0 i p x i = p ω + ] j p y j Contradiction [Wrong Argument: p (x ω y) > 0 x ω y > 0, contradicts x ω y = 0] Importance of LNS Assumption Assumption of Local Nonsatiation rules out situation with thick indierence curves, as can be seen in EWB example. 9

See graph below: consumer 1 is indierent about a move to allocation x, and consumer 2, having strongly monotone preferences, is strictly better o. MRS at Prices [Calculus Proof - downside is corner solutions, 2nd order dierentiability, doesn't make as clear what you need. But it does have advantages, including helping us think in terms of marginal benets and costs] If consumers maximize utility subject to budget constaint, then MRS between any two goods will equal the price ratio between those goods. Since we all face same prices, all of our MRS are the same. Also, if rms are maximizing prot, the MRT (marginal rate of transformation) will equal relative prices. So MRS equalized across consumers, MRT equalized across producers, and MRTs = MRSs = price ratios. This is FOC for Pareto Optimum. Best way to do this is to give people utility functions. Maximize one person's utility s.t. all other utilities being at least at some level. (max u 1 s.t. u i ū i, technological constraints). The FOC will say MRT = MRS. Conclusion: WE satises FOCs for a PO. If then assume everything is convex, then FOCs will also be sucient for a global optimum. We still need to worry about corner solutions (for MRT=MRS) 2nd Welfare Theorem Price Equilibrium with Transfers: Denition: (x, y, p )is a price equilibrium with transfers if an assignment of wealth levels (w 1,..., w I ) with i w i = p ω + j p yj such that 1. j, y j Y j and p y j p y j y j Y j (a) y j maximizes prots 2. i, x i RL +, p x i w i and x i i x i = p x i > w i (a) MWG style: For every i, x i is maximal for i in the budget set {x i X i : p x i w i } (b) Anything strictly better o is unattainable 3. i x i j y j ω = 0 10

Price Quasiequilibrium with Transfers: Only part that changes is from > to in (2) Denition: (x, y, p )is a price equilibrium with transfers if an assignment of wealth levels (w 1,..., w I ) with i w i = p ω + j p yj such that 1. j, y j Y j and p y j p y j y j Y j (a) y j maximizes prots 2. i, x i RL +, p x i w i and x i i x i = p x i w i 3. i x i j y j ω = 0 Statement 1 of 2nd WT: i) Y j is convex j Suppose ii) i is convex i iii) i is LNS i Let (x, y ) be Pareto Optimal. Then there exists a price vector p 0 s.t. (x, y, p ) is a quasiequilibrium with transfers. [If you have a quasiequilibrium, then competitive market equilibrium if distribution of wealth is appropriate (15:40)] [Proof preliminaries:] The mathematical tool is something called separating hyperplane theorem. Took years to realize this was the right tool; they used to use calculus (i.e. Samulson). Would say Pareto optimum, use FOC. From this MRS must be equal between consumers for any good; this must be equal to MRT across rms. This is assuming no corner solutions. So if all marginal rates equal, then can set prices equal to all marginal rates. These prices satisfy all FOCs. If we assume everything so that FOCs are necc and su, then consumers will be maximizing according to their budget constraint. So we can adjust budgets to get consumers to consume at desired level. In both approaches, assume convexity. The advantage is that this proof shows what is really driving things. Arrow-Debreu realized in early 1950s that you could do it this way. [Basic idea of proof:] (21:00) Suppose have two goods (Figure 16.D.1) Hyperplane is something which has one dimension less than full space (n 1) dimensional Dissecting Hyperplane Theorem: If you have two convex sets which don't intersect, then you can nd a dissecting hyperplane. Careful! If two convex sets intersect in one point, then can't necessarily separate them (look at two lines that intersect) 11

What we will do is see that feasible production set does not intersect what lies above the set that is preferred to the (consumption set?)] (26:00) Proof: Dene { } V i = x i R L + x i i x i i Let V = V i Let Y = Y i [Notes] For every i, the set V i of consumptions preferred to x i V is the aggregate consumption bundles that could be split into I individual consumptions, each preferred by its corresponding consumer to x i Y is simply the aggregate production set Note that Y + { ω}geometrically the aggregate production set with its origin shifted to ωis the set of aggregate bundles producible with given technology and endowments (and therefore usable for consumption). Set addition: When you add sets, A + B = x x = a + b for some a A, b B, i.e. (1, 0, 1/2)+(0, 1, 1/4)=(1, 1, 3/4)] Step 1: V i is convex i Proof: Suppose that x i i x i, x i i x i. Take 0 α 1 WOLG assume x i i x i (by completeness) Since i is convex, αx i + (1 α)x i x i i x i By transitivity: αx i + (1 α)x i i x i [ αx i + (1 α)x i V i] Step 2: V is convex, Y + {ω} is convex Proof: (The sum of convex sets is convex) Step 3: V (Y + {ω}) = 12

Proof: This is a consequence of the Pareto Optimality of (x, y ). [If not there exists x V, x Y + {ω} Can write x = i x i, x i V i i, x = j y j + ω, y j Y j j This would mean that with the given endowments and technologies it would be possible to produce an aggregate vector that could be uesd to give every consumer i a consumption bundle that is preferred to x i.] Step 4: (41:49) p = (p 1,..., p L ) 0 and a number r s.t. p z r z V p z r z Y + {ω} Proof: This follows directly from SHT (Separating Hyperplane Theorem). [Hyperplane is { z R L p z = r } ] Step 5: If x i i x i i, then p ( i x i) r [This is saying that if I put i then we'd already know if from above, since it would be in V. Only additional element here is going from to ] Proof: By local nonsatiation, we can nd (x i ) i=1,...,i arbitrarily close to x i s.t. x i i x i = x i i x i = x i V i = i x i V 13

p ( i x i ) r Take limits as x i x i i By continuity p ( i x i) r Step 6: p ( ( ) i x i ) = r = p j y j + ω Proof: By Step 5, p ( i x i ) r But we also know: i x i = j y j + ω (feasible allocation) p ( ( ) i x i ) = p j y j + ω r p ( ( ) i x i ) = r = p j y j + ω Step 7: j, p y j p y j y j Y j Proof: Consider a particular j. Let y j Y j Then y j + k j y k ( Y Therefore, p y j + ω + ) ( k j y k r = p yj + ω + ) k j y k Hence, p y j p y j [If it's prot maximizing in the aggregate, then it must be maximizing at the individual level. If this weren't the case, then let some rm maximize prot, keep everyone else the same, then prot increases in the aggregate] Step 8: Let w i = p x i i w i = p ( i x i ) = r = p ( i y i + ω) Proof: [Last two equalities from previous steps] Step 9: x i i x i = p x i w i Proof: Suppose x i i x i Then certainly x i i x i 14

( p x i + ) ( k i x i p x i + ) k i x i (by step 5) = p x i p x i = w i Conclusion (1) follows from Step 7 [ j, yj Y j and p yj ] p y j y j Y j (2) follows from Step 9 [ i, x i ] RL +, x i i x i = p x i w i [ (3) follows from feasibility of Pareto Optimal allocation (x, y ) i x i ] j y j ω = 0 Price Quasiequilibrium that is not a Price Equilibrium Can we conclude that (x, y, p ) is a WE with transfers? The answer is not always. Famous counterexample that we saw in Ch 15. The price vector that solves the quasiequilibrium is p = (p 1, 0). Consumer 1's consumption bundle x 1 = (0, ω 2 ) satises (2) of the denition of price quasiequilibrium. Any better bundle is at least as expensive However, it is not consumer 1's preference-maximizing bundle in her budget set. (She would have innite demand for good 2) Not WE because better bundle doesn't cost more An important reason for failure is that consumer 1's wealth level at the quasiequilibrium is zero. Final note: Problem with not assuming covexity 15

From Quasiequilibrium to Equilibrium in 2nd Welfare Theorem 1. Assume p x > 0 Lemma: If not at zero wealth, then a strictly preferred bundle is more expensive (2:00) Suppose x X i = R L + and p, w i s.t. x i i x i = px i w i Then if there exists x i X i s.t. px i < w i, it follows that [Anything strictly prefered to x i x i i x i = px i > w i is outside the budget constraint] Proof: (by contradiction) Suppose x i i x i and p x i = w i (We know can't be <) Consider y = αx i + (1 α) x i X i, 0 < α < 1 p y < w i By continuity of i = y i x i for α close to 1. This contradicts x i i x i = px i w i (above). From last time had a price quasiequilibrium with transfers. Let's just add: if p x i > 0 i, then (x, y, p ) is a price equilibrium with transfers. (9:50) Problem with this is that it is endogenous. 2. Make Assumptions that will give Equilibrium 3 Assumptions for Equilibrium (One approach): 1. Assume i are strictly monotonic (which means if I give you more than any good, you are strictly better o) 2. Also assume ω 0 3. And 0 Y j j (any rm could shut down) (Quite strong assumptions, but then we are ready to make some progress) Then p 0 in any price quasiequilibrium Proof: We have in price quasiequilirbrium ( ) x i i x i = p x i p x i 1. p 0 (a) Since if have negative prices for any good, just consume more of that good which violates the above (*) 16

2. i w i = i ( p ω i + ) j θ ijp yj (this is just total wealth in the economy i w i) (a) = p ω + j p y j (b) p ω > 0 = w i > 0 for at least one i, say k i. For k : x k x k = p x k > p x k ii. Consumer k would buy an innite amount of good l if it was free (c) = p 0 i. For consumer i k: 2 cases A. x i 0, then p x i > 0 (cost of your bundle has to be strictly positive B. By Lemma: x i i x i = p x i > p x i C. x i = 0 D. They are starving. But they are still maximizing utility subject to their budget constraint. They have no wealth, p 0, hence the best they can do is to consume nothing. 3. Everyone is maximizing utility subject to their budget constraint, so we have established that this is a full equilibrium (a) This is the kind of thing you can do if you don't want to just assume p x i endogenous. > 0, which is (b) Here we've shown everything works if you have strongly monotone preferences, ω 0. i. These are pretty strong assumptions. You can weaken them and there was a lot of work on this in 50s and 60s. Importance of Convexity Assumptions How important are convexity assumptions? We've seen they are important However, if we do look at a large economy, these convexity assumptions becomes much less serious [Don't have time to go into the details, but sketch. There's much more about this in the literature] Take upper contour sets, and take convex hull of those sets Show modied economy; want to show that feasible allocation is feasible for the original economy (only if there are a large number of people) Take pareto optimum; then go back and say how can you sustain? It's by this trick of having some above and some below. The way this is done is to not have anyone actually consuming that bundle, but to have half below and half above (x 1 and x 2) Figure 16.D.5 You can also do this with production (34:00) 17

However can only do this if convexities are bounded. If there are increasing returns to scale forever, then rms will want to be huge [ How interesting is the 2nd welfare theorem?] At rst, seen as more important because the math is more subtle (separating hyperplane theorem) Hard to say what it means: interested in a benevolent planner, who has found out somehow what a pareto optimum is, who reads this theorem, and says could achieve pareto optimum. But they could also mandate the equilibrium without using prices. But planners, even if benevolent, don't have perfect information. Then you're in 2nd best world, then can't achieve pareto optimum, and then 2nd welfare theorem doesn't apply. For example; Income tax: people know own ability, planner doesn't. Planner wants to redistribute from high to low ability. But you can't have a lump sum transfer, b/c you don't know who's who. If you ask, high types have incentive to lie. Given this, you end up with an income tax. Won't just have T=100, but rather T = t(y i ), earned income. But with these taxes you have an incentive eect, don't have incentive to work as hard in the model. Idea is that once you do all this, you are quite far away from 2nd welfare theorem. So moral of the story is that is it not really clear to know where the 2nd welfare theorem is applicable. Hart: thinks that for economics, the rst is more important. Formalization of the invisible hand Ch. 17: Existance of Walrasian Equilibrium Expressing Equilibria as the solution to a system of equations Will give us a little sense of the literature, but there are tons of things that won't be covered. For purposes of formal analysis, extremely helpful to be able to express equilibria as a system of equations. Much of what follows is studying how this can be done 18

Excess Demand Function Pure Exchange Economy Set Up Focus on a pure exchange economy. X i = R L + i i rational, continuous i ω i R L + i ω = i ω i 0 Walrasian Equilibrium Walrasian Equilibrium (x 1,..., x I, p ) s.t. 1. i, p x p w i and x i i x i = px i > p w i 2. i x i = ω Further Assumptions: Monotonicity, Convexity We also assume i is strictly monotonic i i is strictly convex i these imply p 0 So we can talk about demand functions. Excess Demand z(p) Demand functions for each i Excess demand: z(p) z (p) i x i (p, pω i ) ω x i (p, w) R L + solves : max i s.t. px w, with p 0, w 0 Walrasian Equilibrium, Restated: Walrasian Equilibrium 19

p s.t. z (p ) = 0 (can also be stated as z l (p ) = 0 for every l = 1,..., L) If some component is not 0, this means that market is not clearing. Properties of Excess Demand Function Proposition: Excess demand function z satises: 1. z is continuous (a) Excess demand functions are continuous since it is a sum of demand functions that are continuous 2. z is homogenous of degree zero z (λp) = z (p) λ > 0 3. p z (p) = 0 (a) Walras' law 4. s > 0 s.t. z l (p) > s l, p (a) Whole z function is bounded below by s (b) Since x i 0, which means x i ω i ω i, which means that i (x i ω i ) ω, and we see that i (x i ω i ) = z. 5. If p n p, where p 0 and p l = 0 for some l, then max (z 1 (p n ),..., z L (p n )) (a) We're interested in convergence where some (but not all) prices are going to zero. This tells us that some excess demand will go to inninty. (b) Suppose the prices good one are going to 0, and other prices are positive, and they like good one, then consumers would load up on it (buying more and more of it). So then since demand for one good is going to, the max is going to (c) More subtle case: suppose 2 goods [p 1, p 2 ] are becoming very cheap, and others are not. p 2 might be going to zero much faster than p 1 (so z 1 (p n ) not necessarily going to ) what you can prove is that you'll load up on something, but may not loading up on everything. i. This is why we need the max in the above expression Existance Question: Is there such a p? (or are there more than one?) 20

z 1 (p 1,..., p L ) = 0 z 2 (p 1,..., p L ) = 0. z L (p 1,..., p L ) = 0 Equation Counting: L equations, L unknowns. But more complicated than this: Result: If (x 1,..., x I, p ) is a WE, then so is (x 1,..., x I, λp ) λ > 0 This is just saying that if I double prices, the budget constraint gets doubled, so whatever you were doing before is still optimal. There is no money in this economy. For the equation counting approach, this poses some diculties. We can just normalize the price of one good to 1. So we'll start out saying p L = 1. But now have decreased number of unknowns. But now system is overdetermined (more equations than unknowns). However, turns out we don't need to worry about this because of Walras' law, which will get rid of 1 equation. This will leave us with (N 1) equations, (N 1) unknowns. Proof of Walras' Law: Back to consumers' problem: (1:04:00) max i s.t. px i w i Solution: x i (p, w i ) px i (p, w i ) = w i = pω i Walras' Law (Proof): ( pz(p) = p x i (p, pω i ) i i ω i ) = i p (x i (p, pω i ) ω i ) = 0 }{{} =0 It is telling us in and out of equilibrium: whatever prices are out there, if people report excess demands, if you add them up, the value of excess demands is 0. Everybody is spending everything they have, which means that net value of demands is 0. If you're buying something, you must be selling something to satisfy your budget constraint. Can't have a net decit or a net surplus. Formally: Because of Walras' law, to verify that a price vector p 0 clears all markets, it suces to check that it clears all markets but one. If p 0 and z 1 (p) = = z L 1 (p) = 0, then because p z (p) = l p lz l (p) = 0 and p L > 0, we must also have z L (p) = 0. This gets rid of an equation, so we we're back to L 1 equations, L 1 unknowns. [Though remember that equation counting is just a rst step, need to go further] A simple proof of existance: 2 consumers, 2 goods 21

We can do everything in the edgeworth box. Draw indierence curves from endowment point. center., with price line Draw Price line will cut in between them towards the Endowment point Indierence curves (through initial endowment point) Price line (such that it needs to go through the initial endowment How do we know there is such an outcome? What you do is look at the contract curve The Pareto optima when everyone's preferences are strictly convex. The set of Pareto optima in between the two indierence curves are called the contract curve That is, the set of Pareto allocations that are individually rational So each consumer is at least as well o as if they walked away with their initial endowment Move along the contract curve. At each point can draw the common tangent. As long as everything is continuous, it common tangent must go through contract curve somewhere. Where it does, we have a WE, by denition Informal Proof, but quite instructive. It doesn't rule out multiple equilibria. 22

Existance of GE Conditions: z (p) is a function dened for all strictly positive price vectors, satisfying conditions 1-5 above i continuous, strictly convex, strongly monotone i i ω i 0 Proposition: Proof: Preliminary: p s.t. z(p) = 0 [ Let = p R L + ] p i = 1 i [Just normalizing prices in a conventient way.] Construct f : Step 1: Construction of the xed-point correspondence for p interior For p interior Let f(p) = {q q z (p) q z (p) q } In words: q will maximize (among the permissible price vectorsthose in ) the value of the excess demand vector. Intuitively, this will assign the highest prices to the commodities that are most in excess demand. [z 1 (p) 0, i.e. z(p) = (1, 2, 5, 6). The value of q will be (0, 1, 0, 0)] In particular, we have f(p) = {q : q l = 0 if z l (p) < max {z 1 (p),..., z L (p)}} If z (p) 0 for p 0 then because of Walras' law [p z (p) = 0] we have z l (p) < 0 for some l and z l (p) > 0 for some l l. Thus, for such a p, any q f (p) has q l = 0 for some l. In contrast z (p) 0 = f (p) boundary 23

z (p) = 0 = f (p) = Step 2: Construction of the xed-point correspondance for p boundary For p boundary Because p l = 0 for some l, we have f (p) f (p) = {q q p = 0} Note that no price on the boundary can be a xed point That is, p boundary and p f (p) cannot occur because p p > 0 while p q = 0 for all q f (p) [Ex: p = ( 0, 1 4, 3 4) ; q = (1, 0, 0)] Step 3: A xed point of f ( ) is an equilibrium Suppose that p f (p ) Since by step 2 we saw that we cannot have p boundary if p f (p ) We must have p 0 We cannot have z (p ) 0 Since we saw in step 1 that f (p ) boundary, which is incompatible with p f (p) and p 0. Hence if p f (p ) = z (p ) = 0 Is f (p) convex? Yes. (Kakutani's FPT) Step 4: The xed-point correspondence is convex-valued and upper hemicontinuous [See MWG] Step 5: A xed point exists. Kakutani's xed point theorem: A convex-valued, upper hemicontinuous correspondence from a non-empty, compact, convex set into itself has a xed point. Since f ( ) is a convex-valued, upperhemicontinuous correspondance from to, and is a nonempty, convex and compact set, we conclude that there is a p with p f (p ). 24

Examples of Non-Existance Two classic examples (same as Ch 15) 1. Non-monotonic Preferences (a) Endowment on the boundary (b) Consumer 2 only desires good 1 and has all good 1. (c) Price of good 2 is zero. Consumer 2 strictly prefers receiving more of good 1 (but won't). But also prefers to receive more of good 2 at price 0. (d) No p at which demands are compatible i. [Since Consumer 1's demand for good 2 is innite at p 2 = 0] ii. Can also say: there is an x 1 1 x 1, x 1 B (p ), hence not a WE 2. Nonconvex Preferences (a) In example, consumer 1's oer curve is disconnected, so it does not intersect consumer 2's Extra Issues Uniqueness? Would be very nice but it's hard to get. (see graph 3 - nothing pathological about this) 2 cases where you get it 1. Assume aggregration of consumers (a) If we assume a normative representative consumer (b) unique pareto optimum (PO) (c) unique WE allocation i. [sort of approach that macroeconomists rely on quite a bit] 25

2. Gross substitutes (a) If z satises GS if: if p and p are s.t. for some l, p l > p l and p k = p k k l then z k (p ) > z k (p) k l (b) This is a strong assumption, but it does get you what you want. Proof: Suppose z(p) = z (p ) = 0, p p. By homogeneity of degree zero, we can assume that p p and p l = p l for some l. Now, consider altering the price vector p to obtain the price vector p in L 1 steps, lowering (or keeping unaltered) the price of every commodity k l one at a time. By gross substitution, the excess demand of good l cannot decrease in any step, and because p p, it will actually increase in at least one step. Hence z l (p) > z l (p ) Locally unique if Finite number Odd number Eq set is continuous in underlying geometry Sonnershien-Debreu-Mantel Theorem: Anything Goes (See book) Roughly: Given a function z : R L ++ R L that satises z homogeneous of deree 0 in p pz (p) = 0 p R L ++ we can nd an economy that has z as its excess demand function (Can also go much further and see that this economy is well behaved...) Ch. 18: Core Alternative notion of equilibrium based on the idea of cooperative behavior Discovered by Edgeworth (1881), but then lay fallow until 1950s by cooperative game theorists. Set up: Exchange Economy (for simplicity) I consumers i L goods 26

ω i A coalition is a subset S of {1,..., I} = I, S I. Blocking Denition: Consider a feasible allocation (x 1,..., x I ) 1. x i R L + i 2. i x i = i ω i We say that a 'coalition' S blocks (x 1,..., x I ) if (x i ) i S s.t. 1. x i i x i i S, x i i x i for at least one i S 2. i S x i = i S ω i Must be feasible allocation just to the subset to whom there is one person who can benet (and no one is worse o) Core Denition Denition An allocation is in the core if it can't be blocked by any coalition Is core nonempty? Indeed, in many games it can be empty. But in economic environments we're alright: under a few assumptions it isn't empty. Core in Edgeworth box Contract curve lying between Pareto optima 27

Core when i = 2: The core for for i = 2 is just the set of Pareto optimal allocations, which can be found by equating the marginal utilities of the two consumers. Important Core Propositions Any Core Allocation is Pareto Optimal Since have the set S = everybody Any Walrasian Equilibrium is in the Core Proposition: Proof: Any Walrasian Equilibrium is in the core (Assuming all consumers are LNS) Let (x, p ) be a WE. Suppose not in the core. Then we can nd S I and (x i ) i S s.t. [from above] 1. x i i x i i S, x i i x i for at least one i S 2. i S x i = i S ω i We also established earlier x i i x i = p x i > pω i x i i x i = p x i pω i 28

If we just add over people in the coalition ( p x i ) ω i > 0 = p x i > p ω i i S i S i S i S We see this violates (2) Intuition: The value of the alternative allocation must be greater than the value of our endowment. Which means it's not feasible for us. Converse: Converse (that every core allocation is WE) of course is not true. It will later be argued that the converse does approximately hold if consumers are numerous. Core Convergence In a very large economy, the core and the set of WE are the same. We'll look at economies with N of each type. (gure 3) Start with EW Box economy. Now think of economy with 2 2's and 2 1's. Look at a coalition with 2 2's and 1 1. A new equilibria will be proposed.... So we see that core shrinks as you add consumers. N-Replica Economy Debreu-Scarf 1963 Set up H types of consumers h = 1,..., H N number of consumers of each type Consumer h has consumption set R+, L h strictly convex h = 1,..., h, ω h R+ L Replica economy E N : I = NH, N consumers of type h = 1,..., H WE of E N = WE of E 1 Observation 1: 29

WE of E N WE of E 1 Let's start with something that is a WE in E 1. There are prices, people are utility maximizing, demand = supply. Now larger economy. Each consumer will do what their type did in smaller economy. Markets will clear again old WE will still be a WE. Converse is also true. Because of strictly convex preferences, will be a unique solution is all maximizing utility subject to budget constraints. So if demand = supply, it must be that demand=supply for all cross-sections of the economy. Equal Treatment Property Proposition: Any allocation (x hn ) h = 1,..., H n = 1,..., N in the core of E N has the equal treatment property The equal treatment property: x hj = x hk h, j, k Dierent members of the same type will get the same bundle Proof: Suppose not. Form coalition of losers: Choose from every type the person who is treated worst in that type. (Can compare within each type, since have same preferences). Let x h = 1 N N j=1 x hj h = 1,..., H h x h = 1 N h j x hj = 1 N (N h ω h) = h ω h Formally WLOG suppose that for every type h, consumer h1 is the worse-o individual [x hn h x h1 h, n] Dene the average consumption for each type: ˆx h = 1 N n x hn Form the coalition S = {11,..., h1,...h1} (the worst o members) attaining the average bundle (ˆx 1,..., ˆx h ) See that ˆx h h x h1 for all h and for the group not treated identically (WLOG h = 1) ˆx 1 1 x 11 30

So will block as long as feasible Check feasibility: Note that since x is feasible, there is y Y such that h n x hn = y + N ( h ω h) Dividing by N: h ˆx h = 1 N h n x hn = 1 N y + ( h ω h) By constant returns assumption on Y : 1 N y Y Hence we conclude (ˆx 1,..., ˆx H ) R LH + is feasible for coalition S. Core Convergence Theorem } Can represent the core of E N, C (E N ) = {(x h ) h=1,...,h Proposition: If the feasible allocation x = (x 1,..., x H ) RLH 4 has the core property for all N = 1, 2,..., that is x C N for all N, then x is a WE allocation [Telling us is that C (E N ) shrinks to set of WE] Proof: Assume that people (consumer h) have continuously dierentiable utility functions U h. Proof by contradiction Suppose that x C (E N ) N By the 2nd Welfare Theorem, x must be a Pareto Optimum for E 1. Assume (p, x ) is not a WE. Form coalition kicking out a most favored [Form a blocking coalition by getting rid of one of the most favored and have everybody else in the coalition] = p x h > p ω h for some h, WLOG h = 1 the most favored Let S = everybody except one type h. Each coalition consumer gets new bundle x h by dividing most favoreds surplus over the rest of the coalition x h = x h + 1 N 1+N(H 1) (x 1 ω 1 ). (Dividing what we were handing over to 1, and giving it to everyone else. This will ensure that demand = supply for people in the coalition) 31

Argue that for N large enough, this is an unambiguous gain. 1. First we see that p (x 1 ω 1 ) > 0 implies u h (x h ) (x 1 ω 1 ) > 0 (a) Since p u h (x h ) (b) [The rst equation means the most favored has wealth above endowment] 2. From Figure 18.B.3 (or Taylor expansion), we see that there is an ᾱ > 0 such that for every h, u h (x h + α (x 1 ω 1 )) > u h (x h ) when 0 < α < ᾱ. 1 3. Hence for any N large enough that N 1+N(H 1) < ᾱ, the coalition will actually be blocking Intuitively, if N is large, each consumer in the coalition is taking only a very small fraction of the most favored's surplus. Hence the individual gains will be at the margin and thus individually favorable. One application of the core result Argument for free trade Can a country be worse o after trade with ROW than before? [Look at 2 extremes from no trade, to completely free trade. Could that be bad?] Core: tells us it is impossible for everyone to be worse o. Because, if that was true, then country could block, and go back to their old way So Core says somebody must be better o. And actually says there's a net gain. Then we can have an equilibrium with transfers that makes everyone better o 32

Ch 19: General Equilibrium Under Uncertainty Introduce Uncertainty (& time) Suppose that there is a nite number of states of the world. s = 1,..., S A state of the world is a complete (exogenous) description of a possible outcome of uncertainty. States of the world are mutually exclusive Easiest examples of states of the world involve things like weather. Because it is a complete description. Can represent these in a tree diagram (points a one node a t = 0, S nodes at t = 1) Double tree diagram intermediate time nodes are not states of the world because they are not complete descriptions We can extend the previous analysis if we are prepared to (make a big assumption) assume a complete set of contingent commodity markets. [Arrow (1953), Debreu (1959)] Example: Say price of apple at date 0 is $1, and price of apple at date 1 state 3 is $.50. Why? 1. People like apples now as opposed to tomorrow? (discounting) 2. People don't believe state 3 is likely? (probability) What if they don't deliver? Arrow-Debreu assume that there is very tough legal framework. Arrow-Debreu We have contingent commodity markets. Contingent commodities are those whose delivery is conditional on a certain state of the world being realized. All contingent commodity markets operate at date 0. People's initial endowments, producers' production plans, and peoples' shares in rms are also state-contingent. The First and Second Welfare Theorems still hold in terms of ex ante utility/welfare. Existence is also a-ok as long as we have the convexity assumptions above. Remember that MRS is the ratio of marginal utilities of goods. This comes in handy in certain problems. If consumers are risk-neutral, their MRS will equal the probabilities of realizing each state (i.e. MRS = π1 π 2 ). If there is aggregate risk, the MRS will not be the same as the probability ratio. [Thanks Heather S] 33

Arrow-Debreu Equilibrium Looking at contingent commodity markets where consumers buy and sell commitments to receive or deliver certain amounts of contingent commodities if a certain state occurs. The Walrasian equilibrium in these markets is called an Arrow-Debreu equilibrium. Formally, an allocation (x i,..., x I, y 1,..., yj ) is an Arrow-Debreu eqm if: 1. producers are maximizing: py j py j y j Y J 2. consumers are maximizing given their budget sets: x i X i : px i pω i + θ ij py j and x i x i px i > w i 3. markets clear: x i = y j + ω i Properties of Arrow-Debreu: Walrasian Equilibrium WE: (p, x 1,..., x I ) s.t. 1. x i RL(S+1) +, p x i p ω i, x i i x i = p x i > p ω i 2. i x i = i ω i 1st and 2nd Welfare Theorems Hold This is for ex-ante beliefs ex-ante Pareto optimality implies ex-post Pareto optimality, and hence no ex-post trade [Risk aversion makes things nice. Recently have been eorts to incorporate. We're not going to worry about this here] Example: T = 2, X i = R L(S+1) +, x i = over X i Leading expression: s π ( ) siu si x 0 i, x 1 si ( x 0 i, ( ) ) ( x 1 si, ω s=1,...,s i = ωi 0, ( ) ) ωsi 1, i has preferences s=1,...,s i Consumer has state independent preferences: s π ( ( ) ( )) si Vi x 0 i + δi V i x 1 si Transition to Arrow: That we have all these contingent commodity markets seems crazy. 34

Sequential Trade - Arrow Simplication Intuition: Arrow - we can interpret the contingent commodity market equilibrium as: Instead of contingent commodity markets, assume that at date 0, markets open for L date 0 goods, and markets for securities. Date 0: L + S markets Date 1: L markets Set up Suppose we have two dates only (simple tree) Exchange economy L goods in each state at date 1 X i = R LS + i Agent i s preferences: π si u si (x si ) Endowments: ω i = (ω 1i,..., ω Si ) System of Prices (q, p) R S R LS q s =price of Arrow security p s = goods price vector at date 1 in state s Contingent Commodity trading plan z i = (z 1i,..., z Si ) Set of Spot commodity trading plans: x i = (x 1i,..., x Si ), x 1i, x si R L + At date 0, markets for S Arrow securities (z si ) pay (with price q s ) $1 in state s $0 in all other states At date 1, markets for L goods opens Consumer's Problem At date 0, Consumer i solves: (zi, x i ) must solve max i π si U si (x si ) s.t. S + 1 budget constraints for each consumer i, (1) for security market, and (2) for each spot market 35

1. q s z si 0 2. s p s x si p s ω si + z si (a) consumer believes that at state s this will be the price vector (b) must obey budget constraint for each state of the world. as long as you're correct about predicting these prices you'll be able to honor the promises that you've made. A REE (Rational Expectation Equilibrium) q R S p = (p 1,..., p s) R LS (z i ) i=1,...,i, z i RS i collection of portfolios for consumers (x i ) i=1,...,i, where x i RLS + i list of consumption plans for the consumers s.t. 1. consumer optimization problem above holds i 2. i z i = 0, i x si = i ω si s Transition: 1:1 relationship between this equilibrium an the complete market equilibrium (what we got assuming contingent commodity markets) (30:00) Arrow-Debreu complete contingent commodity market equilibrium Arrow sequential trade equilibium (with RE) [OH wants just sketch of proof] Arrow Arrow-Debreu 1. Arrow Optimization Problem max i π si u si (x si ) s.t. (a) (b) q s z s = 0 s p s x si = p s ω si + z si 36

2. Substitute for z si = p s x si p s ω si, so both budget constraints become: q s (p s x si p s ω si ) = 0 3. Re-write as ((q s p s ) x si (q s p s ) ω si ) = 0 4. In other words it's the same as, Let ˆp s = q s p s s s ˆp s x si s s ˆp s ω si = 0 Which is also This is the identical construction as before. ˆpx i = ˆpω i where ˆp = (ˆp 1,..., ˆp S ) Arrow-Debreu Arrow 1. Arrow-Debreu Optimization Problem (a) Have some prices ˆp (b) Agents solving 2. Dene p s, z si s.t. (a) Arrow: Let ε s = 1 s, p s = ˆp s. (b) Claim: let z si = p s x si p s ω si max x i π si u si (x si ) s ˆp s x si s s ˆp s ω si We know that in this economy, consumer i will choose the same x i 's as before...z si = p s x si p sω si 3. Re-write maximization problem with p s, z si in Arrow style: max i π si u si (x si ) s.t. (a) q s z si 0 s 37

(b) p s x si p s ω si + z si 4. Substitute z si = p s x si p sω si s q s z si = s (q s p s ) x si (q s p s ) ω si = s ˆp s x si s ˆp s ω si = ˆpx i ˆpω i = 0 All that we have to know now is that markets clear. [We can dene the z's to satisfy the budget state-by-state] ( p s i i x i i ω si ) = 0 Incomplete Markets (Not edited\cleaned) An obvious reaction to what we've done so far is that yes, Arrow has brought us closer to reality (although RE assumption); but clearly don't have all these futures markets. So look at incomplete markets. Assume some securities exist and others don't. Early contributions: Diamond (1967), Radner (1972). Some of this is called Radner equilibrium. One of the things you can do is to assume... Same set up as in Arrow But at date 0 you have K securities are traded Security k pays (r 1k,..., r sk ) where r sk R L + Best way of thinking of this is buying a share in rm. What are you getting? If the rm is producing a vector of goods. Can think of it as a shareholder you're getting some portion of that share of goods. This is a vector of goods in every state Goods markets reopen at date 1 RE (rational expectation) Radner equilibrium List of security prices q R K (p s ) s=1,...,s 38

Optimal portfolios z i RK i x i = (x i1,..., x is ) RLS + 1. (z i, x i ) solves: max x π si u si (x si ) s s.t. qz 0 Now: K p s x si p s ω si + z ki p s r sk k=1 2. Markets clear zi = 0 i x si = i i ω si i All we're trying to capture here is that the number of trading opportunities around may be limited If only one security, no one would trade (there's nothing to trade) Questions: Does a Radner eq exist? Is it Pareto Optimal? Clearly not generally rst-best PO First-best - means planner can do better than market, since planner can do things that are not available in the market e.g. L = 1, S = 2, K = 0, 1 Andy: If K < S then you can't fully insure (1:14:00) But what about constrained Pareto Optimality? Can a planner, s.t. same constraints as market do better? First person to consider was Peter Diamond 1967 paper Looked at case where L = 1. Can set p s = 1 Get: x si = ω si + K k=1 z kir sk for b.c. 39

max s ) K π si u si (ω si + z ki r sk k=1 2. s.t. qz 0 zi = 0 What's happening is that people are buying goods i.e. S = 4 set (1, 1, 3, 7) and K = 2 sec ( 2, 8, 9, 1 2 redening this economy in kind of a characteristic space i Planner can't do any better than market does. Planner won't be able to make improvements. Next time: if have more than 1 good, result goes out the window. ) From last time: K new goods Let V i (z 1i,..., z Ki ) = s π si u si ( ω si + k z ki r sk ) Treat economy as a standard one with K goods: Prices q 1,..., q L Consumer i: max V i (z i ) s.t. q zi 0 CE in PO Meaning? A planner cannot nd (z i ) i=1,...,i s.t. i z i =0 and V i (z i ) V i (z i ) Eq q i z i = 0 i True if L = 1. What happens if L > 1? See Hart '75 JET Suppose K = 0 (or 1) S = 2, I = 2, L = 2 π 1 u 1 (x 11 ) + π 2 u 2 (x 21 ) 40

π 1 u 2 (x 12 ) + π 2 u 2 (x 22 ) If you could nd 2 market equilibria that are pareto ranked, then you can argue it Assume 3 equilibria in each state (see graph), A, B (medium), C in state 1, A', B', C' in state 2 Assume (A, C ) is an equilibrium in economy Claim: this is likely to be pareto dominated by another equilibrium (B, B ) Can this be generalized? See Geankopolos-Polemaschakis '86 Convey the fact that when you have incomplete markets you're going to have constrained markets, that this will fall apart when you have more than two goods (and/or more than two dates). Furthermore, can have multiple equilibria Assume two securities K = 2 (1, 2 + ɛ), (1, 2) Can have two euqilibrium for whole economy, one at these prices, but if you choose your parameters, Can also have no equilibrium (not robust knife-edge case) Prices may not be linearly independent you could have no trading in securities at all, since the prices will be linearly dependent Start with incomplete markets, add a market, then everyone is worse o Another thing that is bad about these settings: Firm behavior is hard to predict No clear maximization statement for rm behavior With incomplete markets Prots will be a random variable What do shareholders want? May disagree A big open issue here: why are markets incomplete? One answer: states not verifyable To have these Arrow securities, we better be able to verify that the state occurred. It is plausible that some of these states are not so easy to verify 41

Not a very good story for the following reason: S = 3, L = 1, K = 1. (1, 2, 3) single rm producing this bundle Argue: with a security lke this, even if states are not verifyable, ways of creating new securities = trade derivatives. I.e. I'll pay out 1 in state 1 if my share pays out 1. If it pays 2 or 3 then I know I don't need to pay. Or: option to buy 1 unit of sec 1 at date 1 at price 2.5 can go all the way as long as you can nd one rm in the economy that will payout dierently in a dierent state of the economy Part II 2nd Half of Course: Contract Theory Moral Hazard (Assymetric Information) Incomplete contracts 1 Principal-Agent Problem (Moral Hazard version) Problem Solving Formula* 1st best Max P's utility s.t. IR holds 2nd best Max p's utility s.t. IR, IC Substute FOC of IC 42

1.1 CARA Utility Model Lecture, BD 4.2 Not going to try to be very general. Look at a simple situation where you have a principle and an agent. P wants A to do something. P doesn't observe A's action a P puts A on an incentive scheme Assume P risk neutral (owner), A risk averse i.e. P could be insurer, A could be homeowner Assume q = a + ε Variables q is revenue a is eort (one dimensional) ε is noise Assume ε is normally distributed with mean 0 ε N ( 0, σ 2) P has all the bargaining power (WLOG) (you can trace the pareto frontier by varying ω) Won't go much beyond 2 people since we have our hands full Utility Functions: Agent: U A = e r(ω 1 2 ca2 ) CARA, ω minus some cost of eort, quadratic Assume agent not wealth constrained: utility function dened on (, ) Principal U P = q ω At t = 0, M1 and M2 meet; Can trade assets: P&A A chooses a ε realized qrealized sign contract 0 1 2 3 43