Numbers and Data Analysis

Similar documents
Tutorial 2: Expressing Uncertainty (Sig Figs, Scientific Notation and Rounding)

1 Measurement Uncertainties

A.0 SF s-uncertainty-accuracy-precision

Uncertainties in Measurement

Scientific Measurement

1 Measurement Uncertainties

Physics 12 Rules for Significant Digits and Rounding

13. [Place Value] units. The digit three places to the left of the decimal point is in the hundreds place. So 8 is in the hundreds column.

Warm-up: Are accuracy and precision the same thing? (If so do you want to bet the house on it?)

22. RADICALS. x add 5. multiply by 7

What Fun! It's Practice with Scientific Notation!

Notes: Measurement and Calculation

that relative errors are dimensionless. When reporting relative errors it is usual to multiply the fractional error by 100 and report it as a percenta

SIGNIFICANT FIGURES. x 100%

Liquid-in-glass thermometer

Precision Correcting for Random Error

Uncertainties and Error Propagation Part I of a manual on Uncertainties, Graphing, and the Vernier Caliper

Group 1 Group 2. 1 meter = 100 cm 9.88 cm of Copper Wire 1 dollar = 4 quarters Room Temp is 22.7 C

Unit 3 - Physics. Motion. Intro to Measurements

Liquid-in-glass thermometer

Base unit-a defined unit of measurement based on an object or event in the physical world. Length

Section 1 Scientific Method. Describe the purpose of the scientific method. Distinguish between qualitative and quantitative observations.

Appendix A: Significant Figures and Error Analysis

Chapter 3 Scientific Measurement

3.1 Using and Expressing Measurements > 3.1 Using and Expressing Measurements >

PHY 101L - Experiments in Mechanics

(Significant Digits are in BOLD type and the non-significant digits are underlined)

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

COLLEGE PHYSICS. Chapter 1 INTRODUCTION: THE NATURE OF SCIENCE AND PHYSICS. Lesson 2

Measurement and Uncertainty

Section 4.7 Scientific Notation

Uncertainty in Measurements

A Justification for Sig Digs

How long is the arrow?

Chemistry 320 Approx. Time: 45 min

Physics 2020 Laboratory Manual

Decimal Addition: Remember to line up the decimals before adding. Bring the decimal straight down in your answer.

Learning Plan 09. Question 1. Question 2. Question 3. Question 4. What is the difference between the highest and lowest data values in a data set?

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision?

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Uncertainty: A Reading Guide and Self-Paced Tutorial

Chapter 3: Numbers in the Real World Lecture notes Math 1030 Section C

Rounding. In mathematics rounding off is writing an answer to a given degree of accuracy.

IB Physics (HL) Student Guide for Measurement Error and Uncertainty Analysis. Ballston Spa High School

Significant Figures. Significant Figures 18/02/2015. A significant figure is a measured or meaningful digit.

CHM101 Lab Math Review and Significant Figures Grading Rubric

CHEM Chapter 1

Year 6 Place Value Maths Chilli Challenge Cards

Decimal Scientific Decimal Scientific

PHYSICS 30S/40S - GUIDE TO MEASUREMENT ERROR AND SIGNIFICANT FIGURES

Measurement Error PHYS Introduction

Notes: Unit 1: Math and Measurement

Notes: Unit 1: Math and Measurement

Percent Problems. Percent problems can be solved using proportions. Use the following formula when solving percent problems with a proportion.

Measurement 4: Scientific Notation

2 ways to write the same number: 6,500: standard form 6.5 x 10 3 : scientific notation

Measurements and Data Analysis

Chapter 3 Math Toolkit

Chapter 3 Scientific Measurement

Introduction to 1118 Labs

EXPERIMENT MEASUREMENT

SCIENTIFIC MEASUREMENT C H A P T E R 3

Astronomy 102 Math Review

Inferences and observations notes

Introduction to Measurement

Chemistry 1. Worksheet 3. Significant Figures in Calculations. 1 MathTutorDVD.com

CHM Accuracy, Precision, and Significant Figures (r14) C. Taylor 1/10

Central Limit Theorem and the Law of Large Numbers Class 6, Jeremy Orloff and Jonathan Bloom

Reporting Measurement and Uncertainty

CHM111 Lab Math Review Grading Rubric

Measurement Error PHYS Introduction

Using Scientific Measurements

Rational Numbers. An Introduction to the Unit & Math 8 Review. Math 9 Mrs. Feldes

Units and Dimensionality

Welcome to Chemistry! Sept 11, 2015 Friday

Unit 1 Part 1: Significant Figures and Scientific Notation. Objective understand significant figures and their rules. Be able to use scientific

The Rules of the Game

Measurement. New Topics accuracy vs. precision rounding in chemistry significant figures determining uncertainty of a measurement % error moles - 1 -

Welcome to CHEM 1101

Dealing with Uncertainty

Significant Figures: A Brief Tutorial

1. Scientific Notation A shorthand method of displaying very (distance to. Express in Scientific Notation

PHYS 2211L - Principles of Physics Laboratory I Propagation of Errors Supplement

Metric Prefixes UNITS & MEASUREMENT 10/6/2015 WHY DO UNITS AND MEASUREMENT MATTER?

Chapter 2 Math Skills

Principles and Problems. Chapter 1: A Physics Toolkit

Physics. Nov Title: Nov 3 8:52 AM (1 of 45)

Introduction to Science. Section 1: The Nature of Science Section 2: The Way Science Works Section 3: Organizing Data

AP Physics 1 Summer Assignment Packet 2

Chapter 3 Experimental Error

Work Session 2: Introduction to Measurements, Conversions, and Significant Figures

Section 1.1: Patterns in Division

Note: at no time will we be measuring the weight of any substance in this class, only its mass.

5.7 Translating English Sentences into Mathematical Equations and Solving

Errors Intensive Computation

Mathematics for Health and Physical Sciences

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water

Reference Guide. Science Reference 9/25/ Copyright 1996 Gary Lewis Revisions 2007 by John Pratte

TOPIC 3: READING AND REPORTING NUMERICAL DATA

Transcription:

Numbers and Data Analysis With thanks to George Goth, Skyline College for portions of this material. Significant figures Significant figures (sig figs) are only the first approimation to uncertainty and what is called error analysis. But what are sig figs? It depends on the circumstances. If your talking about a homework problem for instance, then it s the number of digits given importance in a figure, usually two to three digits. If you are talking about data, eperimental results, a theoretical or known value (e.g. gravity) then it is the digits we are certain of plus one we are uncertain of. Here are some rules for counting sig figs: Zeros within a value are always counted. Eample: 4032 and 50.03 both have four sig fig. Zeros setting the decimal point are not significant. Eample: All of these have 2 sig figs 52,000,000 3.7 10 9 0.00074 2.3 10-15 Zeros not setting the decimal point are significant. Eample: 0.000250 has three sig figs. Rounding numbers Now I know that you paid a lot for that fancy scientific calculator that gives you something like ten digits or so, and you think Hey, I paid for them, so I should use them! well not so. Think of it this way: I have a friend who has a nice watch that is accurate to one second in ten thousand years, but when I ask him the time he tells me About a quarter to twelve. Most times you only need two to four sig figs. Round your results to what is appropriate. How? look at the first number you are going eliminate. If it is five or greater increase the net number by one (rounding up) and if it is four or less leave that last number alone (rounding off). Here is an eample: rounding up 12.3456789 12.35 rounding off 98.7654321 98.77 Numbers and Data Analysis 1

Calculations and rounding You have to be careful when rounding numbers. If you round too soon, the rounding will affect your results. An Eample: You have two measured values, 12.34 and 2.34. If you round, then multiply, then round your results to two sig figs you get very different outcomes. Rounded to Calculation Result Left alone 12.34 3.14 = 38.7476 39 One decimal place 12.3 3.1 = 38.1300 38 Whole number 12 3 = 36.0000 36 But when do you start rounding numbers? The simple answer is, as your last step. But you need to know what is significant during an intermediate step. Here are some eamples of carrying sig figs through calculations. For addition and subtraction. Your result has sig figs only to the decimal place that both the original numbers had sig figs. 12.35 cm 4 sig figs Decimal to the hundredths - 3.1 cm 2 sig figs Decimal to the tenths ---------- 9.25 cm calculator answer The value with the least number of decimal places was 3.1 cm, with a decimal place to the tenths, so the result is only be epressed to the tenths as well. 9.3 cm Remember, fives round up. Now for multiplication and division. The result has same number of sig figs as the factor with least number of sig figs. 12.34 cm 3.14 cm = 38.7476 cm calculator answer Sig figs 4 3 So this result is epressed to 3 sig figs, which is 38.7 cm Numbers and Data Analysis 2

Reporting values First you report all numbers you are certain of and first you are uncertain of: 12.35 cm c c c u Where the uncertain number is ± 1 12.35 cm could be as low as 12.34 cm and as high as 12.36 cm This is called the range of the value. When you report a value, you first state the nominal value then the uncertainty. Using the previous eample: 12.35 ± 0.01 cm Nominal Uncertainty Uncertainties At this point you must be wondering were the uncertainties come from and if all values have an uncertainty. There are three types of values: 1) Constants and coefficients. These have no uncertainty associated with them. Eamples are π, the natural log e, 1 2 (e.g. 1 mv 2 ), etc. 2 2) Measured values. These have an uncertainty that is associated with the device and method of taking the measurement (called systematic errors). Eample: Measuring the length 12.35 ± 0.01 cm with a centimeter rule. You are certain of the measurement of 12 cm, and 3 mm. You believe the true value of the last digit to lie about halfway between 3 mm and 4 mm and are confident in that give-or-take one unit (i.e. one tenth of a mm). Measuring the mass of an object as 503 ± 0.5 gm on a beam balance. You are certain of the mass measurement 503 gm give-or-take half a gram. 3) Populations of measured values. These have an uncertainty that is associated with variations in the measurement (random errors). An eample is you drop a ½ kg mass 100 times, measuring the final velocity each time. You now have a population of 100 data points measuring the velocity with a small (let s hope!) variation between the different measured values. So the first case is easy to deal with, no uncertainty, the second and third need some attention. Numbers and Data Analysis 3

Absolute and relative (percentage) uncertainties You measure one mass with a precision of ± 1 mg; you measure another mass with a precision of ± 1 kg. Which measurement is more precise value? It is tempting to say ± 1 mg is the more precise value, it is after all smaller, but that is not necessarily true that it is more precise. Suppose the ± 1 mg measurement was of an ant with a mass of 3 mg while the ± 1 kg measurement was of an elephant with a mass of 3000 kg. Now ± 1 mg is 33% of 3 mg while ± 1 kg is 0.033 % of 3000 kg. So which is more precise now? It matters how big the uncertainty is compared to what you are measuring. This illustrates the two types of uncertainty. Absolute (± 1 mg) and relative (or percentage) uncertainty. Absolute uncertainties (au)have units. Eamples: 12.35 ± 0.01 cm or 503 ± 0.5 gm Relative uncertainties (ru) have no units and are usually, though not always, shown as a percent (%). ru = au/nominal value percent uncertainty = ru 100% Eample: 503 ± 0.5 gm ru = au/ nominal value = 0.5/503 = 0.001 percent uncertainty = ru 100 = 0.001 100 = 0.1 % Numbers and Data Analysis 4

Combining uncertainties When we combine values the uncertainties in the values have to be combined as well. This means that uncertainties propagate or grow. We use the following two rules. 1) Addition and subtraction. Add the absolute uncertainties. Eamples: Addition add 12±2 gm to 97±2 gm 97 ± 2 + 12 ± 2 109 ± 4 gm Subtraction subtract 12±2 gm from 97±2 gm 97 ± 2-12 ± 2 85 ± 4 gm 2) Multiplication and division. Use the relative or percent uncertainty to find the combined uncertainty. Eample A desk top is measured to be 97 cm by 12 cm. If the absolute error on each is 2 cm, what is the area and the absolute, relative and percentage uncertainties? Area = L W = 97 12 = 1164 cm 2 Now to find the uncertainties we must calculate the relative uncertainty of the length and width. ru length = 2 / 97 = 0.0206 (carrying a few etra sig figs for the moment) ru width = 2 / 12 = 0.1666 ru area = ru length + ru width = 0.0206 + 0.1666 = 0.1873 au area = Area ru area = 1164 0.1873 = 218 cm 2 Generally the absolute uncertainty is epressed to one sig fig (sometimes two sig figs) and the calculated value is epressed to the same decimal place as the absolute uncertainty 218 cm 2 = 200 cm 2 (1 sig fig) in the hundreds or = 220 cm 2 (2 sig figs) in the tens To the nearest hundred 1164 is 1.2 10 3 cm 2 with an uncertainty to one sig fig shown as 1.2 ± 0.2 10 3 cm 2 or To the nearest ten 1164 is 1.16 10 3 cm 2 with an uncertainty to two sig figs shown as 1.16± 0.22 10 3 cm 2 Numbers and Data Analysis 5

Random uncertainty in a population As mentioned previously if you take a series of measurements of the same quantity you have what is referred to as a populations of measured values. These will have an uncertainty that is due to random variations in the measurement. The eample was given of measuring the final velocity of a ½ kg mass dropped 100 times. You would have a population of 100 data points with a small random variation. You will find that these measurements will distribute themselves in a bell curve, also known as a normal or Gaussian distribution. We can use some basic statistics to find the nominal value and the statistical uncertainty of that value. The mean (also known as the average) value of the population is used as the nominal value and can be found by using the following: X = Where X i is a individual measured value, N is the number of measurements in the population and X is the mean. As an eample here is a sample population of measurements in cm: 2.3, 2.5, 3.1, 1.9, 2.2, 2.7 and 2.6. N i= 1 The mean of our sample population is calculated: N i N i i= 1 23. + 25. + 31. + 19. + 22. + 27. + 26. X = = = 2. 471cm N 7 We can now estimate the uncertainty by using the standard deviation σ σ ( Xi X) 1 = N 1 N 2 i 1 For our sample population σ = 0.386 cm. Putting these together our nominal value and uncertainty are 2.5 ± 0.4 cm. We know that for such a distribution, 68% of the measurements are predicted to lie in the range X + σ to X -σ (within 1 σ). So 68% of the measurements in this population are between 2.1 cm and 2.9 cm. If we take another measurement we have a 68% chance that it will fall in this range. A 1.5 σ range gives us 87%, a 2 σ range gives us 95%, and a 3 σ range gives us 99.7% of the population. Numbers and Data Analysis 6

Comparisons Now that you have a nominal value and an uncertainty the final step in numerical analysis is to determine the level of agreement between your eperimental result and the theoretical or epected value. This is done in a variety of ways depending on the type of data that you have, but all entail comparison with How many sigma? The number of sigma (σ) the eperimental mean is away from a known theoretical or epected value is a very useful means of determining your eperimental accuracy. Discrepancy Number of Sigmas Quality of Agreement < 1 σ Very Good 1 σ Good 2 σ - 3 σ Fair > 3 σ Poor Discrepancy (also know as the absolute difference) is the positive difference between the eperimental result that you achieve and the theoretical value. The following formula will allow you to calculate discrepancy: Discrepancy = Eperimental Value Theoretical Value The eperimental value is the nominal value you determined by one of the previous methods. Very often the worst case discrepancy is used. This is found by taking either the upper or lower bound of the eperimental range (which ever is further away from the epected or theoretical value) and using that as the eperimental value is the above formula. Comparison with uncertainty This is done by comparison of your uncertainty to the discrepancy. If the discrepancy is: uncertainty then you are in Agreement. > uncertainty but 3 times uncertainty, you are in Marginal Agreement. > 3 times uncertainty, then you are in Disagreement. The idea here is to show if the discrepancy can be accounted for by the uncertainty present in the measurement. Numbers and Data Analysis 7

Fractional error This comparison is of the discrepancy to the theoretical or known value by finding the ratio of the two. Fractional Error = Eperimental Theoretical / Theoretical Percent error The fractional error is often shown as a percent. % Error = Fractional Error 100% or % Error = ( Eperimental Theoretical / Theoretical) 100% Percent difference When you are comparing two eperimental values and there is no known value you show the percent difference between the two measurements. % Difference = ( Eperimental 1 Eperimental 2 100% ½ (Eperimental 1 + Eperimental 2) Numbers and Data Analysis 8