TeV Scale Muon RLA Complex Large Emittance MC Scenario

Similar documents
Muon RLA Design Status and Simulations

LHeC Recirculator with Energy Recovery Beam Optics Choices

Collider Rings and IR Design for MEIC

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Pros and Cons of the Acceleration Scheme (NF-IDS)

Overview of Acceleration

{ } Double Bend Achromat Arc Optics for 12 GeV CEBAF. Alex Bogacz. Abstract. 1. Dispersion s Emittance H. H γ JLAB-TN

Overview of HEMC Scheme

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

Compressor Lattice Design for SPL Beam

EIC at JLab - design considerations and detector overview

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

General Considerations

The Electron-Ion Collider

The TESLA Dogbone Damping Ring

Practical Lattice Design

Preliminary Detector Design for the EIC at JLab

Beam Optics design for CEPC collider ring

6 Bunch Compressor and Transfer to Main Linac

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

ILC Damping Ring Alternative Lattice Design **

Lattice Design and Performance for PEP-X Light Source

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

Pretzel scheme of CEPC

Beam Dynamics of Energy Recovering Linacs

Accelerator Physics Final Exam pts.

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Linear Collider Collaboration Tech Notes

ILC Damping Ring Alternative Lattice Design (Modified FODO)

CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH THE CLIC POSITRON CAPTURE AND ACCELERATION IN THE INJECTOR LINAC

Muon Front-End without Cooling

Introduction to particle accelerators

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

Bernhard Holzer, CERN-LHC

Neutrino Factory in Japan: based on FFAG

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

Full-Acceptance Detector Integration at MEIC

Tools of Particle Physics I Accelerators

Accelerator development

A COST-EFFECTIVE RAPID-CYCLING SYNCHROTRON

Optimization of the Buncher and Phase Rotator for Neutrino Factory

CSR Benchmark Test-Case Results

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

Application of cooling methods at NICA project. G.Trubnikov JINR, Dubna

Accelerator Physics. Accelerator Development

Higgs Factory Magnet Protection and Machine-Detector Interface

Accelerator Physics Issues of ERL Prototype

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

High Pressure, High Gradient RF Cavities for Muon Beam Cooling

COMBINER RING LATTICE

Recent Progress on FFAGS for Rapid Acceleration

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

HELICAL COOLING CHANNEL PROGRESS*

On-axis injection into small dynamic aperture

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Emittance preservation in TESLA

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

NEUTRINO FACTORY / MUON STORAGE RING

Overview of LHC Accelerator

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

RING-RING DESIGN. Miriam Fitterer, CERN - KIT for the LHeC study group

Accelerator Design of High Luminosity Electron-Hadron Collider erhic

Issues of Electron Cooling

The FAIR Accelerator Facility

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

Nonintercepting ODR Diagnostics for Multi-GeV Electron Beams

MEIC Electron-Ion Collider - Space-Charge Issues

A Very Large Lepton Collider in a VLHC tunnel

E. Wilson - CERN. Components of a synchrotron. Dipole Bending Magnet. Magnetic rigidity. Bending Magnet. Weak focusing - gutter. Transverse ellipse

Proposal to convert TLS Booster for hadron accelerator

Carbon/proton therapy: A novel gantry design

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Ion Polarization in RHIC/eRHIC

RUN II LUMINOSITY PROGRESS*

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Low slice emittance preservation during bunch compression

Operational Experience with HERA

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

Choosing the Baseline Lattice for the Engineering Design Phase

Beam Dynamics for CSNS Linac. Jun Peng September. 18, 2012

Linear Collider Collaboration Tech Notes. Design Studies of Positron Collection for the NLC

USPAS Accelerator Physics 2017 University of California, Davis

Conceptual design of an accumulator ring for the Diamond II upgrade

Transitioning Between FFAG Arcs

Notes on the HIE-ISOLDE HEBT

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice

Physics 610. Adv Particle Physics. April 7, 2014

FACET-II Design Update

Large Hadron Collider at CERN

7th IPAC, May 8-13, 2016, Busan, Korea

Small Synchrotrons. Michael Benedikt. CERN, AB-Department. CAS, Zeegse, 30/05/05 Small Synchrotrons M. Benedikt 1

Transcription:

TeV Scale Muon RLA Complex Large Emittance MC Scenario Alex Bogacz and Kevin Beard Muon Collider Design Workshop, BNL, December 1-3, 29

Outline Large Emittance MC Neuffer s Collider Acceleration Scheme with three Dogbone RLAs Linac + RLA I: RLA II: RLA III:.3-4 GeV 4.5-pass (2 MHz SRF) 4-52 GeV 12-pass (4 MHz SRF) 52-1 GeV 12-pass (8 MHz SRF) Muon RLA Beam dynamics choices Fesibility/Cost considerations Muon Collider Design Workshop, BNL, December 1-3, 29

Muon RLA Beam dynamics choices Dogbone (Single Linac) RLA better orbit separation at the linac ends Longitudinal Compression via synchrotron motion Bisected linac Optics mirror symmetric quad gradient along the linac Pulsed linac Optics. even larger number of passes is possible if the quadrupole focusing can be increased as the beam energy increases (proposed by Rol Johnson) Flexible Momentum Compaction return arc Optics to accommodate two passes (two neighboring energies) NS-FFAG like Optics (proposed by Dejan Trbojevic) Pulsed arcs? ramping arc magnets to further reuse the arcs Muon Collider Design Workshop, BNL, December 1-3, 29

How to get s from 3 GeV to 2 TeV before they all decay away? average gradient over whole path determines survivability e - t (E f /E i ) - m o /gc TELSA cavities ~ real estate g ~ 31 MeV/m 64.4 km linac 97% survival g ~$4,M * *@Jlab ~ $2M/GeV Muon Collider Design Workshop, BNL, December 1-3, 29

Large Emittance MC Scenario Proton Linac 8 GeV Accumulator, Buncher Hg target Drift, Bunch, Cool 2m Dave Neuffer Linac RLAs Detector Parameter Symbol Value Proton Beam Power P p 2.4 MW Bunch frequency F p 6 Hz Protons per bunch N p 3 1 13 Proton beam energy E p 8 GeV Number of muon bunches n B 12 +/- / bunch N 1 11 Transverse emittance t,n.3m Collision * *.5m Collision max * 1m Beam size at collision x,y.13cm Beam size (arcs)( * =1m) x,y.55cm Beam size IR quad max 5.4cm Collision Beam Energy E +,E _ 1 TeV (2TeV total) Storage turns N t 1 Luminosity L 4 1 3 L=f n s n b N 2 /4 2 Collider Ring Muon Collider Design Workshop, BNL, December 1-3, 29

Bunch train for Large Emittance MC Drift, buncher, rotator to get short bunch train (n B = 1): 217m 125m 57m drift, 31m buncher, 36m rotator Rf voltages up to 15MV/m ( 2/3) Obtains ~.1 μ/p 8 in ref. acceptance A t <.3, A L <.2 Choose best 12 bunches ~.8 μ/p 8 per bunch ~.5 μ/p 8 in acceptance 3 1 13 protons 1.5 1 11 μ/bunch in acceptance ε t,rms, normalized.3m (accepted μ s) ε L,rms, normalized.34m (accepted μ s) Dave Neuffer Muon Collider Design Workshop, BNL, December 1-3, 29

Large Emittance MC Front End Muon Collider Design Workshop, BNL, December 1-3, 29

Large Emittance MC Front End 3. 34 Muon Collider Design Workshop, BNL, December 1-3, 29

Size_X[cm] Size_Y[cm] 3 3 Pre-accelerator Longitudinal dynamics Wed Jan 16 23:24:25 28 OptiM - MAIN: - D:\4GeV_RLA\PreLinac\Linac_sol.opt Transverse acceptance (normalized): (2.5) 2 Longitudinal acceptance: (2.5) 2 p z/m c = 2 mm = 25 mm rad Ax_bet Ay_bet Ax_disp Ay_disp 186 6 short cryos 12 MV/m 8 medium cryos 12 MV/m 16 long cryos 12 MV/m 1.1 Tesla solenoid 1.2 Tesla solenoid 2.4 Tesla solenoid Muon Collider Design Workshop, BNL, December 1-3, 29

Energy [GeV] Dp/p RF phase [deg] Synchrotron phase/2 PI Longitudinal matching Synchrotron motion Longitudinal acceptance: p/p=.17 or = 93 (2MHz) 1 5.5 5 1 15 s[m] 5 1 15 s [m].8.2.6.4.2.2 5 1 15 s [m] 1 1 Phase [deg] 1 Muon Collider Design Workshop, BNL, December 1-3, 29

4 GeV RLA Longitudinal compression Muon Collider Design Workshop, BNL, December 1-3, 29

4 GeV RLA Accelerator Performance Muon Collider Design Workshop, BNL, December 1-3, 29

Size_X[cm] Size_Y[cm] 35 35 DISP_X& Y[m] 3 5 Beam envelopes end of RLA II (5 GeV) Wed Dec 2 23::29 29 OptiM - MAIN: - C:\Working\Dogbone_pulsed\pulsed\Linac12.opt BETA_X BETA_Y DISP_X DISP_Y 5 Pass 12 Wed Dec 2 23:4:31 29 OptiM - MAIN: - C:\Working\Dogbone_pulsed\pulsed\Linac12.opt Transverse acceptance (normalized): (2.5) 2 = 25 mm rad Ax_bet Ay_bet Ax_disp Ay_disp 5 Muon Collider Design Workshop, BNL, December 1-3, 29

A few thoughts on scaling for dipoles, the stored energy ~ power ~ cost 2 B 2 for quadrupoles, stored energy ~ power ~ cost 4 G 2 Muon Collider Design Workshop, BNL, December 1-3, 29

Hybrid magnets 3.T is the best we can do ±1.8T 8.8T ±1.8T Ln/2 Ls Ln/2 Don Summers P max /P min = B max /B min = (Bs Ls + Bn Ln) (Bs Ls - Bn Ln) x (P max /P min -1)/(P max /P min +1) B avg = f (x+1)/(x/bn+1/bs) B avg [T] P max /P min, B avg 3.T P max /P min, Bs B avg 2 Bn P max /P min Muon Collider Design Workshop, BNL, December 1-3, 29

Large Emittance MC vs LEMC.rough numbers for normal 1.8T magnets LEMC emittance (153 GeV, 2 m) N 2.1 mm-mrad 1 5 mm 9mm small aperture little stored energy ~ 37 J/m 11.5kJ/m power ~ 22 kw/m 7 MW/m Muon Collider Design Workshop, BNL, December 1-3, 29

Large Emittance MC Conclusions ramped dipole magnets mean large arcs low emittance makes for small apertures little stored energy, power, costs most schemes require fast pulsed magnets of some kind Muon Collider Design Workshop, BNL, December 1-3, 29

DISP_X&Y[m] 3 5 DISP_ X& Y[m] 3 5 Multi-pass bisected linac Optics half pass, 4-6 GeV Tue Jun 9 15:34:4 29 OptiM - MAIN: - C:\Working\double_dogbone\Dogbone_FODO\baseline\Linac5.opt initial phase adv/cell 9 deg. scaling quads with energy quad gradient BETA_X BETA_Y DISP_X DISP_Y 122.15 1-pass, 6-1 GeV mirror symmetric quads in the linac Fri Jan 23 15:39:23 29 OptiM - MAIN: - N:\bogacz\RLA explore\dogbone_fodo\baseline\lattice with space in the quad gradient BETA_X BETA_Y DISP_X DISP_Y 254.651 Muon Collider Design Workshop, BNL, December 1-3, 29

DISP_X& Y[m] 12 5 DISP_X&Y[m] 1 5 Multi-pass linac Optics 4-pass, 18-22 GeV Fri Apr 3 5:33:33 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with space in quad gradient BETA_X BETA_Y DISP_X DISP_Y 254.651 7-pass, 3-34 GeV Fri Apr 3 5:27:33 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with space in the quad gradient BETA_X BETA_Y DISP_X DISP_Y 254.651 Muon Collider Design Workshop, BNL, December 1-3, 29

-3 DISP_X& DISP_X& Y[ m] 15 15 5 3 Linac-to-Arc Beta Match E =5 GeV Fri Jan 23 15:2:37 29 OptiM - MAIN: - N:\bogacz\IDS\Linacs_bisect\Linac5.opt Wed Jun 11 11:53:6 28 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt BETA_X BETA_Y DISP_X DISP_Y 36.913 BETA_X BETA_Y DISP_X DISP_Y 72 Matched by design 9 phase adv/cell maintained across the junction No chromatic corrections needed Muon Collider Design Workshop, BNL, December 1-3, 29

-3 dp/p * 1, -3 dp/p * 1, 3 3-3 B ETA_X&Y[m] D ISP_X& Y[m] 15 3 Mirror-symmetric Droplet Arc Optics Tue Jun 1 21:14:41 28 OptiM - MAIN: - D:\IDS\Arcs\Arc1.opt E =5 GeV ( out = in and out = - in, matched to the linacs) BETA_X BETA_Y DISP_X DISP_Y 13 2 cells out transition 2 cells out 1 cells in transition footprint 5 4 3 2 1 x [cm] 2 4 6 8 1-1 -2-3 -4-4 S [cm] View at the lattice end 4-5 z [cm] -4 S [cm] View at the lattice beginning 4 Muon Collider Design Workshop, BNL, December 1-3, 29

Pulsed linac Dogbone RLA (8-pass) 4 GeV 4 GeV/pass 34 GeV Quad pulse would assume 5 Hz cycle ramp with the top pole field of 1 Tesla. Equivalent to: maximum quad gradient of G max =2 kgauss/cm (5 cm bore radius) ramped over = 1-3 sec from the initial gradient of G =.1 kgauss/cm (required by 9 phase advance/cell FODO structure at 3 GeV). G 8 =13 G = 1.3 kgauss/cm These parameters are based on similar applications for ramping corrector magnets such as the new ones for the Fermilab Booster Synchrotron that have 1 khz capability 2 + 25 3 1-6 T 8 sec = 1 1 sec -8 T 1-2 Muon Collider Design Workshop, BNL, December 1-3, 29

1 1 Fixed vs Pulsed linac Optics (8-pass) 5 DISP_X& Y[m] 5 DISP_X&Y[m] Fri Apr 3 5:31:8 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with space Fixed BETA_X BETA_Y DISP_X DISP_Y 254.651 Fri Apr 3 5:33:33 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with space in th Pulsed BETA_X BETA_Y DISP_X DISP_Y 254.651 Muon Collider Design Workshop, BNL, December 1-3, 29

12 12 Fixed vs Pulsed linac Optics (12-pass) 5 DISP_X& Y[m] 5 DISP_X&Y[m] Fri Apr 3 5:57:32 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with spa Fixed BETA_X BETA_Y DISP_X DISP_Y 254.651 Fri Apr 3 5:27:33 29 OptiM - MAIN: - D:\RLA explore\dogbone_fodo\baseline\lattice with space in the mi Pulsed BETA_X BETA_Y DISP_X DISP_Y 254.651 Muon Collider Design Workshop, BNL, December 1-3, 29

Multi-pass Arc besed on NS-FFAG Dejan Trbojevic, 1. Large energy acceptance 2. Very small orbit offsets 3. Reduce number of arcs 4. Very compact structure FMC Optics (NS-FFAG-line) Compact triplet cells based on opposed bend combined function magnets B B Gx B x y Gy Muon Collider Design Workshop, BNL, December 1-3, 29

-.1 -.1 DISP_X& Y[m] DISP_X& Y[m] 5.1 5.1 Flexible Momentum Compaction Cells Guimei Wang Wed Nov 19 1::59 28 OptiM - MAIN: - D:\SBIR\FMC\Optics\ex4_inv.opt Wed Nov 19 9:59:58 28 OptiM - MAIN: - D:\SBIR\FMC\Optics\ex4.opt, BETA_X BETA_Y DISP_X DISP_Y 2.3699 BETA_X BETA_Y DISP_X DISP_Y 2.3699 Mag. L(cm) B(kG) G(kG/cm) θ ( deg) D(cm) BD.5233 35.8-2.28 5 <D<.23 BF.5233-35.8 5.6-5.6<D<.72 BDre.5233-35.8-2.28 5 -.23<D< BFre.5233 35.8 5.6-5 -.72<D<-.6 Strong focusing (middle magnet) yields very small beta functions and dispersion Momentum offset of 6% corresponds to the orbit displacement of about 4.3 cm. Muon Collider Design Workshop, BNL, December 1-3, 29

x[ cm] -.1 -.1 DISP_ X& Y[m] DISP_ X& Y[m] 7.1 7.1 NS-FFAG multi-pass Droplet Arc Wed Nov 19 1:11:56 28 OptiM - MAIN: - D:\SBIR\FMC\Optics\multi cell.opt Wed Nov 19 1:13:45 28 OptiM - MAIN: - D:\SBIR\FMC\Optics\multi cell.opt, 21.27 BETA_X BETA_Y DISP_X DISP_Y 45 154 BETA_X BETA_Y DISP_X DISP_Y 177.7 6 outward 3 inward 6 outward 3 2 1 1 2 3 4 5 6 7 8-1 - 2-3 z[ cm] MADX-PT Polymorphic Tracking Code is used to study multi-pass beam dynamics for different pass beams: path length difference, optics mismatch between linac and arcs, orbit offset and tune change is being studied. Muon Collider Design Workshop, BNL, December 1-3, 29

Beta functions vs. Energy Inward bending cell Outward bending cell For different energy spread, ~the same beta function in opposite bending cell. With MADX- Polymorphic Tracking Code. Energy spread changes from -3% to 9% Muon Collider Design Workshop, BNL, December 1-3, 29

Summary Large Emittance MC Linac + RLA I: RLA II: RLA III: Acceleration Scheme with three Dogbone RLAs.3-4 GeV 4.5-pass (2 MHz SRF) 4-52 GeV 12-pass (4 MHz SRF) still large tr. beam size 52-1 GeV 12-pass (8 MHz SRF) serious problems with big magnets FODO bisected linac Optics large number of passes supported (8 passes) Pulsed linac Optics further increase from 8 to 12-pass Flexible Momentum Compaction (FMC) return arc Optics allows to accommodate two passes (two neighboring energies) Muon Collider Design Workshop, BNL, December 1-3, 29