Single neuron models. L. Pezard Aix-Marseille University

Similar documents
Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Mathematical Foundations of Neuroscience - Lecture 3. Electrophysiology of neurons - continued

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Introduction and the Hodgkin-Huxley Model

Electrophysiology of the neuron

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

From neuronal oscillations to complexity

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

2.6 The Membrane Potential

Introduction to Physiology II: Control of Cell Volume and Membrane Potential

Resting membrane potential,

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent

Dynamical Systems in Neuroscience: Elementary Bifurcations

Membrane Potentials, Action Potentials, and Synaptic Transmission. Membrane Potential

1 Introduction and neurophysiology

Single-Cell and Mean Field Neural Models

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

1 Hodgkin-Huxley Theory of Nerve Membranes: The FitzHugh-Nagumo model

Cellular Electrophysiology. Cardiac Electrophysiology

Single-Compartment Neural Models

Dynamics and complexity of Hindmarsh-Rose neuronal systems

Balance of Electric and Diffusion Forces

BIOELECTRIC PHENOMENA

Nonlinear Dynamics of Neural Firing

Lecture 10 : Neuronal Dynamics. Eileen Nugent

Chapter 24 BIFURCATIONS

Dynamical systems in neuroscience. Pacific Northwest Computational Neuroscience Connection October 1-2, 2010

Computational Neuroscience. Session 2-1

Action Potential Propagation

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in

COGNITIVE SCIENCE 107A

Biological Modeling of Neural Networks

Quantitative Electrophysiology

3 Detector vs. Computer

Modeling cells in tissue by connecting. electrodiffusion and Hodgkin Huxley-theory.

Ionic basis of the resting membrane potential. Foundations in Neuroscience I, Oct

On Parameter Estimation for Neuron Models

Math 345 Intro to Math Biology Lecture 20: Mathematical model of Neuron conduction

Neurons and the membrane potential. N500 John Beggs 23 Aug, 2016

Quantitative Electrophysiology

Properties of the living organism. Interaction between living organism and the environment. Processing informations. Definitions

FRTF01 L8 Electrophysiology

9 Generation of Action Potential Hodgkin-Huxley Model

Transport of ions across plasma membranes

Voltage-clamp and Hodgkin-Huxley models

Nernst Equilibrium Potential. p. 1

Structure and Measurement of the brain lecture notes

Biophysical Foundations

Chapter 2 The Hodgkin Huxley Theory of Neuronal Excitation

Topics in Neurophysics

Channels can be activated by ligand-binding (chemical), voltage change, or mechanical changes such as stretch.

Equivalent Circuit Model of the Neuron

Action Potentials and Synaptic Transmission Physics 171/271

3.3 Simulating action potentials

BME 5742 Biosystems Modeling and Control

Supplementary Material. Model Details

3 Action Potentials - Brutal Approximations

Dynamical Systems for Biology - Excitability

Introduction to electrophysiology. Dr. Tóth András

Electricity in biology

Computational Neuroscience. Session 4-2

Bo Deng University of Nebraska-Lincoln UNL Math Biology Seminar

Νευροφυσιολογία και Αισθήσεις

Voltage-clamp and Hodgkin-Huxley models

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Compartmental Modelling

Neurons and Nervous Systems

Simulation of Cardiac Action Potentials Background Information

Mathematical Neuroscience. Course: Dr. Conor Houghton 2010 Typeset: Cathal Ormond

Electrodiffusion Model of Electrical Conduction in Neuronal Processes

Modeling Action Potentials in Cell Processes

Model Neurons I: Neuroelectronics

Introduction to electrophysiology 1. Dr. Tóth András

Passive Membrane Properties

UC San Diego UC San Diego Electronic Theses and Dissertations

9 Generation of Action Potential Hodgkin-Huxley Model

Biological membranes and bioelectric phenomena

Introduction to cardiac electrophysiology 1. Dr. Tóth András 2018

6.3.4 Action potential

1 Single neuron computation and the separation of processing and signaling

Nerve Signal Conduction. Resting Potential Action Potential Conduction of Action Potentials

Electronics 101 Solving a differential equation Incorporating space. Numerical Methods. Accuracy, stability, speed. Robert A.

Integration of synaptic inputs in dendritic trees

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

The Hodgkin-Huxley Model

Dynamics from Seconds to Hours in Hodgkin Huxley Model

Signal processing in nervous system - Hodgkin-Huxley model

Intermittency and Diffusion in the Hodgkin-Huxley Model

Conductance-Based Integrate-and-Fire Models

MATH 3104: THE HODGKIN-HUXLEY EQUATIONS

Mathematical Foundations of Neuroscience - Lecture 9. Simple Models of Neurons and Synapses.

PNS Chapter 7. Membrane Potential / Neural Signal Processing Spring 2017 Prof. Byron Yu

Lecture Notes 8C120 Inleiding Meten en Modelleren. Cellular electrophysiology: modeling and simulation. Nico Kuijpers

ACTION POTENTIAL. Dr. Ayisha Qureshi Professor MBBS, MPhil

Neurons. The Molecular Basis of their Electrical Excitability

Biomedical Instrumentation

Mathematical Models. Chapter Modelling the Body as a Volume Conductor

Chimera states in networks of biological neurons and coupled damped pendulums

5.4 Modelling ensembles of voltage-gated ion channels

Transcription:

Single neuron models L. Pezard Aix-Marseille University

Biophysics Biological neuron Biophysics Ionic currents Passive properties Active properties Typology of models Compartmental models Differential models Hybrid models Discrete state automata Models of synapses Models of synapses

Biological neuron

The membrane Models of the electrophysiology of excitability

Electro-diffusion laws Fick s law: Ohm s law: Einstein s relation: J d = D c x J e = µzc V x D = µk BT q

Nernst-Planck equation Ionic form: Molar form: Current density: J = (µzc V x + µk BT q J = J/N = (uzc V x + u RT F c x ) c x ) I = J zf = (uz 2 Fc V x + uzrt c x )

Nernst s equation At equilibrium (I=0): V 2 V 1 = RT zf ln(c 2 c 1 ) Conventions of electrophysiology: 1. V m = V i V e = V 2. Positive currents: from inside to outside Equilibrium potential for an ion (k): E k = V (I k = 0) thus E k = RT zf ln(c e c i )

Ionic distributions Cell of Mammal (T = 37 o C): Gradients maintenance: Ions c i c e E k K + 140 5 90 mv Na + from 5 to 15 145 60 to 90 mv Cl 4 110 90 mv Active processes: pump (ATP-ases), exchanger, co-transporters Donnan s equilibrium Membrane potential is the result of a stationary regime of exchanges based on transmembrane ionic currents

Ionic currents Ionic channels: Models: Characteristic: Non-gated channels Gated channels Electrodiffusion Barriers models State models (kinetics and stochastics) I-V curve

Goldman-Hodgkin-Katz model Hypothesis: Current I(V): 1. Electrodiffusion in the membrane 2. No interaction between ions 3. Constant electric field (dv /dx = V /l) I k = P k zfξ c i c e e ξ 1 e ξ et ξ = zfv RT

I-V curves for GHK model 0 10 20 I(a.u.) 30 40 50 60 c o /c i = 1 c o /c i = 5 c o /c i = 10 c o /c i = 20 70 80 100 80 60 40 20 0 20 40 60 80 100 V (mv )

Ohmic (linear) model Hypothesis: Equivalent circuit: 1. Equivalent circuit 2. Currents follow Ohm s law V e ρ k E k Ik V i V m Current I (V ): I k = γ k (V E k ) with γ k = 1/ρ k

Resting potential V o G K G Na G Cl Linear model: E K I K E Na I Na I m V i E Cl I Cl V r = G NaE Na + G K E K + G Cl E Cl G Na + G K + G Cl Constant field (GHK): V r = RT ( ) F ln PK [K] i + P Na [Na] i + P Cl [Cl] e P Na [Na] e + P K [K] e + P Cl [Cl] i I m = I Na + I K + I Cl = 0

Passive and active currents Definitions: Formalism: 1. Passive currents have a constant conductance 2. Active currents have a variable conductance (voltage, stimulus or chemical sensitive). They are the basis of cell excitability. 1. Passive: 2. Active: I k = g k (V E k ) I k = ḡ k p( )(V E k )

Cable equation (Rall, 1957-1969) V o (x) I o (x) r o dx V o (x + dx) R m R m C m dx V r C m dx V r I ion dx I ion dx I t dx I t dx V i (x) I i (x) r i dx V i (x + dx) τ m V t +R mi ion = λ 2 m 2 V x 2 with: τ m = R m C m and λ m = Rm d 4R c

Temporal properties R V o E rest I R C I C τ dv dt = V r + RI V with τ = R m C m V (t) = V r +RI (1 e t/τ ) and R = R m /S Small I m V i Vm (mv) Big Vm (mv) Fast Slow Time Time

Spatial properties I o (x) r o r m Vr r m Vr V r I r dx x I i (x) r i x + dx I r dx Vm (mv) Small Large λ 2 d 2 V dx 2 = V (x) V r Space V m (x) = V r + V e x/λ

Sodium gated channel

Formalism for gated channels I k = ḡ k p( )(V E k ) = ḡ k m a h b (V E k ) Probability of opening for activation (m) and inactivation (h) gates. Number of activation (a) and inactivation (b) gates Independence of the gates: p( ) = m m m h h h }{{}}{{} a times b times Open / activated channel: Closed channel: m = 1 (partially activated: 0 < m < 1) and h = 1. Not activated: m = 0 and h = 1 Inactivated: m = 1 and h = 0

Action potential Hodgkin & Huxley (1952): Experimental analysis and theoretical model that explains the genesis of action potential in the squid giant axon. Hypothesis: 1. No spatial dependency 2. Ohmic currents 3. Sodium, potassium and leak 4. First order kinetics for activation and inactivation gates

First order kinetics Closed α β Open df dt = α(1 f ) βf f (t) = f (1 e t/τ ) with f = α α + β and τ = 1 α + β f f(t) τ Time

Circuit for Hodgkin and Huxley model V o G L E L I L G K E K I K G Na E Na I Na C I C I = I Na + I K + I L + I C = I Na + I K + G L (V E L ) + C dv dt I m V i Active currents: Transient sodium current: I Na = ḡ Na m 3 h(v E Na ) Persistent potassium current: I K = ḡ K n 4 (V E K )

Historical Hodgkin-Huxley model C V = I ḡ Na m 3 h(v E Na ) ḡ K n 4 (V E K ) g L (V E L ) and ṁ = α m (V )(1 m) β m (V )m ḣ = α h (V )(1 h) β h (V )h ṅ = α n (V )(1 n) β n (V )n α n (V ) = 0.01 (10 V )/(exp((10 V )/10) 1) β n (V ) = 0.125 exp( V /80) α m (V ) = 0.1 (25 V )/(exp((25 V )/10) 1) β m (V ) = 4 exp( V /18) α h (V ) = 0.07 exp( V /20) β h (V ) = 1 / (exp((30 V )/10) + 1)

Potential dependence of kinetics parameters Time constant Asymptotic value 8 1 τ (ms) 6 4 2 τ m τ h τ n w 0, 8 0, 6 0, 4 0, 2 m h n 0 100 50 0 50 V (mv) 0 100 50 0 50 V (mv) τ x (V ) = 1 α x (V ) + β x (V ) x (V ) = α x (V ) α x (V ) + β x (V )

Hodgkin-Huxley model 50 V 0 50 100 0 10 20 30 40 50 60 70 80 90 100 Time 1 30 0, 8 P 0, 6 0, 4 h n G 20 10 g Na g K 0, 2 0 0 3 6 9 12 Time m 0 0 3 6 9 12 Time

Standard Hodgkin-Huxley model C V = I ḡ Na m 3 h(v E Na ) ḡ K n 4 (V E K ) g L (V E L ) ṁ = (m (V ) m) / τ m (V ) ḣ = (h (V ) h) / τ h (V ) ṅ = (n (V ) n) / τ n (V )

Standard kinetic parameters x (V ) 1 2k τ x (V ) C b + C a 0.5 0 x (V ) V 1/2 1 V 1 + e V 1/2 V k C b σ V max (Vmax V )2 τ x (V ) C b + C a e σ 2 V

Zoology of ion channels

Neuronal models Criteria: Categories: 1. Biological plausibility 2. Computational load 1. Compartmental models 2. Differential models (simplified HH) 3. Hybrid models 4. Discrete state automata

Compartmental models Principle:

Compartmental models Simulation environments: NEURON, GENESIS

Zoology of channels Channels types: Potassium channels: INa(fast), INa(slow), ICa(L), ICa(T), ICa(N), ICa(P), IK(DR), IK(A), IK(D), IK(M) IQ, Ih, If, IK(IR), ICl(V) IK(C), IK(AHP), ICl(Ca) IK(L), ICl, IK(ATP), IK(Na)

Reduction of Hodgkin-Huxley model: step 1 Separation of time scales: m = m (V ) τ (ms) 8 6 4 τ m τ h τ n P. 0.63 m n h 2 0 100 50 0 50 V (mv) Thus: τ m τ n τ m Time C V =I ḡ Na m (V ) 3 h(v E Na ) ḡ K n 4 (V E K ) g L (V E L ) ḣ =(h (V ) h)/τ h (V ) and ṅ = (n (V ) n)/τ n (V )

Comparison of HH models: 4D vs. 3D 50 1 0, 8 V 0 50 0, 6 P 0, 4 0, 2 100 0 10 20 30 40 50 60 70 80 90 100 Time 1 0 0 10 20 30 40 50 60 70 80 90 100 Time 1 0, 8 0, 8 P 0, 6 0, 4 P 0, 6 0, 4 0, 2 0, 2 0 0 10 20 30 40 50 60 70 80 90 100 Time 0 0 10 20 30 40 50 60 70 80 90 100 Time

Reduction of Hodgkin-Huxley model: step 2 Comparison of h and n : h + n 0.8 n + h 0, 85 0, 825 0, 8 Thus: 20 30 40 50 60 70 80 90 100 Time h 0, 75 0, 5 0, 25 0 0 0, 8 h = 0.89 1.1n n C V =I ḡ Na m (V ) 3 (0.8 n)(v E Na ) ḡ K n 4 (V E K ) g L (V E L ) ṅ =(n (V ) n) / τ n (V )

Comparison of HH models: 4D vs. 2D V 50 0 50 100 1 0, 8 0 50 100 Time m 1 0, 8 0, 6 0, 4 0, 2 1 0, 8 0 0 20 40 60 80 100 Time n 0, 6 0, 4 0, 2 0 0 20 40 60 80 100 Time h 0, 6 0, 4 0, 2 0 0 20 40 60 80 100 Time

Two-dimensional models Morris-Lecar model: INa,p+IK model: C V = I ḡ Ca m (V )(V E Ca ) ḡ K n(v E K ) g L (v ṅ = (n (V ) n)/τ n (V ) Fitzhugh-Nagumo model: C V = I ḡ Na m (V )(V E Na ) ḡ K n(v E K ) g L (V ṅ = (n (V ) n)/τ n (V ) ẋ = x(a x)(x 1) y + I ẏ = bx cy

Qualitative analysis of dynamical systems Example of 1D linear system: C dv dt = G(V V rest) = C V V 5 V > 0 V < 0 V V 0 V = f(v V rest ) 5 0 10 20 30 40 50 Time

Qualitative analysis of dynamical systems General 1D linear system: ẏ(t) = λy(t) Solution: y(t) = y 0 e λt ẏ ẏ ẏ ẏ > 0 ẏ < 0 y ẏ > 0 ẏ < 0 y ẏ < 0 ẏ > 0 y y 10 5 0 5 10 λ < 0 0 1 2 3 4 5 Time y 10 5 0 5 10 ẏ = λy 0 5 10 Time y 20 10 0 10 20 λ > 0 0 0, 5 1 Time

Qualitative analysis of dynamical systems Example of 1D nonlinear system: persistent sodium model. C V = I g L (V E L ) g Na m (V )(V V Na ) V V 50 0 50 0 50 V 0 50 0 2, 5 5 Time

Qualitative analysis of dynamical systems Example of 1D nonlinear system: persistent sodium model (I = 60) C V = I g L (V E L ) g Na m (V )(V V Na ) V 100 V 50 0 50 0 50 V 0 50 0 2, 5 5 Time

Qualitative analysis of dynamical systems 2D system:

INa,p+IK model: high threshold General behavior: I = 0

INa,p+IK model: high threshold General behavior: I = 0

INa,p+IK model: high threshold Saddle-node bifurcation: I = 4.75

INa,p+IK model: high threshold Saddle-node bifurcation: I = 6

INa,p+IK model: low threshold Supercritical Hopf bifurcation: I = 18.5

INa,p+IK model: low threshold Supercritical Hopf bifurcation: I = 21

INa,p+IK model: low threshold Supercritical Hopf bifurcation: I = 27

Hodgkin s classification (1948) Type I neurons: Type II neurons: Variable frequency Saddle-node / high threshold Constant frequency Hopf / low threshold

Bursting models (3D) Fast-slow system: Hindmarsh-Rose model: ẋ = y ax 3 + by 2 z + I ẏ = c dx 2 y ż = r[s(x x 0 ) z]

Hindmarsh-Rose model (1984) Two-dimensional: r = 0 Periodic behavior (limit cycle)

Hindmarsh-Rose model (1984) Three-dimensional: r = 0.006 Chaotic behavior (strange attractor)

Hybrid models Characteristics: Continuous part Discrete part Leaky integrate and fire (Lapicque, 1909) τ m V = V + RI (t) If V > V th then V V reset No spike generation mechanism

Quadratic integrate and fire τ V = V 2 + RI (t)

Two-dimensional hybrid model Izhikevich (2003)

Two-dimensional hybrid model

Simplified models Izhikevich (2004)

Discrete state automata Binary models: Excitable systems: Generic models: Quiescent Active Refractory

Models of synapses Synaptic weights: matrix representation Synaptic currents: Kinetic models Simplified models Learning rules:

Synaptic weights W = [w ij ] w ij > 0 for excitatory connections. w ij < 0 for inhibitory connections. With quantal release (n sites, p probability of release, q size of the quantum): w npq

Synaptic mechanisms

Transmitter release [T ](V pre ) = T max 1 + e ξ with ξ = (V pre v 1/2 ) K p x (V ) 1 2k 0.5 0 V 1/2 V

Synaptic currents: kinetic models I syn (t) = g syn (t)(v m (t) E syn ) with g syn (t) = ḡ syn s(t) Dependency to transmitter concentration Kinetics of current changes

Ionotropic receptors C + T α β O (1) with C for Closed and O for open. We get the equation: ds dt = α [T ] (1 s) βs (2) I AMPA = ḡ AMPA s(v m E AMPA ) (3) I GABAA = ḡ GABAA s(v m E GABAA ) (4) I NMDA = ḡ NMDA sm(v )(V E NMDA ) (5) and: M(V ) = 1 1 + exp( 0.062V ) [Mg2+] o /3.57 (6)

Metabotropic receptors R i + T K 1 R (7) K2 R + G i K3 R + G (8) G K4 G i (9) s n I GABAB = ḡ GABAB s n (V E K ) + K d with n = 4 (10) dr dt = K 1 [T ] (1 r) K 2 r (11) ds dt = K 3r K 4 s (12)

Synaptic currents: simplified models I syn (t) = g syn (t)(v m (t) E syn ) with g syn (t) = ḡ syn s(t) s(t) = k F (t t k ) with { F (t) = 0 for t < 0 F (t) > 0 otherwise s(t) The α function: F (t t k ) F (t) = f r f d f r f d (e f d t e fr t ) t 1 t 2 t 3 t 4 t 5 t