Three-dimensional (3-D) radiative transfer codes are mainly used in cloud studies (e.g., LES models) and vegetation studies.

Similar documents
Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Atmosphere Properties and Molecular Absorption Spectrum

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

Atmospheric Basics Atmospheric Composition

ATOC 3500/CHEM 3151 Air Pollution Chemistry Lecture 1

8. Clouds and Climate

The troposphere is the layer closest to Earth s surface. Extends from 9-16 km above Earth s Surface It contains most of the mass of the atmosphere.

ATMOSPHERIC THERMODYNAMICS

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

Atmospheric Thermodynamics

1. CLIMATOLOGY: 2. ATMOSPHERIC CHEMISTRY:

Radiation in the atmosphere

Most of the earth s weather occurs in the troposphere

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

ATOC 3500/CHEM 3152 Week 9, March 8, 2016

Final Weather Unit Study Guide

Temperature Pressure Wind Moisture

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Science Chapter 13,14,15

General Meteorology. Part II. I Introduction and Terminology. II Earth s Atmosphere and Sun

1. The frequency of an electromagnetic wave is proportional to its wavelength. a. directly *b. inversely

Section 2: The Atmosphere

Why Is the Mountain Peak Cold? Lecture 7: Air cools when it rises. Vertical Thermal Structure. Three Things Need To Be Explained

Emission Temperature of Planets. Emission Temperature of Earth

Slides partly by Antti Lauri and Hannele Korhonen. Liquid or solid particles suspended in a carrier gas Described by their

Unit 4 Lesson 2 Clouds and Cloud Formation. Copyright Houghton Mifflin Harcourt Publishing Company

The Earth is surrounded by a blanket of air, which we call the atmosphere. It reaches over 560 kilometers

2/22/ Atmospheric Characteristics

Clouds on Mars Cloud Classification

Lecture 1, GEF4310 Cloud Physics

Aerosol Basics: Definitions, size distributions, structure

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr.

PTYS 214 Fall Announcements

Aerosols and climate. Rob Wood, Atmospheric Sciences

Weather is the of the Earth s atmosphere at a place and time. It is the movement of through the atmosphere o Energy comes from the

NATS 101 Section 13: Lecture 11. Clouds

PTYS 214 Spring Announcements. Midterm 3 next Thursday! Midterms 4 and 5 more spread out

The Atmosphere and Atmospheric Energy Chapter 3 and 4

The Atmosphere Made up of mainly two gases: Nitrogen 78% Oxygen 21% Trace Gases 1%

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Earth s Atmosphere. Composition

Ch22&23 Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Atmosphere. Earth's atmosphere is a mixture of gases, solids, and liquids that surround the planet.

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Chapter 4 Lesson 1: Describing Earth s Atmosphere

Period 13 Solutions: Earth as an Energy System

Unique nature of Earth s atmosphere: O 2 present photosynthesis

The Atmosphere of Earth

The Atmosphere - Chapter Characteristics of the Atmosphere

AT 350 EXAM #1 February 21, 2008

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Earth s Atmosphere. Describing Earth s Atmosphere

ATMOSPHERE: ORIGIN, COMPOSITION, AND STRUCTURE

The Atmosphere. All of it. In one hour. Mikael Witte 10/27/2010

Atmosphere L AY E RS O F T H E AT MOSPHERE

Unit: Weather Study Guide

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17

1. Composition and Structure

In the space provided, write the letter of the description that best matches the term or phrase. as waves. thermosphere

The last 2 million years.

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

The Atmosphere EVPP 110 Lecture Fall 2003 Dr. Largen

Name Class Date. Water molecules condense around the salt crystal. More water molecules condense around the original small droplet.

The most abundant gas in the atmosphere by volume is. This gas comprises 78% of the Earth atmosphere by volume.

Note on RTTOV v12 unit conversions for gases, clouds and aerosols

Chapter 3. Multiple Choice Questions

Earth s Atmosphere Supports Life. Read p. A9-A11 to distinguish the two truths from the lie. 1. Air gets thinner the higher you go up a mountain.

The Atmosphere. Characteristics of the Atmosphere. Section 23.1 Objectives. Chapter 23. Chapter 23 Modern Earth Science. Section 1

Absorption and scattering

(for tutoring, homework help, or help with online classes)

WATER IN THE ATMOSPHERE

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Weather Notes. Chapter 16, 17, & 18

water Plays dominant role in radiation All three phases emit and absorb in longwave radiation

surrounds Earth and protects it somewhat from solar radiation. Like all other matter, air has weight,

CLOUDS, PRECIPITATION, AND WEATHER RADAR

Prentice Hall EARTH SCIENCE. Tarbuck Lutgens

Chapter 14: The Changing Climate

Unit 9. Atmosphere. Natural Science 1º ESO Antonio Jesús Moreno Quintero. Colegio Guadalete. Attendis.

Bell Ringer. 1. What is humidity? 2. What kind of clouds are there outside right now? 3. What happens to air when it gets colder?

Transient/Eddy Flux. Transient and Eddy. Flux Components. Lecture 7: Disturbance (Outline) Why transients/eddies matter to zonal and time means?

Common Elements: Nitrogen, 78%

Aerosols and Climate

How our atmosphere is heated.

The Atmosphere. 1 Global Environments: 2 Global Environments:

Weather and the Atmosphere. RAP Short Course

TYPES AND PROPERTIES OF WATER Vol. I The Physical Properties of Atmospheric Water, including its Three Phases G.N. Panin

Goal 2.5. The Atmosphere

Atmospheric Evolution: Earth s s Oxidation

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21

Final Review Meteorology

Climate & Earth System Science. Introduction to Meteorology & Climate CHAPTER 1 LECTURE 1. Question: Introduction to the Atmosphere

Thickness of the Atmosphere

Energy and Radiation. GEOG/ENST 2331 Lecture 3 Ahrens: Chapter 2

Objectives: S.W.B.A.T.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

Transcription:

Lecture 5. Composition and structure of the Earth s atmosphere. Basic properties of gases, aerosols, and clouds that are important for radiative transfer modeling. Objectives: 1. Structure of the Earth s atmosphere and radiative transfer modeling.. Basic properties of atmospheric gases. 3. Basic properties of aerosols. 4. Basic properties of clouds. 5. Refractive indices of common atmospheric particulates. Required reading: L0: 3.1, 5.1, pp.169-176 1. Basic properties of planetary atmospheres. Structure of the Earth s atmosphere and radiative transfer modeling. Propagation of the electromagnetic radiation in an atmosphere is affected by the state of the atmosphere (temperature, pressure, air density) and atmospheric composition (gases and particulates) Interactions of atmospheric constituents with radiation: Gases all scatter radiation, and some can absorb (and emit) radiation depending on their molecular structure Particulates (aerosol and clouds) all scatter radiation, and some can absorb (and emit) radiation depending on their refractive indices (determined by composition) 1

Dimensionality of radiation transfer Radiative transfer in models (NWPs, CTMs, GCMs, etc.) is commonly solved in one dimension (1-D) based on the concept of the plane parallel atmosphere (see Fig. 3.4 in Lec 3) EXAMPLE: In global and regional climate models, radiative transfer is solved in each column defined by model grid size. The vertical resolution is the same as the number of vertical layers in the model. Three-dimensional (3-D) radiative transfer codes are mainly used in cloud studies (e.g., LES models) and vegetation studies. Schematic of 3-D radiative field in vegetation (left) and 3-D ice water content of a cirrus cloud.

Planets 101 Basic properties and composition of terrestrial planet atmospheres: Temperature profile Atmospheric composition 3

Atmospheric structure of giant planets: NOTE: Surface and atmosphere are not always clearly defined (unlike for the Earth) see example for Jupiter below. 4

Practically any 1-D RT code includes a set of standard atmospheric models. Each model consists of profiles of T, P, and concentrations of main atmospheric gases. Figure 5.1 Temperature profiles (top), water and ozone density (bottom) of the standard atmospheric models often used in radiative transfer calculations. Standard U.S. 1976 atmosphere is representative of the global mean atmospheric conditions; Tropical 5

atmosphere is for latitudes < 30 0 ; Subtropical atmosphere is for latitudes between 30 0 and 45 0 ; Subarctic atmosphere is for latitudes between 45 0 and 60 0 ; and Arctic atmosphere is for latitudes > 60 0.. Atmospheric gases. Table 5.1 Gaseous composition of the Earth s atmosphere Gases % by volume Comments Constant gases Nitrogen, N 78.084% Photochemical dissociation high in the ionosphere; mixed at lower levels Oxygen, O 0.948% Photochemical dissociation above 95 km; mixed at lower levels Argon, Ar 0.934% Mixed up to 110 km Neon, Ne 0.001818% Helium, He 0.00054% Krypton, Kr 0.00011% Xenon, Xe 0.000009% Variable gases Water vapor, H O 4.0% (maximum, in the tropics) 0.00001%(minimum, at the South Pole) Carbon dioxide, CO 0.0365% (increasing ~0.4% per year) Methane, CH 4 ~0.00018% (increases Mixed in most of the middle atmosphere Highly variable; photodissociates above km dissociation Slightly variable; mixed up to 100 km; photodissociates above Mixed in troposphere; dissociates in mesosphere due to agriculture) Hydrogen, H ~0.00006% Variable photochemical product; decreases slightly with height in the middle atmosphere Nitrous oxide, N O ~0.00003% Slightly variable at surface; dissociates in stratosphere and mesosphere Carbon monoxide, ~0.000009% Variable CO Ozone, O 3 ~0.000001% - 0.0004% Highly variable; photochemical origin Fluorocarbon 1, CF Cl ~0.00000005% Mixed in troposphere; dissociates in stratosphere 6

Figure 5. Vertical profiles of mixing ratios of some gases in the Earth s atmosphere. The amount of the gas can be expressed in several ways: i) Molecular number density = molecular number concentration = molecules per unit volume of air; ii) Density = molecular mass concentration = mass of gas molecules per unit volume of air; iii) Mixing ratios: Volume mixing ratio is the number of gas molecules in a given volume to the total number of all gases in that volume (when multiplied by 10 6, in ppmv (parts per million by volume)) Mass mixing ratio is the mass of gas molecules in a given volume to the total mass of all gases in that volume (when multiplied by 10 6, in ppmm (parts per million by mass)) NOTE: Commonly used mixing fraction: one part per million 1 ppm (1x10-6 ); one part per billion 1 ppb (1x10-9 ); one part per trillion 1 ppt (1x10-1 ). iv) Mole fraction is the ratio of the number of moles of a given component in a mixture to the total number of moles in the mixture. 7

The structure of molecules is important for an understanding of their energy forms and their ability to absorb/emit radiation: Linear molecules (CO, N O; C H, all diatomic molecules): Symmetric top molecules (NH 3, CH 3 CL, CF 3 CL) Spherical symmetric top molecules (CH 4 ) Asymmetric top molecules (H O, O 3 ) The structure of a molecule determines whether the molecule has a permanent dipole or may acquire the dipole. The presence of the dipole is required for absorption/emission processes by the molecules (see Lecture 6). Figure 5.3 Molecular structures of key atmospheric gases and their dipole moment. 8

3. Basic properties of aerosols. Atmospheric aerosols are solid or liquid particles or both suspended in air with diameters between about 0.00 µm to about 100 µm. Interaction of the particulate matter (aerosols and clouds particles) with electromagnetic radiation is controlled by the particle size, composition, mixing state, shape and amount. Atmospheric particles vary greatly in sources, production mechanisms, sizes, shapes, chemical composition, amount, distribution in space and time, and how long they survive in the atmosphere (i.e., lifetime). Primary and secondary aerosols: Primary atmospheric aerosols are particulates that emitted directly into the atmosphere (for instance, sea-salt, mineral aerosols (or dust), volcanic dust, smoke and soot, some organics). Secondary atmospheric aerosols are particulates that formed in the atmosphere by gasto-particles conversion processes (for instance, sulfates, nitrates, organics). Location in the atmosphere: stratospheric and tropospheric aerosols; Geographical location: marine, continental, rural, industrial, polar, desert aerosols, etc. Spatial distribution: Atmospheric aerosols exhibit complex, heterogeneous distributions, both spatially and temporally. Anthropogenic (man-made) and natural aerosols: Anthropogenic sources: various (biomass burning, gas to particle conversion; industrial processes; agriculture s activities) Natural sources: various (sea-salt, dust storm, biomass burning, volcanic debris, gas to particle conversion). Chemical composition: Individual chemical species: sulfate (SO - 4 ), nitrate (NO - 3 ), soot (elemental carbon), sea-salt (NaCl); minerals (e.g., quartz, SiO 4 ). Multi-component (MC) aerosols: complex make-up of many chemical species (called internally mixed particles) 9

Particle size distribution: The particle size distribution of aerosols are commonly approximated by the analytical functions (such as log-normal, power law, or gamma function) Log-normal function: N Normalization: No ln( r / r ) r) = exp( o ) [5.1] p ln( σ ) r ln( σ ) ( N ( r) dr = N [5.] 0 If three size modes are present (e.g., see Figure 5.4), then one takes a sum of three lognormal functions N ln( r / r i 0, i ) N ( r) = exp( ) i p ln( σ ) r ln( σ ) i i [5.3] where N(r) is the particle number concentration, N i is the total particle number concentration of i-th size mode with its median radius r 0,i and geometric standard deviation σ i. NOTE: Surface area or volume (mass) size distributions can be found using the k- moment of the lognormal distribution (k= or k=3, respectively): k k r N( r) dr = N0r0 exp( k (lnσ ) / ) [5.4] 10

Figure 5.4 A classical view of the distribution of particle mass of atmospheric aerosols (from Whitby and Cantrell, 1976). NOTE: Fine mode (d < ~.5 µm) and coarse mode (d > ~.5 µm); fine mode is divided on the nuclei mode (about 0.005 µm < d < 0.1 µm) and accumulation mode (0.1µm < d <.5 µm). 11

Shapes of aerosol particles: many are spherical but not all! Along with size and composition, particle shape (spherical vs. non-spherical) is an important factor that affects how particle scatter and absorb radiation. Figure 5.5 Schematic representation of the aerosol size distribution and electronic images of representative aerosol types. 1

4. Basic properties of clouds. Major characteristics are cloud type, cloud coverage and distribution, liquid water content of cloud, cloud droplet concentration, and cloud droplet size. Cloud droplet sizes vary from a few micrometers to 100 micrometers with average diameter in 10 to 0 µm range. Cloud droplet concentration varies from about 10 cm -3 to 1000 cm -3 with average droplet concentration of a few hundred cm -3. The liquid water content of typical clouds, often abbreviated LWC, varies from approximately 0.05 to 3 g(water) m -3, with most of the observed values in the 0.1 to 0.3 g(water) m -3 region. NOTE: Clouds cover approximately 60% of the Earth s surface. Average global coverage over the oceans is about 65% and over the land is about 5%. Table 5. Types and properties of clouds. Height of Freq. over base (km) oceans Type (%) Coverage over oceans (%) Freq. over land (%) Coverage over land (%) Low level: Stratocumulus(Sc) Stratus (St) 0-0- 45 (Sc+St) 34 (Sc+St) 7 (Sc+St) Nimbostratus (Ns) 0-4 6 6 6 5 Mid level: Altocumulus (Ac) -7 46 35 Altostratus (As) -7 (Ac+As) (Ac+As) (Ac+As) High level: Cirrus (Ci) 7-18 37 13 47 Cirrostratus (Cs) 7-18 Ci+Cs+Cc Ci+Cs+Cc Ci+Cs+Cc Cirrocumulus (Cc) 7-18 18 (Sc+St) 1 (Ac+As) 3 Ci+Cs+Cc Clouds with vertical development Cumulus (Cu) 0-3 33 1 14 5 Cumulonimbus(Cb) 0-3 10 6 7 4 Cloud droplets size distribution is often approximated by a modified gamma distribution N 0 N( r) = ( ) r Γ α n r r n α 1 exp( r / r ) where N 0 is the total number of droplets (cm -3 ); r n in the radius that characterizes the distribution ; α in the variance of the distribution, and Γ is the gamma function. n [5.5] 13

Table 5.3 Characteristics of representative size distributions of some clouds (for α =) Cloud type N o (cm -3 ) r m (µm) r max (µm) r e (µm) l (g m -3 ) Stratus: over ocean 50 10 15 17 0.1-0.5 over land 300-400 6 15 10 0.1-0.5 Fair weather cumulus 300-400 4 15 6.7 0.3 Maritime cumulus 50 15 0 5 0.5 Cumulonimbus 70 0 100 33.5 Altostratus 00-400 5 15 8 0.6 Mean radius: r m = (α +1) r n ; Effective radius: r e = (α +3) r n For many practical applications, the optical properties of water clouds are parameterized as a function of the effective radius and liquid water content (LWC). The effective radius is defined as 3 πr N( r) dr r e = πr N( r) dr where N(r) is the droplet size distribution. The liquid water content (LWC) is defined as 4 3 [5.6] LWC = r w V = rw πr N( r) dr [5.7] 3 Cloud Ice Crystals Ice crystals present in clouds found in the atmosphere are often six-sided. However, there are variations in shape: plates - nearly flat hexagon; columns - elongated, flat bottoms; needles - elongated, pointed bottoms; dendrites - elongated arms (six), snowflake shape. Ice crystal shapes depend on temperature and relative humidity. Also, crystal shapes can be changed due to collision and coalescence processes in the clouds. 14

Figure 5.6 Representative shapes of ice crystals and snow. 5. Refractive indices of common atmospheric particulates. Refractive index (or optical constants), m=m r im i, is the material properties of dielectric that determines its radiative properties. In general, each material has its own spectral refractive index. The imaginary part m i of the refractive index determines the absorption of the EM wave as it propagates through the medium; the real part m r of the refractive index gives the phase velocity of propagation. 15

It is believed that the refractive indices of the (bulk material apply down to the smallest atmospheric aerosol particles. The refractive index is a function of wavelength. Each substance has a specific spectrum of the refractive index. Particles of different sizes, shapes and indices of refraction will have different scattering and absorbing properties. Examples of refractive indices: Figure 5.7 The complex refractive index of water and ice. 16

Figure 5.8 A classical plot showing the imaginary part of the refractive indexes of some aerosol materials (Bohren and Huffman, 1983, Fig.5.16). NOTE: Main absorbing species in the SW are black carbon (soot) and hematite (dust), but in the LW various species have high imaginary parts of the refractive index. But overall absorption (i.e., absorption coefficient) is also controlled by particle size. 17

Aerosol particles often consist of several chemical species (called the internal mixture). There are several approaches (called mixing rules) to calculate the effective refractive index m e of the internally mixed particles using the refractive indices of the individual species: A) Volume (or mass) weighted mixing: m e = m j f [5.8] j j where m j is the refractive index of j-species and f j is its volume fraction. B) Bruggeman approximation for two randomly mixed species: f e e e e e + e 1 e 1 + f = e1 + e e where e i are the dielectric constants of two materials and f i are their volume fractions. The refractive index is m = ε C) Maxwell-Garnett approximation for two specious when one is a matrix (host material) with the dielectric constant e and another is an inclusion with e 1 : 0 [5.9] ε1 ε ε ε f 1 = [5.10] ε1 + ε ε + ε f ε ε1 ε ε1 = ε + ε ε + ε NOTE: B) and C) approaches can be extended for the n-component mixtures. 1 ε 1 18