Fuzzy derivations KU-ideals on KU-algebras BY

Similar documents
TERNARY SEMIHYPERGROUPS IN TERMS OF BIPOLAR-VALUED FUZZY SETS

Relative controllability of nonlinear systems with delays in control

Comparison of Differences between Power Means 1

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

ON THE WEAK LIMITS OF SMOOTH MAPS FOR THE DIRICHLET ENERGY BETWEEN MANIFOLDS

Solution in semi infinite diffusion couples (error function analysis)

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Cubic Bezier Homotopy Function for Solving Exponential Equations

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Notes on the stability of dynamic systems and the use of Eigen Values.

OP = OO' + Ut + Vn + Wb. Material We Will Cover Today. Computer Vision Lecture 3. Multi-view Geometry I. Amnon Shashua

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

A Deza Frankl type theorem for set partitions

CS286.2 Lecture 14: Quantum de Finetti Theorems II

The Shapley value for fuzzy games on vague sets

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

Suyash Narayan Mishra, Piyush Kumar Tripathi & Alok Agrawal

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Variants of Pegasos. December 11, 2009

Track Properities of Normal Chain

On Convergence Rate of Concave-Convex Procedure

On elements with index of the form 2 a 3 b in a parametric family of biquadratic elds

( ) () we define the interaction representation by the unitary transformation () = ()

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

Key words: Fractional difference equation, oscillatory solutions,

Testing a new idea to solve the P = NP problem with mathematical induction

Linear Dynamic Models

@FMI c Kyung Moon Sa Co.

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS

PHYS 1443 Section 001 Lecture #4

Faα-Irresolute Mappings

)-interval valued fuzzy ideals in BF-algebras. Some properties of (, ) -interval valued fuzzy ideals in BF-algebra, where

A New Generalisation of Sam-Solai s Multivariate symmetric Arcsine Distribution of Kind-1*

ON THE ADDITION OF UNITS AND NON-UNITS IN FINITE COMMUTATIVE RINGS

COMPUTER SCIENCE 349A SAMPLE EXAM QUESTIONS WITH SOLUTIONS PARTS 1, 2

. The geometric multiplicity is dim[ker( λi. number of linearly independent eigenvectors associated with this eigenvalue.

DIFFERENTIAL SCHEMES

On Derivations of BCC-algebras

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Advanced time-series analysis (University of Lund, Economic History Department)

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

. The geometric multiplicity is dim[ker( λi. A )], i.e. the number of linearly independent eigenvectors associated with this eigenvalue.

On One Analytic Method of. Constructing Program Controls

Li An-Ping. Beijing , P.R.China

On computing differential transform of nonlinear non-autonomous functions and its applications

Some Probability Inequalities for Quadratic Forms of Negatively Dependent Subgaussian Random Variables

Continuous Indexed Variable Systems

NONLOCAL BOUNDARY VALUE PROBLEM FOR SECOND ORDER ANTI-PERIODIC NONLINEAR IMPULSIVE q k INTEGRODIFFERENCE EQUATION

Fuzzy Set Theory in Modeling Uncertainty Data. via Interpolation Rational Bezier Surface Function

Delay-Range-Dependent Stability Analysis for Continuous Linear System with Interval Delay

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

CHAPTER 5: MULTIVARIATE METHODS

By HENRY H. KIM and KYU-HWAN LEE

Lecture 16 (Momentum and Impulse, Collisions and Conservation of Momentum) Physics Spring 2017 Douglas Fields

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Inventory Analysis and Management. Multi-Period Stochastic Models: Optimality of (s, S) Policy for K-Convex Objective Functions

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

Comb Filters. Comb Filters

FI 3103 Quantum Physics

Epistemic Game Theory: Online Appendix

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

A New Generalized Gronwall-Bellman Type Inequality

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

Tight results for Next Fit and Worst Fit with resource augmentation

Online Learning with Partial Feedback. 1 Online Mirror Descent with Estimated Gradient

Chapter Lagrangian Interpolation

Existence of Time Periodic Solutions for the Ginzburg-Landau Equations. model of superconductivity

Periodic motions of a class of forced infinite lattices with nearest neighbor interaction

LEVEL SET OF INTUITIONTISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

A NEW INTERPRETATION OF INTERVAL-VALUED FUZZY INTERIOR IDEALS OF ORDERED SEMIGROUPS

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia

Linear Response Theory: The connection between QFT and experiments

Scattering at an Interface: Oblique Incidence

Improvement in Estimating Population Mean using Two Auxiliary Variables in Two-Phase Sampling

WebAssign HW Due 11:59PM Tuesday Clicker Information

Example: MOSFET Amplifier Distortion

Lecture 18: The Laplace Transform (See Sections and 14.7 in Boas)

Mechanics Physics 151

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

On Two Integrability Methods of Improper Integrals

Mechanics Physics 151

Upper Bound For Matrix Operators On Some Sequence Spaces

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Chapter 6: AC Circuits

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

II. Light is a Ray (Geometrical Optics)

Supplement for Stochastic Convex Optimization: Faster Local Growth Implies Faster Global Convergence

= s j Ui U j. i, j, then s F(U) with s Ui F(U) G(U) F(V ) G(V )

Transcription:

Fu ervaons KU-eals on KU-algebras BY Sam M.Mosaa, Ahme Ab-elaem 2 sammosaa@ahoo.com ahmeabelaem88@ahoo.com,2deparmen o mahemacs -Facul o Eucaon -An Shams Unvers Ro, Caro, Egp Absrac. In hs manuscrp, we nrouce a new concep, whch s calle u le rgh ervaons KU- eals n KU-algebras. We sae an prove some heorems abou unamenal properes o. Moreover, we gve he conceps o he mage an he pre-mage o u le rgh ervaons KU-eals uner homomorphsm o KU- algebras an nvesgae some s properes. Furher, we have prove ha ever he mage an he pre-mage o u le rgh ervaons KU-eals uner homomorphsm o KU- algebras are u le rgh ervaons KU-eals. Furhermore, we gve he concep o he Caresan prouc o u le rgh ervaons KU - eals n Caresan prouc o KU algebras. AMS Subjec Classcaon: 3G25, 6F35 Kewors. KU-algebras,u le rgh ervaons o KU-eals, he mage an he per- mage o u le rgh ervaons KU eals, he Caresan prouc o u le rgh ervaons KU eals. Corresponng Auhor : Sam M. Mosaa sammosaa@ahoo.com. Inroucon As s well known, BCK an BCI-algebras are wo classes o algebras o logc. The were nrouce b Ima an Isek [,,2] an have been eensvel nvesgae b man researchers. I s known ha he class o BCK-algebras s a proper sub class o he BCI-algebras.The class o all BCK-algebras s a quasvare. Is ek pose an neresng problem solve b Wro nsk [24] wheher he class o BCK-algebras s a vare. In connecon wh hs problem, Komor [5] nrouce a noon o BCC-algebras, an Duek [7] reene he noon o BCC-algebras b usng a ual orm o he ornar enon n he sense o Komor. Duek an Zhang [8] nrouce a new noon o eals n BCCalgebras an escrbe connecons beween such eals an congruences.

C.Prabpaak an U.Leerawa [22 ], [23 ] nrouce a new algebrac srucure whch s calle KU - algebra. The gave he concep o homomorphsms o KUalgebras an nvesgae some relae properes. Several auhors [2,3,5,6,9,4] have sue ervaons n rngs an near rngs. Jun an Xn [3] apple he noon o ervaons n rng an near-rng heor o BCI-algebras, an he also nrouce a new concep calle a regular ervaon n BCI -algebras. The nvesgae some o s properes, ene a -ervaon eal an gave conons or an eal o be -ervaon. Laer, Hama an Al-Shehr [], ene a le ervaon n BCI-algebras an nvesgae a regular le ervaon. Zhan an Lu [27 ] sue -ervaons n BCI-algebras an prove some resuls. G. Muhun el [2,2] nrouce he noon o, -ervaon n a BCIalgebra an nvesgae relae properes. The prove a conon or a, - ervaon o be regular. The also nrouce he conceps o a, - nvaran, -ervaon an α-eal, an hen he nvesgae her relaons. Furhermore, he obane some resuls on regular, - ervaons. Moreover, he sue he noon o -ervaons on BCI-algebras an obane some o s relae properes. Furher, he characere he noon o p-semsmple BCI-algebra X b usng he noon o -ervaon. Laer, Mosaa e al [8,9], nrouce he noons o, r - r, -ervaon o a KU-algebra an some relae properes are eplore. The concep o u ses was nrouce b Zaeh [26]. In 99, X [25] apple he concep o u ses o BCI, BCK, MValgebras.Snce s ncepon, he heor o u ses, eal heor an s ucaon has evelope n man recons an s nng applcaons n a we vare o els. Mosaa e al, n 2[7] nrouce he noon o u KU-eals o KU-algebras an hen he nvesgae several basc properes whch are relae o u KU-eals. In hs paper, we nrouce he noon o u le rgh ervaons KU- eals n KU - algebras. The homomorphc mage premage o u le rgh - ervaons KU- eals n KU - algebras uner homomorprhsm o a KU-algebras are scusse. Man relae resuls have been erve. 2

2. Prelmnares In hs secon, we recall some basc enons an resuls ha are neee or our work. Denon 2. [22,23 ] Le X be a se wh a bnar operaon an a consan. X,, s calle KU-algebra he ollowng aoms hol :,, X : KU [ ] KU 2 KU 3 KU 4 mples Dene a bnar relaon b :, we can prove ha X, s a parall orere se. Throughou hs arcle, X wll enoe a KU-algebra unless oherwse menone Corollar 2.2 [7,22] In KU-algebra he ollowng enes are rue or all,, X : I mples ha v v [ ] Denon 2.3 [22,23] A subse S o KU-algebra X s calle sub algebra o X S, whenever, S Denon 2.4 [22,23 ] Anon emp subse A o KU-algebra X s calle eal o X s sase he ollowng conons: A A, A mples A, X. 3

Denon 2.5 [7] A non - emp subse A o a KU-algebra X s calle an KU eal o X sases he ollowng conons : A, 2 * * A, A mples * A, or all,, X Denon 2.6[7] Le X be a KU - algebra, a u se µ n X s calle u sub-algebra sases: S µ µ, S 2 µ {µ *, µ } or all, X. Denon 2.7 [7] Le X be a KU-algebra, a u se µ n X s calle a u KU-eal o X sases he ollowng conons: F µ µ, F 2 µ * mn {µ * *, µ }. Denon 2.8 For elemens an o KU-algebra X,,, we enoe. Denon 2.9[8] Le X be a KU-algebra. A sel map : X X s a le rgh ervaon brel,, r -ervaon o X sases he en, X I sases he en, X s calle rgh-le ervaon brel, r, -ervaon o X. Moreover, s boh, r an r, ervaon hen s calle a ervaon o X. Denon 2.[8] A ervaon o KU-algebra s sa o be regular. 4

Lemma 2.[8] A ervaon o KU-algebra X s regular. Eample 2.2 [8] Le X = {,,2,3. 4 } be a se n whch he operaon s ene as ollows: 2 3 4 2 3 4 2 2 4 2 4 3 4 4 Usng he algorhms n Appen A, we can prove ha X, *, s a KU-algebra. Dene a map : X X b 4,,2,3 4 Then s eas o show ha s boh a, r an r, -ervaon o X. Eample 2.2. Le on bnar relaon on be he se o all posve negers an. The operaon * s ene as ollows: *=,where " " he mnus operaon.dene a b :. Then,*, X s a KU-algebra. We ene a map : X X b = or all.then, X,we have *= =.I, * = = =+ an * = = =, bu * * =+ * * = [ + ]= = + II From I an II, s no, r ervaon o X. On oher han 5

*= =, *= = =+, bu * * = [ ** *]* *= [ ] =. III From I an III, s r, ervaon o X. Hence r, -ervaon an, r ervaon are no conce. Proposon 2.3[8] Le X be a KU-algebra wh paral orer, an le be a ervaon o X. Then he ollowng hol, X :... v. v { X } s a sub algebra o X. Denon 2.4 [8] Le X be a KU-algebra an be a ervaon o X. Denoe F X { X : }. Proposon 2.5[8] Le X be a KU-algebra an be a ervaon o X.Then F X s a sub algebra o X. 6

3. Fu ervaons KU- eals o KU-algebras In hs secon, we wll scuss an nvesgae a new noon calle u- le ervaons KU - eals o KU - algebras an su several basc properes whch are relae o u le ervaons KU - eals. Denon 3. Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle le ervaons KU eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X Denon 3.2 Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle rgh ervaons KU eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X. Denon 3.3 Le X be a KU-algebra an : X X be sel map.a non - emp subse A o a KU-algebra X s calle ervaons KU -eal o X sases he ollowng conons: A, 2 * * A, A mples * A, or all,, X Denon 3.4 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u le ervaons KU-ealbrel, F, -ervaon o X sases he ollowng conons: F µ µ, FL 2 µ * mn{ µ**, µ }. 7

Denon 3.5 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u rgh ervaons KU-ealbrel, F, r o X sases he ollowng conons: F µ µ. -ervaon FR 2 µ * mn { µ**, µ }. Denon 3.6 Le X be a KU-algebra an : X X be sel map. A u se : X [,] n X s calle a u ervaons KU-eal, sases he ollowng conons F µ µ. F 2 µ * mn{ µ* *, µ }. Remark3.7 I I s e, he enons 3., 3.2,3.3 gves he enon KU-eal. II I s e, he enons 3.4,3.5, 3.6 gves he enon u KU-eal. Eample 3.8 Le X = {,,2,3. 4 } be a se n whch he operaon s ene as ollows: Usng he algorhms n Appen A, we can prove ha X, *, s a KU-algebra. * 2 3 4 2 3 4 2 3 3 2 4 3 3 4 Dene a sel map : X X b 8

4,,2,3 4. Dene a u se µ : X [,],b µ =, µ =µ 2 =, µ 3 = µ 4 = 2, where,, 2 [,] wh > > 2.Roune calculaons gve ha µ s a u le rgh- ervaons KU- eal o KU- algebra X. Lemma 3.9 Le µ be a u le ervaons KU - eal o KU - algebra X, he nequal, * hols n X, hen µ mn {µ, µ }. Proo. Assume ha he nequal * hols n X, hen * * =, * * =, snce rom Proposon 2.3 an bfl 2, we have µ * mn{ µ**,µ }= mn{ µ, µ }= µ Pu =, we have µ * = µ mn{ µ*,µ }, bu µ * mn {µ * *, µ } = mn {µ * *, µ } =mn {µ, µ } = µ From,, we ge µ mn {µ, µ }, hs complees he proo. Lemma 3. I µ s a u le ervaons KU - eal o KU - algebra X an, hen μ μ. Proo. I,hen * =, *= snce rom Proposon 2.3 hs ogeher wh * = an μ μ,we ge µ * = µ mn {µ * *, µ } = mn {µ *, µ } = = mn {µ,µ } = µ. Proposon 3. The nersecon o an se o u le ervaons KU - eals o KU algebra X s also u le ervaons KU - eal. Proo. le be a aml o u le ervaons KU - eals o KU- algebra X, hen or an,, X, n n an 9

mn * n * nmn * *, n * *,n mn * *,. Ths complees he proo. Lemma 3.2 The nersecon o an se o u rgh ervaons KU - eals o KU algebra X s also u rgh ervaons KU - eal. proo. Clear Theorem3.3 Le µ be a u se n X hen µ s a u le ervaons KU- eal o X an onl sases : For all α [,],U μ, α φ mples Uμ,α s KU- eal o X A, where U μ, α = { X / μ α}. Proo. Assume ha µ s a u le ervaons KU- eal o X, le α [, ] be such ha U μ, α φ, an, X such ha U μ, α, hen µ α an so b FL 2, µ * = µ mn { µ * *, µ }= mn{µ *, µ } = mn {µ, µ } = α, hence U μ, α. Le * * U μ, α, U μ, α, I ollows romfl 2 ha µ * mn {µ * *, µ } = α, so ha * U µ, α. Hence U μ, α s KU - eal o X. Conversel, suppose ha µ sases A, le,, X be such ha µ * < mn {µ * *, µ },akng β = /2 {µ * + mn {µ * *, µ }, we have β [,] an µ * < β < mn {μ * *, µ }, ollows ha * * U μ, β an * U μ, β, hs s a conracon an hereore µ s a u le ervaons KU - eal o X. Theorem3.4 Le µ be a u se n X hen µ s a u rgh ervaons KU- eal o X an onl sases : For all α [,],U μ, α φ mples Uμ,α s KU- eal o X. Proposon 3.5 I µ s a u le ervaons KU - eal o X, hen µ * * µ

proo. Takng = * n FL2 an usng ku2 an F, we ge µ * * mn { µ * * *, µ } = mn {µ * * *, µ } = mn {µ * *, µ }= mn {µ, µ } = µ. Denon3.6 Le µ be a u le ervaons KU - eal o KU - algebra X,.he KU - eals, [,] are calle level KU - eal o µ. Corollar3.7 Le I be an KU - eal o KU - algebra X, hen or an e number n an open nerval,, here es a u le ervaons KU eal µ o X such ha = I. proo. The proo s smlar he corollar 4.4 [7]. 4 Image Pre-mage o u ervaons KU-eals uner homomorphsm In hs secon, we nrouce he conceps o he mage an he pre-mage o u le ervaons KU-eals n KU-algebras uner homomorphsm. Denon 4. Le be a mappng rom he se X o a se Y. I s a u subse o X, hen he u subse β o Y ene b sup, { X, } oherwse s sa o be he mage o uner. Smlarl β s a u subse o Y, hen he u subse µ = β n X.e he u subse ene b µ = β or all X s calle he prmage o β uner.

Theorem 4.2 An ono homomorphc premage o a u le ervaons KU - eal s also a u le ervaons KU - eal. Proo.Le : X X` be an ono homomorphsm o KU - algebras, β a u le ervaons KU - eal o X` an µ he premage o β uner, hen β = µ, or all X. Le X, hen µ = β β = µ. Now le,, X, hen µ * = β * mn {β *` *`, β } = mn { β * *,β }= mn {µ * *, µ }. The proo s complee. Denon 4.3 [4 ] A u subse µ o X has sup proper or an subse T o X, here es T such ha, SUP. T Theorem 4.4 Le : X Y be a homomorphsm beween KU - algebras X an Y. For ever u le ervaons KU - eal µ n X, µ s a u le ervaons KU - eal o Y. Proo. B enon sup or all Y an sup.we have o prove ha mn{, }, `, `, `Y. Le : X Y be an ono a homomorphsm o KU - algebras, µ a u le ervaons KU - eal o X wh sup proper an β he mage o μ uner, snce µ s a u le ervaons KU - eal o X, we have µ µ or all X. Noe ha `, where, ` are he ero o X an Y respecvel 2

3 Thus,, sup or all X, whch mples ha, sup or an Y. For an Y,,,le,, be Such ha sup, sup \ an sup } sup } {. Then sup }, mn{ =, sup mn sup \ = }, mn{. Hence β s a u le ervaons KU-eal o Y. Theorem 4.5 An ono homomorphc premage o a u rgh ervaons KU - eal s also a u rgh ervaons KU - eal Theorem 4.6 Le : X Y be a homomorphsm beween KU - algebras X an Y. For ever u rgh ervaons KU - eal µ n X, µ s a u rgh ervaons KU - eal o Y. proo. Clear

5. Caresan prouc o u le ervaons KU-eals Denon 5.[4] A u µ s calle a u relaon on an se S, µ s a u subse µ : S S [,]. Denon 5.2 [4] I µ s a u relaon on a se S an β s a u subse o S, hen μ s a u relaon on β μ, mn {β, β },, S. Denon 5.3 [4] Le µ an β be u subse o a se S, he Caresan prouc o μ an β s ene b μ β, = mn {μ, β },, S. Lemma 5.4[4] Le μ an β be u subse o a se S,hen s a u relaon on S. = or all [,]. Denon 5.5 I µ s a u le ervaons relaon on a se S an β s a u le ervaons subse o S, hen µ s a u le ervaons relaon on β µ, mn {β, β },, S. Denon 5.6 [4] Le µ an β be u le ervaons subse o a se S, he Caresan prouc o µ an β s ene b µ β, = mn {µ, β },, S Lemma 5.7[4] Le µ an β be u subse o a se S,hen s a u relaon on S, = or all [,]. 4

Denon 5.8 I β s a u le ervaons subse o a se S, he sronges u relaon on S, ha s a u ervaons relaon on β s µ β gven b µ β, = mn {β, β },, S. Lemma 5.9 For a gven u le ervaons subse S, le µ β be he sronges u le ervaons relaon on S,hen or [,], we have µ β = β β. Proposon 5. For a gven u subse β o KU - algebra X, le µ β be he sronges le u ervaons relaon on X. I µ β s a u le ervaons KU - eal o X X, hen β β = β or all X. Proo. Snce µ β s a u le ervaons KU- eal o X X, ollows rom F ha µ β, = mn {β, β } β, = mn {β, β }, where, X X hen β β = β. Remark5. Le X an Y be KU- algebras, we ene * on X Y b : For ever,, u, vx Y,, * u, v = * u, * v, hen clearl X Y, *,, s a KU- algebra. Theorem 5.2 Le µ an β be a u le ervaons KU- eals o KU - algebra X,hen µ β s a u le ervaons KU-eal o X X. Proo : or an, X X,we have, µ β, = mn {µ, β }= mn {µ, β} mn {µ, β } = µ β,. Now le, 2,, 2,, 2 X X, hen, µ β *, 2 * 2 = mn {µ,, β 2, 2 } mn{mn {µ * *, µ }}, mn {β 2 * 2 * 2, β 2 }} 5

= mn{mn{µ * *, µ 2 * 2 * 2 }, mn{µ, β 2 }} = mn{µ β * *, 2 * 2 * 2, µ β, 2 }. Hence µ β s a u le ervaons KU- eal o X X. Analogous o heorem 3.2 [ 6], we have a smlar resuls or u le ervaons KUeal, whch can be prove n smlar manner, we sae he resuls whou proo. Theorem 5.3 Le µ an β be a u le ervaons subse o KU-algebra X,such ha µ β s a u le ervaons KU-eal o X X, hen Eher µ µ or β β or all X, I µ µ or all X, hen eher µ β or β β, I β β or all X, hen eher µ µ or β µ, v Eher µ or β s a u le ervaons KU- eal o X. Theorem 5.4 Le β be a u subse o KU- algebra X an le µ β be he sronges u le ervaons relaon on X, hen β s a u le ervaons KU - eal o X an onl µ β s a u le ervaons KU- eal o X X. proo : Assume ha β s a u le ervaons KU- eal X, we noe rom F ha : µ β, = mn {β, β } =mn {β, β } mn {β, β } = µ β,. Now, or an, 2,, 2,, 2 X X, we have rom F 2 : µ β *, 2 * 2 = mn {β *, β 2 * 2 } mn {mn{β * *, β }, mn {β 2 * 2 * 2, β 2 }} = mn{mn{β * *, β 2 * 2 * 2 }, mn {β, β 2 }} = mn {µ β * *, 2 * 2 * 2, µ β, 2 }. 6

Hence µ β s a u le ervaons KU - eal o X X. Conversel. For all, X X, we have Mn {β, β } = µ β, = mn {β, β }. I ollows ha β β or all X, whch prove F. Now, le, 2,, 2,, 2 X X, hen mn {β *, β 2 * 2 } = µ β *, 2 * 2 mn {µ β, 2 *, 2 *, 2, µ β, 2 } = mn {µ β * *, 2 * 2 * 2, µ β, 2 } = mn {mn {β * *, β 2 * 2 * 2 }, mn {β, β 2 }} = mn {mn {β * *, β }, mn {β 2 * 2 * 2, β 2 }} In parcular, we ake 2 = 2 = 2 =, hen, β * mn { β * *, β } Ths prove FL 2 an complees he proo. Concluson Dervaon s a ver neresng an mporan area o research n he heor o algebrac srucures n mahemacs. In he presen paper, he noon o u le ervaons KU - eal n KU-algebra are nrouce an nvesgae he useul properes o u le ervaons KU - eals n KU-algebras. In our opnon, hese enons an man resuls can be smlarl eene o some oher algebrac ssems such as BCI-algebra, BCH-algebra,Hlber algebra,bf-algebra -Jalgebra,WS-algebra,CI-algebra, SU-algebra,BCL-algebra,BP-algebra,Coeer algebra,bo-algebra,pu- algebras an so orh. The man purpose o our uure work s o nvesgae: The nerval value, bpolar an nuonsc u le ervaons KU - eal n KUalgebra. 2 To conser he cubc srucure o le ervaons KU - eal n KU-algebra. We hope he u le ervaons KU - eals n KU-algebras, have applcaons n eren branches o heorecal phscs an compuer scence. 7

Algorhm or KU-algebras Inpu X : se, : bnar operaon Oupu X s a KU-algebra or no Begn I X hen go o.; En I I X hen go o.; En I Sop: =alse; : ; Whle X an no Sop o I hen Sop: = rue; En I j : Whle j X an no Sop o I hen j Sop: = rue; En I En I k : Whle k X an no Sop o I hen j j k k 8

Sop: = rue; En I En Whle En Whle En Whle I Sop hen. Oupu X s no a KU-algebra Else Oupu X s a KU-algebra En I En. Reerences [] H. A. S. Abujabal an N. O. Al-Shehr, On le ervaons o BCI-algebras, Soochow Journal o Mahemacs, vol. 33, no. 3, pp. 435 444, 27. [2] H. E. Bell an L.-C. Kappe, Rngs n whch ervaons sas ceran algebrac conons, Aca Mahemaca Hungarca, vol. 53, no. 3-4, pp. 339 346, 989. [3] H. E. Bell an G. Mason, On ervaons n near-rngs, near-rngs an Near-els, Norh-Hollan Mahemacs Sues, vol. 37, pp. 3 35, 987. [4] P.Bhaachare an N.P.Mukheree, Fu relaons an u group norm, sc,36985, 267-282 [5] M. Breˇsar an J. Vukman, On le ervaons an relae mappngs, Proceengs o he Amercan Mahemacal Soce, vol., no., pp. 7 6, 99. [6] M. Breˇsar, On he sance o he composon o wo ervaons o he generale ervaons, Glasgow Mahemacal Journal, vol. 33, no., pp. 89 93, 99. [7] W. A. Duek, The number o subalgebras o ne BCC-algebras, Bull. Ins. Mah. Aca. Snca, 2 992, 29-36. [8] W. A. Duek an X. H. Zhang, On eals an congruences n BCCalgebras, Cechoslovak Mah. J., 4823 998, 2-29. [9] B. Hvala, Generale ervaons n rngs, Communcaons n Algebra, vol. 26, no. 4, pp. 47 66, 998 9

[] Y.Ima an Isek K: On aom ssems o Proposonal calcul, XIV, Proc. Japan Aca. Ser A, Mah Sc., 42966,9-22. [] k.isek: An algebra relae wh a proposonal calcul, Proc. Japan Aca. Ser A Mah. Sc., 42 966, 26-29. [2] K Isek an Tanaka S: An nroucon o heor o BCK-algebras, Mah. Japo., 23 978-26. [3] Y. B. Jun an X. L. Xn, On ervaons o BCI-algebras, Inormaon Scences, vol. 59, no. 3-4, pp. 67 76, 24. [4]A. A. M. Kamal, σ-ervaons on prme near-rngs, Tamkang Journal o Mahemacs, vol. 32, no. 2, pp. 89 93, 2 [5]Y. Komor, The class o BCC-algebras s no a vare, Mah. Japonca, 29 984, 39-394. [6 ] D.S.Malk an J.N.Moreson, Fu relaon on rngs an groups, u ses an ssems, 4399,7-23. [ 7] S. M. Mosaa M. A. Ab-Elnab- M.M. Youse, Fu eals o KU algebra Inernaonal Mahemacal Forum, Vol. 6, 2.no. 63,339 349. [8] S. M.Mosaa, R. A. K. Omar, A. Ab-elaem, Properes o ervaons on KUalgebras,gournal o avances n mahemacs Vol.9, No. [9]S. M. Mosaa, F. F.Kareem, Le e maps an α-ervaons o KU-algebra, gournal o avances n mahemacs Vol.9, No 7 [2] G. Muhun an Abullah M. Al-Roq On, -Dervaons n BCI-Algebras.Dscree Dnamcs n Naure an Soce Volume 22. [2] G. Muhun an Abullah M. Al-roq,On -Dervaons o BCI-Algebras Absrac an Apple Analss Volume 22, Arcle ID 872784, 2 pages [22] C.Prabpaak an U.Leerawa, On eals an congruence n KU-algebras, scena Magna n- ernaonal book seres, Vol. 529, No., 54-57. [23] C.Prabpaak an U.Leerawa, On somorphsms o KU-algebras, scena Magna nernaonal book seres, 529, no.3, 25-3. [24] A. Wronsk, BCK-algebras o no orm a vare, Mah. Japonca, 28 983, 2-23. [25] O.G.X, u BCK-algebras, Mah. Japan,3699.935-942. 2

[26] L.A.Zaeh, Fu ses, norm. an conrol,8965, 338-353. [27] J. Zhan an Y. L. Lu, On -ervaons o BCI-algebras, Inernaonal Journal o Mahemacs an Mahemacal Scences, no., pp. 675 684, 25. Sam M. Mosaa sammosaa@ahoo.com Deparmen o Mahemacs, Facul o Eucaon, An Shams Unvers, Ro, Caro, Egp. Ahme Ab-elaem ahmeabelaem88@ahoo.com Deparmen o Mahemacs, Facul o Eucaon, An Shams Unvers, Ro, Caro, Egp. 2