Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Similar documents
Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Today s OUTLINE: Mechanisms of Speciation. Mechanisms of Speciation. Geographic Models of speciation. (1) Mechanisms of Speciation

Speciation. Mechanisms of Speciation. Title goes here. Some Key Tenets of the Modern Synthesis

Conceptually, we define species as evolutionary units :

4/4/2017. Extrinsic Isolating Barriers. 1. Biological species concept: 2. Phylogenetic species concept:

Unfortunately, there are many definitions Biological Species: species defined by Morphological Species (Morphospecies): characterizes species by

UON, CAS, DBSC, General Biology II (BIOL102) Dr. Mustafa. A. Mansi. The Origin of Species

The Origin of Species

The Origin of Species

SPECIATION. REPRODUCTIVE BARRIERS PREZYGOTIC: Barriers that prevent fertilization. Habitat isolation Populations can t get together

The Origin of Species

Speciation and Patterns of Evolution

EVOLUTION Unit 1 Part 9 (Chapter 24) Activity #13

NOTES CH 24: The Origin of Species

Northwestern Garter Snake (Thamnophis. ordinoides)

GENETICS - CLUTCH CH.22 EVOLUTIONARY GENETICS.

1/30/2012. Review. Speciation and macroevolution - Chapter

These next few slides correspond with 23.4 in your book. Specifically follow along on page Use your book and it will help you!

5/31/17. Week 10; Monday MEMORIAL DAY NO CLASS. Page 88

Evolutionary Patterns, Rates, and Trends

The Origin of Species

Charles Darwin ( ) Sailed around the world

The Origin of Species

Microevolutionary changes show us how populations change over time. When do we know that distinctly new species have evolved?

5/31/2012. Speciation and macroevolution - Chapter

IV. Natural Selection

The Origin of Species

How Biological Diversity Evolves

STUDY GUIDE SECTION 16-1 Genetic Equilibrium

Chapter 27: Evolutionary Genetics

Biology Chapter 15 Evolution Notes

EVOLUTION. Evolution - changes in allele frequency in populations over generations.

The Nature of Species. The Origin of Species. The Nature of Species. The Nature of Species. The Biological Species Concept

Reproduction and Evolution Practice Exam

Speciation Plant Sciences, 2001Updated: June 1, 2012 Gale Document Number: GALE CV

Part 1: Types of Speciation

Adaptation. Adaptation describes any trait that enhances an organisms fitness or increases its chance of survival.

The Origin of Species

Wake Acceleration Academy - Biology Note Guide Unit 6: Evolution & The Diversity of Life

Phylogeny and Speciation. Early Human Evolution and Migration. Mitochondrial Eve 2/15/17

Bio 1B Lecture Outline (please print and bring along) Fall, 2008

Saturday, August 24, Speciation

Chapter 14 The Origin of Species

Lecture #4 evening (4pm) 1/25/02 Dr. Kopeny

Economic Evolutionary Domain (Macroevolution)

Speciation. Mechanisms of Speciation. Title goes here. Some Key Tenets of the Modern Synthesis

Theory a well supported testable explanation of phenomenon occurring in the natural world.

Darw r i w n n a nd n t h t e e G ala l pa p gos Biolo l gy g L c e t c u t re r e 16 1 : 6 Ma M cr c o r ev e olu l ti t on

Biology Eighth Edition Neil Campbell and Jane Reece

Processes of Evolution

TOPIC 10.3 GENE POOL & SPECIATION

Biological Change Over Time. Lecture 12: Evolution. Microevolution. Microevolutionary Processes. Genotypes, Phenotypes and Environmental Effects

AP Biology Notes Outline Enduring Understanding 1.C. Big Idea 1: The process of evolution drives the diversity and unity of life.

The Nature of Species

Quantitative Genetics & Evolutionary Genetics

Evolution. Changes over Time

The Origin of Species

The Origin of Species

AP Biology Review Packet 5- Natural Selection and Evolution & Speciation and Phylogeny

SPECIATION. SPECIATION The process by which once species splits into two or more species

Environmental Influences on Adaptation

Chapter 17: Population Genetics and Speciation

The theory of evolution continues to be refined as scientists learn new information.

Anthro 101: Human Biological Evolution. Lecture 6: Macroevolution & Speciation. Prof. Kenneth Feldmeier feldmekj.weebly.com

Chapter 22: Descent with Modification 1. BRIEFLY summarize the main points that Darwin made in The Origin of Species.

Ch. 24 The Origin of Species

Chapter 14 The Origin of Species

Chapter 16. Table of Contents. Section 1 Genetic Equilibrium. Section 2 Disruption of Genetic Equilibrium. Section 3 Formation of Species

Chapter 5 Evolution of Biodiversity. Sunday, October 1, 17

MACROEVOLUTION Student Packet SUMMARY EVOLUTION IS A CHANGE IN THE GENETIC MAKEUP OF A POPULATION OVER TIME Macroevolution refers to large-scale

Unit 9: Evolution Guided Reading Questions (80 pts total)

overproduction variation adaptation Natural Selection speciation adaptation Natural Selection speciation

Name Date Class CHAPTER 15. In your textbook, read about developing the theory of natural selection. For each statement below, write true or false.

How Species Form. 4.3 How Species Form. Reproductive Isolation

Guided Notes: Evolution. is the change in traits through generations over! Occurs in, NOT individual organisms

Chapter 15 Evolution Darwin s Theory of Natural Selection 15.2 Evidence of Evolution 15.3 Shaping Evolutionary Theory

Biology 213 Summer 2004 Midterm III Choose the most correct answer and mark it on the scantron sheet. (2 pts each)

Evolution. Before You Read. Read to Learn

Sympatric Speciation

Origin of Species Lecture 5 Winter 2014

Origin of Species Lecture 5 Winter 2014

ESS 345 Ichthyology. Systematic Ichthyology Part II Not in Book

A. Incorrect! Form is a characteristic used in the morphological species concept.

Evolution. 1. The figure below shows the classification of several types of prairie dogs.

Biology 110 Survey of Biology. Quizzam

AP Biology Evolution Review Slides

Evolution - Unifying Theme of Biology Microevolution Chapters 13 &14

NOTES Ch 17: Genes and. Variation

Name Date Class. Patterns of Evolution

Big Idea #1: The process of evolution drives the diversity and unity of life

What do we mean by a species? Morphological species concept. Morphological species concept BIOL2007 SPECIES AND BIODIVERSITY. Kanchon Dasmahapatra

MODELS OF SPECIATION. Sympatric Speciation: MODEL OF SYMPATRIC SPECIATION. Speciation without restriction to gene flow.

Option D.2 Species and Speciation

Aim. To understand the difficulties inherent in defining a species and factors contributing to speciation

Species and Speciation

Processes of Evolution

Macroevolution: Part III Sympatric Speciation

D. Incorrect! That is what a phylogenetic tree intends to depict.

Thursday, March 21, 13. Evolution

Lecture 25. Speciation Mechanisms (cont.); Hybridization. EEB 2245, C. Simon 27 Apr 17

Transcription:

Speciation Today s OUTLINE: (1) Geographic Mechanisms of Speciation (What circumstances lead to the formation of new species?) (2) Species Concepts (How are Species Defined?) Mechanisms of Speciation Last Time: Genetic Models: The roles of: Mutations Natural Selection Genetic Drift This Time: Geographic Models: Allopatric Model (difference place) Sympatric Model (same place) Parapatric Model (adjoining) (1) Mechanisms of Speciation Last Time: Genetic Models: How do Genetic Drift, Natural Selection, Mutations, etc. create new species? Are there speciation genes? This Time: Geographic Models: How does speciation occur in Nature? Is geographic isolation required? Mechanisms of Speciation Geographic (Ecological) Models: Allopatric Model (different place) Disperse to Another Location Vicariance: a barrier is formed This geographic split could lead to Dobzhansky-Müller incompatibilities Sympatric Model (same place) Polyploid speciation Mate Choice Niche Partitioning (e.g. different food source, Host Plant) Parapatric Model (adjoining) Geographic Models of speciation Allopatric speciation: geographic isolation Sympatric speciation: no geographic isolation Parapatric speciation: geographic separation (or gradient), but not isolation Title goes here 1

Allopatric Models Involves Geographic Isolation Dispersal Allopatric Models Following geographic separation between populations, Dispersal Vicariance Vicariance This geographic separation provides the setting that allows speciation at the molecular level to occur (last lecture) Allopatric Models Dispersal Vicariance Random Mutations would arise in the separated populations, and then selection or genetic drift would lead to fixation of those mutations Allopatric Speciation Examples (see book) Dispersal: Colonization of islands Colonization of lakes Vicariance: Highway going through a forest Fragmentation of habitats Formation of Panama splitting the Caribbean &Pacific Oceans If different mutations are fixed in the different populations, reproductive isolation could arise through Dobzhansky-Müller incompatibilities (last lecture) Sympatric models Speciation with no geographic separation Speciation despite gene flow Sympatric Model (1) Formation of Polyploids (1) Formation of polyploids (discussed in previous lecture) (2) Natural Selection due to Niche Partitioning Sexual Selection Polyploidy (extra chromosomes) Important mechanism for plants Also occurred possibly in vertebrates, some crustaceans (covered in previous lecture) Title goes here 2

Sympatric Model (2) Selection in the face of gene flow: Niche Partitioning Strong assortative mating and sexual selection (disruptive selection) Example of Niche Partitioning: Soapberry bugs have adapted to two different host plants Selection drives beak length apart Evolutionary change in beak length on the new small fruit trend toward smaller beaks on smaller fruit Niche Partitioning Soapberry bugs mate on different host plants The populations are unlikely to encounter each other Reduces gene flow Isolation Disruptive Natural Selection Adaptation to alternative hosts leads to reproductive isolation (through the genetic mechanisms discussed earlier, such as Dobzhansky-Müller model) But, sometimes hybrid zones do form between populations that are in the process of speciating Sometimes hybridization between different species results in vigorous new species or populations, especially in plants (hybrid vigor, or heterozygote advantage) The effects vary depending on how distant the two species or populations are and whether the different alleles at different loci are able to work together (coadapted gene complexes) Hybrids between different populations within a species do tend to have an advantage (Heterozygote advantage). However, mating between very distant populations (different species) can lead to hybrid breakdown. Title goes here 3

Increasing genetic distance Fitness Mating between relatives Populations within a species Mating between different species (Lions x tiger, Horse x donkey) Will not mate or Produce inviable or sterile hybrids Inbreeding Depression Hybrid Vigor (due to Heterozygote advantage) Outbreeding Depression = Hybrid Breakdown Reinforcement So, when hybrids are formed between different species, they are often costly and maladaptive because of hybrid breakdown Reinforcement So, when hybrids are formed between different species, they are often costly and maladaptive because of hybrid breakdown In such cases, you would predict that mechanisms to avoid mating would evolve to avoid the production of maladaptive hybrids (= Reinforcement) Reproductive isolation could occur at many different levels Prezygotic (before the egg is fertilized) Genetic drift and divergence in bird song-won t mate Selection on coat color-don t recognize each other Postzygotic (after the egg is fertilized) DM incompatibilities cause embryo to not develop (enzymes don t work together) Prezygotic barriers Gametic Isolation Postzygotic barriers Reduced Hybrid ViabilityReduced Hybrid Fertility Hybrid Breakdown Reinforcement So, the prediction is that in sympatry (when two different species are in the same place), mechanisms to avoid mating (prezyotic isolation) would be strong Whereas in allopatry, prezygotic isolation would not be needed because the different species would not come into contact Fertilization Viable, fertile offspring Title goes here 4

(2) How are Species Defined? How are species defined? So, what criterion should be used? Historically, the most common criteria had been using morphological characters (how an organism looks) Speciation is a messy process Rates of molecular, phenotypic (morphological) evolution and reproductive isolation are not necessarily concordant, but often discordant Speciation is a jagged messy idiosyncratic process, where species boundaries are often difficult to define Problem: Populations are in the process of speciating from one another, and species boundaries are often difficult to define until the populations are sufficiently divergent by all measures So then, how do you define species??? Title goes here 5

Darwin s view: Species are arbitrary constructs of the human mind imposed on a continuum of variation Species are dynamic rather than static entities, with boundaries changing constantly Many groups are in the process of speciation Three Main Species Concepts 1. Biological Species Concept 2. 3. Morphological (Phenetic) Species Concept 1. Biological Species Concept (Ernst Mayr, 1942) 1. Biological Species Concept (Ernst Mayr, 1942) A group of interbreeding populations that are evolutionary independent of other populations Example: all human populations belong to the same biological species Biological Species Concept Strengths An unambiguous empirical criteria which is clearly linked to speciation (if populations can t intermate they can t belong to the same species) Using reproductive isolation as the criterion is meaningful as it confirms the lack of gene flow between groups Biological Species Concept PROBLEMS: Many species are asexual and do not intermate (viruses, bacteria, protists) Many highly divergent species can hybridize (plants) Only applicable to present (not fossil taxa) Ability to intermate sometimes drops off gradually ( ring species ) Title goes here 6

Ring Species 2. The smallest group that is monophyletic is called a species 2. There are several monophyletic groups here Monophyletic group: A group with a shared derived (descendant) character A group that contains a common ancestor and all its descendents Typically, a phylogeny is constructed using DNA or other types of data (proteins, morphological traits) The phylogeny reveals hierarchical relationships among groups The smallest group that has a shared derived character and is monophyletic is called a species There is a derived character that is shared by the 4 populations A monophyletic clade consists of an ancestral taxa and all its descendants A A A B Group I B B C C C D D D E E Group II E F F F Group III Monophyly G G G (a) Monophyletic group (clade) (b) Paraphyletic group (c) Polyphyletic group The smallest monophyletic group is called a species 42 Title goes here 7

Strengths Easy to see evolutionary relationships on large and small taxonomic scales It can be used on any species (sexual, asexual) for which there is phylogenetic information (molecular, morphological, biochemical data) on extant or fossil species Problems: Need a good phylogeny time consuming and can be expensive Not recognize paraphyletic groups (a monophyletic group that does not include all the descendents; reptiles are paraphyletic, as they do not include birds, because birds emerged from within reptiles) A trivial trait (single mutation or trait) can make a group monophyletic, and may not warrant calling a group a new species Examples of Paraphyletic Groups Paraphyly: a group which either does not include all its descendants or the ancestor. Monophyly Problems: A trivial trait (single mutation or trait) can make a group monophyletic, and may not warrant calling a group a new species The cut off for a species is often arbitrary. For example, 3% sequence divergence is often used for bacteria The smallest monophyletic group is a species Sometimes a trivial trait, like a single point mutation could make a group monophyletic, and a species according to the phylogenetic species concept Title goes here 8

3. Morphological (Phenetic) Species Concept Identifying species using overall similarity (but not in a phylogenetic context no hierarchy no branching pattern, no ancestral-derived relationships) Most often morphological traits are used, but any phenotype could be used Morphological (Phenetic) Species Concept Strengths Most intuitive; the way we recognize species Easiest. Easier than constructing phylogeny or intermating Morphological (Phenetic) Species Concept Problems: Different species can look similar due to convergent evolution Populations that look distinct sometimes belong to the same species Speciation can occur without changes in morphology or other traits (cryptic species) Which species concept to use? When we discuss animals we often use the biological species concept as the gold standard... complemented with the phylogenetic and phenetic species concepts Plants: it depends, since very distant plants can hybridize phylogenetic species concept is often used. Bacteria: poses difficult problems for classification. Bacteria do not interbreed ( Biological Species concept). In some cases massive exchange of genetic material (horizontal gene transfer) leads to phylogenetic confusion. Often a combination of the Phylogenetic and Phenetic Species Concepts (biochemical and morphological [like cell wall] traits) are used. Darwin s view: Species are arbitrary constructs of the human mind imposed on a continuum of variation Species are dynamic rather than static entities, with boundaries changing constantly Many groups are in the process of speciation However, concept of species is still useful: Species are considered the largest group with a common evolutionary fate Title goes here 9

Concepts Geographic Models Allopatric Sympatric Reinforcement Problems with the concept of Species Species Biological Phylogenetic Phenetic (Morphological) Monophyly 1. Which of the following is a species according to the biological species concept? (A) All hominin species (most are fossil species). (B) A population of bacteria for which 80% of their DNA sequences are identical. (C) All allopolyploid plants. (D) A group of beetles that can intermate and produce offspring for multiple generations. 2. Which of the following is NOT a reason that Species are difficult to define? (A) Many plants that are genetically divergent are able to mate (B) Many organisms that are morphologically similar are genetically distinct (C) Many organisms are asexual (D) Sometimes groups split off from within a monophyletic group (such as birds splitting off from the reptiles) (E) Sometimes sexual populations that are unable to interbreed could still be the same biological species 3. Which of the following is most likely to be a "species" according to the? (a) A population of bacteria that has a gene that allows glucose metabolism (b) Bird populations, which share a unique heritable feather structure (c) Spider populations that can interbreed and produce fertile offspring (d) Crustacean populations that form a clade (geneticallyrelated group), except for one population within the clade that colonized land and became insects (e) Populations of deer that share similar antler shape 4. Under which of the following scenarios is reinforcement most likely to evolve? (a) Different fish species, with each living in a separate pond (b) Two snail species, where each lives on opposite sides of a freeway (c) Different species of crickets living together in a park (d) Different insect species, each living on a different species of fruit in a forest (e) Different species of allopolyploid plants living in a field 5. Which of the following scenarios is likely to lead to the most rapid formation of new species? (a) Two populations become geographically separated, and there is continued migration between the populations (b) Two populations become geographically separated, and then new mutations arise in each population that become fixed due to genetic drift (c) Two populations that are in the same location diverge due to sexual selection for different traits in the two populations (d) Two populations become geographically separated, and then new mutations arise in each population that become fixed due to selection favoring different egg coat proteins in the different habitats (e) All of the above would on average lead to equivalent rates of speciation Title goes here 10

answers 1D 2E 3B 4C 5D Title goes here 11