Electrical characteristics and plasma diagnostics of (Ar/O 2 ) gas mixture glow Discharge

Similar documents
Effect of He and Ar Addition on N 2 Glow Discharge Characteristics and Plasma Diagnostics

Electrical Discharges Characterization of Planar Sputtering System

Characterization of low pressure plasma-dc glow discharges (Ar, SF 6 and SF 6 /He) for Si etching

Effect of negative ions on the characteristics of plasma in a cylindrical discharge

An Investigation of the Secondary Electron Emission Coefficient of Aluminum and Graphite Disc Electrodes

Characterization of an Oxygen Plasma by Using a Langmuir Probe in an Inductively Coupled Plasma

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

Effect of Pressure and Discharge Voltage on Plasma Parameters in Air seeded Arc-plasma

Influence of Axial Magnetic Field on the Electrical Breakdown and Secondary Electron Emission in Plane-Parallel Plasma Discharge

Electrical Breakdown in Low-Pressure Nitrogen in Parallel Electric and Magnetic Fields

CHARACTERIZATION OF A DC PLASMA WITH HOLLOW CATHODE EFFECT

DEPOSITION OF THIN TiO 2 FILMS BY DC MAGNETRON SPUTTERING METHOD

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model

Chaotic-to-ordered state transition of cathode-sheath instabilities in DC glow discharge plasmas

Plasma Theory for Undergraduate Education

Study of DC Cylindrical Magnetron by Langmuir Probe

FINAL REPORT. DOE Grant DE-FG03-87ER13727

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

SPECTRAL INVESTIGATION OF A COMPLEX SPACE CHARGE STRUCTURE IN PLASMA

Ionization Detectors. Mostly Gaseous Detectors

Simulation of Gas Discharge in Tube and Paschen s Law

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

Chapter 7. Plasma Basics

Adjustment of electron temperature in ECR microwave plasma

Chapter 7 Plasma Basic

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Effect of Pressure and Hot Filament Cathode on Some Plasma Parameters of Hollow Anode Argon Glow Discharge Plasma

STRONG DOUBLE LAYER STRUCTURE IN THERMIONIC VACUUM ARC PLASMA *

Gas Electronegativity Influence on Electrical Breakdown Mechanisms

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

A global (volume averaged) model of a chlorine discharge

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

FLASH CHAMBER OF A QUASI-CONTINUOUS VOLUME SOURCE OF NEGATIVE IONS

CHAPTER 6: Etching. Chapter 6 1

Arab Journal of Nuclear Sciences and Applications

VARIATION OF ION ENERGY FLUX WITH INCREASING WORKING GAS PRESSURES USING FARADAY CUP IN PLASMA FOCUS DEVICE

Experimental Studies of Ion Beam Neutralization: Preliminary Results

Contents: 1) IEC and Helicon 2) What is HIIPER? 3) Analysis of Helicon 4) Coupling of the Helicon and the IEC 5) Conclusions 6) Acknowledgments

ION Pumps for UHV Systems, Synchrotrons & Particle Accelerators. Mauro Audi, Academic, Government & Research Marketing Manager

Volume Production of D - Negative Ions in Low-Pressure D 2 Plasmas - Negative Ion Densities versus Plasma Parameters -

DOE WEB SEMINAR,

Chapter 5: Nanoparticle Production from Cathode Sputtering. in High-Pressure Microhollow Cathode and Arc Discharges

Studies of the cathode sheath of a low pressure hollow cathode discharge

LECTURE 5 SUMMARY OF KEY IDEAS

The Q Machine. 60 cm 198 cm Oven. Plasma. 6 cm 30 cm. 50 cm. Axial. Probe. PUMP End Plate Magnet Coil. Filament Cathode. Radial. Hot Plate.

1 AT/P5-05. Institute of Applied Physics, National Academy of Sciences of Ukraine, Sumy, Ukraine

A novel sputtering technique: Inductively Coupled Impulse Sputtering (ICIS)

Introduction to Plasma

PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen

Chapter III: III: Sputtering and secondary electron emission

DPP06 Meeting of The American Physical Society. Production of negative ion plasmas using perfluoromethylcyclohexane (C 7 F 14 )

Theory of Gas Discharge

Copyright 1996, by the author(s). All rights reserved.

The effect of self-absorption in hollow cathode lamp on its temperature

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

PIC-MCC/Fluid Hybrid Model for Low Pressure Capacitively Coupled O 2 Plasma

Lecture 6: High Voltage Gas Switches

ELECTROMAGNETIC WAVES

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

All about sparks in EDM

Extrel Application Note

Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films

Radio-Frequency Spectrometry

EE6701 HIGH VOLTAGE ENGINEERING UNIT II-DIELECTRIC BREAKDOWN PART A

PASCHEN CURVES AND SPATIAL DISTRIBUTION OF EMITTED LIGHT OF GLOW DISCHARGE IN THE AIR

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

Sputter Ion Pump (Ion Pump) By Biswajit

Generic Detector. Layers of Detector Systems around Collision Point

arxiv: v1 [physics.plasm-ph] 10 Nov 2014

High Beta Discharges with Hydrogen Storage Electrode Biasing in the Tohoku University Heliac

Nitrogen Glow Discharge by a DC Virtual Cathode

1. INTRODUCTION 2. EXPERIMENTAL SET-UP CHARACTERIZATION OF A TUBULAR PLASMA REACTOR WITH EXTERNAL ANNULAR ELECTRODES

Ionization Techniques Part IV

Secondary Ion Mass Spectrometry (SIMS)

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997

Optical Emission Spectroscopy of 2.45 Ghz Microwave Induced Plasma

Energy fluxes in plasmas for fabrication of nanostructured materials

ECE 989 Advanced Topics in Plasma Spring 2019

Chemistry Instrumental Analysis Lecture 17. Chem 4631

The Role of Secondary Electrons in Low Pressure RF Glow Discharge

Application of Rarefied Flow & Plasma Simulation Software

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Electron Density and Ion Flux in Diffusion Chamber of Low Pressure RF Helicon Reactor

Ionization Detectors

Dense plasma formation on the surface of a ferroelectric cathode

Plasma diagnostics of pulsed sputtering discharge

A novel diagnostic for time-resolved spectroscopic argon and lithium density measurements

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

In situ electrical characterization of dielectric thin films directly exposed to plasma vacuum-ultraviolet radiation

Chapter 4 Scintillation Detectors

HIGH VOLTAGE INSULATION AND ELECTRICAL DISCHARGE

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center

INFLUENCE OF MAGNETIC FIELD ON MONOCHROME VISIBLE LIGHT IN ELECTROPOSITIVE ELECTRONEGATIVE GAS MIXTURES DISCHARGES PLASMA

Experimental investigation of double layers in expanding plasmas

a. An emission line as close as possible to the analyte resonance line

Numerical simulation of Vibrationally Active Ar-H2 Microwave Plasma

Transcription:

Electrical characteristics and plasma diagnostics of (Ar/O 2 ) gas mixture glow Discharge Mohammed K. Khalaf ¹, Ibrahim. R. Agool², Shaimaa H. Abd Muslim 3 ¹ Ministry of Sciences and Technology / Baghdad / Republic of Iraq ² Al- Mustansiriyah University / Baghdad/ Republic of Iraq 3 Al- Mustansiriyah University / Baghdad/ Republic of Iraq ABSTRACT The oxygen plasma has many important applications in the semiconductor industry. When addition a small amount of oxygen gas can significantly change the plasma characteristics, In this paper, The current volt, characteristic curve and breakdown potential have been measured at different O 2 percentage in (Ar/O 2) gas mixture, the measurements show that the addition of oxygen leads to decrease in the discharge current at the same discharge voltage and gas pressure. Contrary, the lower breakdown potential at lower O 2 percentage the minimum breakdown voltages were found (32,, 347, 37, 4 )volt at (1%, 5%, 75%, 1% )O 2 percentage respectively. The electron temperature and density calculated from I-V curve of single Langmuir probe at pressure (.14) mbar for different O 2 percentage. We observed two different groups of electrons characterized by different temperature and density, the result showed that the electron temperature increase with the addition of O2. While, the electron density decreased with increase percentage O2. Keywords: glow discharge, Paschen's law, plasma diagnosed, Langmuir probe. 1. INTRODUCTION A glow discharge (GD) is a plasma; that is, a partially ionized gas consisting of electron and positive (and sometimes negative) ions, as well as a large number of neutral species[1]. It is created by applying a potential difference between two electrodes that are inserted in a cell filled with a gas [2]. At normal temperature and pressure, the gases are excellent insulators [3]. Various phenomena occur in gaseous dielectrics when a voltage is applied. As the applied voltage is low, small currents flow between the electrodes, and the insulation retains its electrical properties. On the other hand, if the applied voltages are large, the current flowing through the insulation increases very sharply, and an electrical breakdown occurs [4].The The physics of the electrical breakdown have a great significance because of its wide applications in electronics and technology [5]. The electrical discharges in gases are of two types, i.e. (i) non-sustaining discharges, and (ii) self-sustaining types. The breakdown in a gas, called spark breakdown is the transition of a non-sustaining discharge into a self-sustaining discharge. The build-up of high currents in a breakdown is due to the process known as ionization in which electrons and ions are created from neutral atoms or molecules, and their migration to the anode and cathode respectively leads to high currents [4]. As mentioned above a glow discharge is formed by application of a potential between two electrodes. Depending on the pressure p of the gas and the distance d between the electrodes a breakdown voltage of V B ln[ Apd Bpd ln(1 1/ )] Is required for a self sustaining discharge. This equation is known as Paschen's law, Where V B is the breakdown voltage is the pressure and is the gap distance. The constants A, B and γ(secondary electron coefficient) are constants (depend upon the composition of the gas).depend Depend upon the composition of the gas[6]. This equation shows a relationship between V and pd, and implies that the breakdown voltage varies as the product pd varies.the relationship between V and pd is not linear and has a minimum value for any gas. The existence of a minimum sparking potential in Paschen's curve may be explained as follows: At low pd values before the Paschen's minimum, the average length of the electron trajectory is longer and the ionizing collision frequency lower. A higher voltage is needed to maintain the number of ions with the required energy to regenerate a continuous flux of primary electrons. In short, a higher voltage is needed to start a self-sustained discharge.for higher pd values, the mean free path of electrons is shorter and collisions more frequent. However, the electron energy increment increase between collisions is lower. Excitation competes against ionization, and higher voltage is needed to produce more ions. Moreover, at higher pressures, the ionic mean free path is lower and ions lose energy in the gas by elastic and resonant charge exchange collisions. Higher voltage is required to maintain sufficient ion energies [7]- [9]. Oxygen plasma has an important application in the semiconductor industry due to their ability of charge Volume 3, Issue 8, August 214 Page 113 (1)

free, Unlike electropositive plasma with ions and electrons. An electronegative plasma is composed of three different charges, positive ions, electrons, and negative ions, which were formed the attachment reaction of electron to the neutral atoms or molecules[1]. In addition, the oxygen gas is one of the best sterilization agents [11]. Since only a small amount of oxygen gas can significantly change the plasma characteristics, obtaining the fundamental knowledge and the experimental results about the oxygen plasmas is important in determining the optimum operating conditions with certain plasma characteristics[12] In this study, The discharge was diagnosed using a Langmuir probe oriented parallel to the cathode. The Langmuir probe can be interpreted from an experimental point of view as a simple current collector surface immersed into the plasma environment. The electron temperature, Te, is determined in electron volt (ev) from the slope of the ln (I) V curve of the probe in the transition region between floating potential and plasma potential by the following equation [13]: T e e d ln I k dv Where e is the electronic charge, k is the Boltzmann constant. I is the electron current and V is the probe voltage. The electron number density, obtained from the electron saturation current (I Se ) using the following. Equation [14]: (2) 4I ne ea se m e [ 2kT e 1 2 ] (3) Where A is the probe area, and m e is the magnitude of electronic mass. 2. THE EXPERIMENTAL SETUP A schematic diagram of the device used in this investigation shown in Figure (1). The discharge was operated in DC mode, the external resistance RL was used to limit the discharge current, to ensure that the discharge would be limited to the abnormal glow discharge region. And digital multi-meters was used measured the discharge current and the voltage. The plasma chamber itself is a cylindrical stainless steel vacuum chamber with length 4 cm and 3 cm diameter. Basically, the inside of the chamber consists of two electrodes between which the glow- discharge is formed One of them is movable (denoted Anode)and the fixed electrode (denoted cathode). And each of them was 1 cm diameter, and the cathode to anode separation was fixed at 4.5 cm; the discharge chamber was evacuated using a two-stage rotary pump (Edward of 12 m 3 /h), and diffusion pump ( Alcatl of 38L/sec ) The gas flows controlled with flow meter as a gas flow rate of the gas mixture and the gas pressure was monitored by perani gauge with Edward's controller 115. The applied voltage was controlled by a DC power supply which can produce potential up to 14 volt.our measurements were carried out using a cylindrical shape probe with.5 mm base diameter and 2 mm length, made of tungsten wire. The wire must be will be insulated for preventing take current collection. In the oxygen environment, a problem of oxide build-up on the probe was encountered, which caused alterations in the current-voltage curves under positive bias. The probe then required cleaning to eliminate the oxide. For the cleaning, the probe was kept at a negative bias in an argon plasma for several minutes; by allowing only an ion flux to bombard the probe surface, the contamination layer can be sputtered away. To minimize this contamination problem, the experimental data was collected quickly. Each run took under 5 minutes, and. In between runs, the probe was kept at a negative bias. Volume 3, Issue 8, August 214 Page 114

3. RESULT AND DISCUSSION Figure 1. a schematic diagram of the experimental setup. The current volt characteristic, at different O 2 percentage in (Ar/O 2 ) gas mixture shown in figure 2. Where gas pressure is kept constant at.14 mbar. From this figure, We can show that the discharge current increase at the applied voltage increase that means the electrical discharge are operation in the abnormal glow discharge region. It is clearly seen that, at the same applied voltage and gas pressure, the discharge current decreases by increasing the O 2 percentage in(ar/o 2 ) gas mixture. The decrease in the discharge current with increased O 2 percentage can be explained as follows: the ionization cross section of O 2 is smaller than that of Ar[15]. In addition, Since the electron affinity of oxygen, discharges in oxygen contain negative ions, which result in the increase of plasma resistance due to reduction of electron density and thus the discharge current decreases. Figure 2. Thedischarge current Volt characteristic curve at different O 2 percentage at working pressure of. 14mbar. The values of the breakdown voltage for different O 2 percentage in (Ar/O 2 ) gas mixtures are shown in figure 3. The gas breakdown voltage V B was determined as a function of the product of the gas pressure p and the inter electrode distance d. the minimum breakdown voltage as (32, 347, 37, 4 )volt at (1%, 5%, 75%, 1%) of O 2 percentage respectively. From this figure, we can show that the breakdown voltage increase by an additional increase in O 2 percentage of the gas mixture this can be related to, the additional energy loss channel oxygen gas such as vibration, rotational and molecular dissociation, V B abruptly was increased when the small amount of oxygen was added. In addition, since plasma resistance was increased due to high electron affinity of oxygen, discharge sustained voltage was also increased. Furthermore, the oxygen is electronegative gas and the loss of electrons due to diffusion and attachment to oxygen molecules in (O 2 /Ar) plasma requires the electric field strength in the plasma to be higher than in argon plasma so as to produce enough electrons to maintain the plasma discharge. As the number of additional oxygen molecules increases, a progressively higher electrical field is required. J.K. Rhee et al [12] shown the same results. Volume 3, Issue 8, August 214 Page 115

VB (volt) 8 75 7 65 6 55 5 45 4 35 3 1 2 3 4 5 pd (mbar.cm) O2=1% O2=5% O2=75% O2=1% Figure 3. Paschen's curves at different O 2 percentage. The discharge was diagnosed using a cylindrical Langmuir probe, the electron temperature and density obtained from I-V curve data figure 4, probe characteristics with the signature of two groups of electron were observed. The two groups of electrons fast and slow electrons. Depending upon their origin. The fast electrons are created at the cathode surface in secondary processes, and are. Subsequently, accelerated in the sheath potential, and. Slow electrons are those created by ionization processes. These groups are characterized by different average.kinetic energies and temperature. Such a characteristic is shown plotted on semi logarithmic axes figure 5. From those shapes, it can calculate the electron temperature Te and density ne from equation(2)and (3). a Ar:O2=8:2 6 5 4 I P 3 2 1-3 -25-2 -15-1 -5-1 5 1 b Ar:O2=5:5 4 35 3 25 2 15 1 5-3 -25-2 -15-1 -5-5 5 1 IP Volume 3, Issue 8, August 214 Page 116

c AR:O2=2:8 7 6 5 IP 4 3 2 1-3 -25-2 -15-1 -5-1 5 1 Figur 4.(a,b,c) The Langmuir probe voltage-current characteristic for different O2 percentage. a AR:O2 =8:2-4 -2-2 2 4 6-4 ln IP -6-8 -1-12 -14 b Ar:O2 =5:5-2-6-4 -2 2 4 6-4 -6 ln IP -8-1 -12-14 -16 c Ar:O2 =2:8-2 -3-2 -1 1 2 3 4 5 6-4 -6 ln IP -8-1 -12-14 -16. Figure.5.(a,b,c) Ln probe current as a function Probe voltage for different O 2 percentage. Volume 3, Issue 8, August 214 Page 117

Figure 6. shows the evolution of n e and T e as a function of O 2 percentage from this figure one can see that both electron's temperature increases with increase O 2 percentage due to the decrease in the energy loss by the electrons during ionizing collision with O 2 molecules as the ionization cross-section for O 2 is smaller than that of Ar. while the electron density decrease with the addition of O2 in the ambient gas, The phenomenon is explained by the molecular gases O 2 reduce the electron density due to the high-energy losses in excitation of vibrational levels [16], Furthermore, the electronegativity of gas O 2 decreases the electron density with increasing the oxygen percentage due to the electron's attachment. Moreover, the fast electron density lower than slow electron density this can be attributed to Fast electrons impart their energy through collisions of the first kind to cause ionization. And finally join to the group of slow electrons. a b 4. CONCLUSION Figure6.: Ar/O 2 plasma (a)electron temperature, (b) density for different O 2 percentage. The variation in the electrical parameters, and plasma properties of a glow discharge in the (Ar/O 2 ) gas mixture was the subject of this paper. A main Results in this work can be summarized as follows: 1-the Current volt characteristics for different O 2 percentage in a mixture of Ar/O 2 shows that the addition of O 2 to, He discharge causes and decrease in the values of the discharge current at the same discharge voltage and gas pressure. 2- increase of O 2 to Ar discharge causes an increase in the values of breakdown voltage. 3-from I-V curve of Langmuir probe we found there are two groups of electron temperature. 4- the electron temperature increase with the addition of O 2. Contrary, the electron density decreased with the addition of O 2. References [1] Annemie Bogaerts, Erik Neyts, Renaat Gijbels, Joost van der Mullen "Review Gas discharge plasmas and their applications" Spectrochimica Acta Part B 57, pp. 69 658 22. [2] Michael Cullen, " Atomic Spectroscopy in Elemental Analysis," Blackwell Pub., 24. [3] C. L. Wadhwa," High Voltage Engineering," New Age International, 27. [4] M. S. Naidu,V. Kamaraju, "High Voltage engineering", Tata Mc Graw-Hill, 4th edition, 29. [5] M. A. Hassouba, F. F. Elakshar and A. A. Garamoo, "measurements of the breakdown potentials for different cathode materials in the Townsend discharge," CODEN FIZAE4, A 11, pp.81-9, 22. [6] M.A. Lieberman, A.J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," John Wiley & Sons, 1994. [7] Y. Nunes, A. Wemans, P. R.Gordo, M. R.Teixeira, and M. Maneira, Breakdown in planar magnetron discharges of argon on copper," J. P., Vacuum, Volume 81, Issue 11-12, p.1511-1514, 27. [8] A. Grill, Cold Plasma Materials Fabrication: From Fundamentals to Applications," Wiley-IEEE Press, 1994. [9] A. von Engel, Ionized Gases," Oxford Univ. Press, 1965. [1] S.K. Jong and.h.k Gon, "Characterization of an Oxygen Plasma By Using a Langmuire Probe in a Inductively Coupled Plasma ",J. Korean Phys. Soc.,Vol. 38, No.3, pp.259-263,21. Volume 3, Issue 8, August 214 Page 118

[11] A. A. Bol shakov, B. A. Cruden, R. Mogul, M. V. V. S. Rao, S. P. Sharma, B. N. Khare, and M. Meyyappan, Radio-Frequency Oxygen Plasma as a Sterilization Source, AIAA J., Vol. 42, pp. 823-832,24. [12] J.K. Rhee, D.B. Kim, S.Y. Moon, W. Choe, change of argon-based atmospheric pressure large area plasma characteristics by the helium and oxygen gas mixing,j. Thin Solid Films, 515,pp.499 4912,27. [13] A. Qayyum, M. Ikram, M. Zakaullah, A. Waheed, G. Murtaza, R. Ahmad, A. Majeed, N. A. D.Khattak, K. Mansoor, and K. A. Chaudhry" Characterization of Argon Plasma by Use of Optical Emission Spectroscopy and Langmuir Probe Measurement," Int. J. Mod. Phys. B; 17,pp. 2749-276, 23. [14] M. M. Mansour, N. M. El-Sayed, O. F. Farag and M. H. Elghazaly, Effect of He and Ar Addition on N2 Glow Discharge Characteristics and Plasma Diagnostics Arab Journal of Nuclear Science and Applications, 46(1), pp.116-125, 213 [15] M. E. Rudd., R. D. DuBois, L. H. Toburen, and C. A. Ratcliffe, T. V. Goffe,"Cross Sections for Ionizaton of Gases by 5-4-keV Protons and for Electron Capture by 5-15-keV Protons" Phys.Rev., A28,pp.3244-3257, 1983. [16] Mohammed Khammass Khalaf," Investigation of the Interaction of Glow Discharge Plasma with Metal Surfaces", PhD. Thesis,University of Baghdad, College of Science,, Baghdad, Iraq, 21. AUTHOR Shaimaa H. Abd Muslim received the B.S. and M.S. degrees in Physical Science / Laser and Molecule from Al- Mustansiriyah University in 24 and 28, respectively. She now PhD. Student. Volume 3, Issue 8, August 214 Page 119