JFET CAPACITANCE CALCULATIONS

Similar documents
à 10. DC (DIRECT-COUPLED) AMPLIFIERS

à FIELD EFFECT TRANSISTORS

FEEDBACK, STABILITY and OSCILLATORS

7. DESIGN OF AC-COUPLED BJT AMPLIFIERS FOR MAXIMUM UNDISTORTED VOLTAGE SWING

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

Workshop: Average values and uncertainties Quantum aspects of physical chemistry

Characteristic of Capacitors

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

EE105 Fall 2014 Microelectronic Devices and Circuits

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

Exact Analysis of a Common-Source MOSFET Amplifier

ECEN 326 Electronic Circuits

Homework Assignment 08

Lecture 37: Frequency response. Context

OPERATIONAL AMPLIFIER ª Differential-input, Single-Ended (or Differential) output, DC-coupled, High-Gain amplifier

The Miller Approximation

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

I. Frequency Response of Voltage Amplifiers

Approximate formulas for the distance term in far and near field interferometry Tim Cornwell, NRAO

55:041 Electronic Circuits The University of Iowa Fall Final Exam

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

Homework Assignment 09

CE/CS Amplifier Response at High Frequencies

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

SOME USEFUL NETWORK THEOREMS

6.012 Electronic Devices and Circuits Spring 2005

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Chapter 13. Capacitors

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

Chapter7. FET Biasing

Refinements to Incremental Transistor Model

Homework Assignment 11

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

Multistage Amplifier Frequency Response

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

CIRCUIT ELEMENT: CAPACITOR

ECE 202 Fall 2013 Final Exam

Electronic Circuits Summary

EE40 Homework #6. Due Oct 15 (Thursday), 12:00 noon in Cory 240

ECE 342 Electronic Circuits. Lecture 25 Frequency Response of CG, CB,SF and EF

Single-Time-Constant (STC) Circuits This lecture is given as a background that will be needed to determine the frequency response of the amplifiers.

ECE 546 Lecture 11 MOS Amplifiers

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

EE1305/EE1105 Intro to Electrical and Computer Engineering Lecture Week 6

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electronic Circuits Fall 2000.

Problem Set 5 Solutions

55:041 Electronic Circuits The University of Iowa Fall Exam 2

Chapter 13 Small-Signal Modeling and Linear Amplification

Switched Capacitor Circuits I. Prof. Paul Hasler Georgia Institute of Technology

Figure 1: MOSFET symbols.

Advanced Current Mirrors and Opamps

Physics 405/505 Digital Electronics Techniques. University of Arizona Spring 2006 Prof. Erich W. Varnes

(Refer Slide Time: 1:49)

0 t < 0 1 t 1. u(t) =

In addition to resistors that we have considered to date, there are two other basic electronic components that can be found everywhere: the capacitor

Chapt ha e pt r e r 9 Capacitors

ECE Networks & Systems

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Conventional Paper-I Part A. 1. (a) Define intrinsic wave impedance for a medium and derive the equation for intrinsic vy

Chapter 4 Field-Effect Transistors

2N5545/46/47/JANTX/JANTXV

farads or 10 µf. The letter indicates the part tolerance (how close should the actual value be to the marking).

IFB270 Advanced Electronic Circuits

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

ECE315 / ECE515 Lecture 11 Date:

Chapter 2 Switched-Capacitor Circuits

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Chapter 9 Frequency Response. PART C: High Frequency Response

The Gradual Channel Approximation for the MOSFET:

ECE-305: Fall 2017 MOS Capacitors and Transistors

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Chapter 6: Field-Effect Transistors

Lab 4 RC Circuits. Name. Partner s Name. I. Introduction/Theory

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015

Introduction to AC Circuits (Capacitors and Inductors)

8 sin 3 V. For the circuit given, determine the voltage v for all time t. Assume that no energy is stored in the circuit before t = 0.

Circuit Analysis. by John M. Santiago, Jr., PhD FOR. Professor of Electrical and Systems Engineering, Colonel (Ret) USAF. A Wiley Brand FOR-

Berkeley. Matching Networks. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2016 by Ali M. Niknejad

Capacitors. David Frazier and John Ingram

ECE2262 Electric Circuit

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again

Electrical Circuits Lab Series RC Circuit Phasor Diagram

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db)

E40M Capacitors. M. Horowitz, J. Plummer, R. Howe

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Lecture 24 Multistage Amplifiers (I) MULTISTAGE AMPLIFIER

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

Switching characteristics of lateral-type and vertical-type SiC JFETs depending on their internal parasitic capacitances

Capacitor Construction

Coulomb s constant k = 9x10 9 N m 2 /C 2

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

Switched Capacitor: Sampled Data Systems

Lecture 11: J-FET and MOSFET

DISCRETE SEMICONDUCTORS DATA SHEET. BLF246 VHF power MOS transistor Oct 21. Product specification Supersedes data of September 1992

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Transcription:

JFET CAPACITANCE CALCULATIONS JFET CAPACITANCE CALCULATIONS In order to simplify the design procedure for the frequency response of the JFET amplifier we will consider effect of each capacitance separately. In other words, treat all others as if they are very large in size while concentrating on the one being taken into consideration at the time. Figure below is depicting the case in which C G is being considered as the only capacitance affecting the frequency response. Figure. SSAC of Common Source Stage with all Capacitors except C G are assumed to be too large to affect the frequency response. Note that C G creates a "High-Pass" single pole simple RC filter effect as Vsignal passes to the gate. The equivalent resistance it sees for the cut-off frequency is, HR eq L CG = R G + R signal w -3 db = i y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k R eq.c G { C G can be calculated from above for a given cut-off frequency. Equivalent Resistance for C D : Univ. of Southern Maine ELE342/343 Electronics 999/20

Prof. M. G. Guven Figure 2. SSAC of Common Source Stage with all Capacitors except C D are assumed to be too large to affect the frequency response HR eq L CD = R L + Hr ds R D L R out = Hr ds R D L Equivalent Resistance for C S : Figure 3. SSAC of Common Source Stage with all Capacitors except C S are assumed to be too large to affect the frequency response HR eq L CS = R S @HR ' L eq D C S Univ. of Southern Maine 2 ELE342/343 Electronics 999/20

Prof.M.G.Guven Figure 4. V Test - I Test Method Applied to Determine HR'L eq seen by C S at the source of the JFET Dv GS = V g - V s, V g = 0, V s = V test Make a Norton-Thevenin conversion: Figure 5. Univ. of Southern Maine 3 ELE342/343 Electronics 999/20

Prof. M. G. Guven V test = I test Hr ds + R D R L L + g m H-V s L.r ds V s = V test V test H + g m r ds L = I test Hr ds + R D R L L HR ' eql CS = V test ÄÄÄÄÄÄÄÄÄÄÄÄÄ I test = Hr ds + R D R L L ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ H + g m r ds L One can take into account multiple effects of all three capacitances by using a correction factor, k to calculate the capacitor values in the case when all of the capacitors are taken to create the same cut-off frequency. Obviously, if all except one are taken to be much larger than the values calculated above no such correction is needed. Then,. w -3 db = i y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z.k k is correction for multiple capacitances. k R eq.c { w -3 db amplifier' s specified 3 db cut - off frequency k =.96 for 3 capacitances all chosen to create the same cut off point as the others If no 3-dB cut-off point is specified but a working frequency is given, in order to avoid the filtering effect of the capacitances their values should be chosen to create cut-off points well below the lowest operating frequency. A safe rule is to leave a factor of 0 as given below. 2. i y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k R eq.c { w lowest ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 0 If there is no 3 db point specified. Univ. of Southern Maine 4 ELE342/343 Electronics 999/20

Prof.M.G.Guven ü Capacitor Calculations For The Example Circuit above: f -3 db 50 hz i y j ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ z k R eq.c.h.96l = 2 pf H.96L -3 db î C ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ { 2 pf -3 db R eq 57 R eq C G ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 3.5 nfarad Ceramic or paper will do. 57 * 470 KW C D ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 57 * HR out + R L L = ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ 57 * H20 KW +smalll = 320 nfarad HR L = small is the worstl C S : HR ' eql CS = Hr ds + R D R L L ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 34 KW +H23.5 KW R LL ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ > ÄÄÄÄÄÄÄÄ = KW H + g m r ds L + 0-3 * 34 KW g m C S ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ = 7.6 mfarad Electrolytic or Tantalum 57 * H KW 5.3 KWL Homework: Use Microsim Suite to draw the circuit diagram of this design and verify its bias as well as the small signal gain and frequency response with J2N389. Make sure you run the simulation with the SPICE parameters of the JFET modified to the numbers used in the example above. Univ. of Southern Maine 5 ELE342/343 Electronics 999/20