ECS Elemental Capture Spectroscopy Sonde. Fast, accurate lithology evaluation

Similar documents
Heterogeneity Type Porosity. Connected Conductive Spot. Fracture Connected. Conductive Spot. Isolated Conductive Spot. Matrix.

MicroScope. Resistivity- and imagingwhile-drilling

Improved Cased-hole Formation Evaluation: The Added Value of High Definition Spectroscopy Measurement

Well Evaluation. An Integrated Well-Evaluation Process for Shale Gas Reservoirs

Exploration / Appraisal of Shales. Petrophysics Technical Manager Unconventional Resources

Advances in Elemental Spectroscopy Logging: A Cased Hole Application Offshore West Africa

Unlocking the Mystery of Formation Evaluation in the Hostile Conditions of the Krishna- Godavari Basin, India

Spectroscopy: The Key to Rapid, Reliable Petrophysical Answers

Log Interpretation Parameters Determined from Chemistry, Mineralogy and Nuclear Forward Modeling

True 3D measurements for enhanced reservoir quantification. Rt Scanner

Stochastic Modeling & Petrophysical Analysis of Unconventional Shales: Spraberry-Wolfcamp Example

Neutron Log. Introduction

Bakken and Three Forks Logging Acquisition for Reservoir Characterization and Completion Optimization

But these are what we really measure with logs..

Basics of Geophysical Well Logs_Porosity

GeoFlex. Quantitative cuttings analysis and imaging service

FORMATION EVALUATION PETE 321

Reservoir Rock Properties COPYRIGHT. Sources and Seals Porosity and Permeability. This section will cover the following learning objectives:

X,800. X,850 ft. X,900 ft. X,950 ft. X,000 ft. GeoSphere. Reservoir Mapping-While-Drilling Service

15. THE NEUTRON LOG 15.1 Introduction

GEOLOGICAL LOG INTERPRETATION TUTORIAL

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps

INTRODUCTION TO LOGGING TOOLS

Formation Evaluation: Logs and cores

Petrophysics Designed to Honour Core Duvernay & Triassic

Well Logging Importance in Oil and Gas Exploration and Production

MUDLOGGING, CORING AND CASED HOLE LOGGING BASICS COPYRIGHT. Cased Hole Logging. By the end of this lesson, you will be able to:

There are five main methods whereby an unstable isotope can gain stability by losing energy. These are:

An Integrated Petrophysical Approach for Shale Gas Reservoirs

Technology of Production from Shale

geovision Resistivity imaging for productive drilling

Fundamentals Of Petroleum Engineering FORMATION EVALUATION

Passive or Spontaneous Logs (SP, GR, SPECTRA GR, CALIPER)

Risk Factors in Reservoir Simulation

Introduction to Formation Evaluation Abiodun Matthew Amao

Experienced specialists providing consulting services worldwide. Coalbed Methane Consulting Services

Drill Cuttings Analysis: How to Determine the Geology of a Formation and Reservoir

Module for: Resistivity Theory (adapted/modified from lectures in PETE 321 (Jensen/Ayers))

region includes nine states and four provinces, covering over 1.4 million square miles. The PCOR Partnership

PETROPHYSICAL EVALUATION CORE COPYRIGHT. Petrophysical Evaluation Approach and Shaly Sands Evaluation. By the end of this lesson, you will be able to:

Drillworks. DecisionSpace Geomechanics DATA SHEET

LITTLE ABOUT BASIC PETROPHYSICS

Determination of Reservoir Properties from XRF Elemental Data in the Montney Formation

N121: Modern Petrophysical Well Log Interpretation

GEO4270 EXERCISE 2 PROSPECT EVALUATION

Mechanical Properties Log Processing and Calibration. R.D. Barree

Evaluating Horizontal Cased Wells for Completion Design

The Role of Well Logging in Coal-Bed Methane Extraction

Bob Cluff The Discovery Group, Denver, Colorado Mike Miller Cimarex, Tulsa, Oklahoma April 2010 DWLS luncheon

Relinquishment Report

Serica Energy (UK) Limited. P.1840 Relinquishment Report. Blocks 210/19a & 210/20a. UK Northern North Sea

NORTH AMERICAN ANALOGUES AND STRATEGIES FOR SUCCESS IN DEVELOPING SHALE GAS PLAYS IN EUROPE Unconventional Gas Shale in Poland: A Look at the Science

OTC OTC PP. Abstract

The North Dakota Bakken Play - Observations. Julie A. LeFever North Dakota Geological Survey

Comparison of Classical Archie s Equation with Indonesian Equation and Use of Crossplots in Formation Evaluation: - A case study

CREATION OF MINERAL LOG

Minerals and Rocks Chapter 20

Predicting the path ahead

A Regional Diagenetic and Petrophysical Model for the Montney Formation, Western Canada Sedimentary Basin*

21. FORMATION EVALUATION OF GAS HYDRATE BEARING MARINE SEDIMENTS ON THE BLAKE RIDGE WITH DOWNHOLE GEOCHEMICAL LOG MEASUREMENTS 1

6. THE BOREHOLE ENVIRONMENT. 6.1 Introduction. 6.2 Overburden Pressures

Downloaded 01/29/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Cased Hole Logging Reading Assignment. (Last Updated 16 December 2015)

Core Technology for Evaluating the Bakken

Well Logging. Salam Al Rbeawi 2011

Oil and Natural Gas Corporation Limited, 4th Floor GEOPIC, Dehradun , Uttarakhand

Raptor A New High-Technology, High-Value. Dr. Darryl Trcka Senior Research Scientist Raptor Interpretive Product Manager

Plumbing the Depths of the Pelican Field

Relinquishment Report for Licence Number P1356, Block 48/8c March 2008

Emily and Megan. Earth System Science. Elements of Earth by weight. Crust Elements, by weight. Minerals. Made of atoms Earth is mostly iron, by weight

An Overview of the Tapia Canyon Field Static Geocellular Model and Simulation Study

MULTIPLE CHOICE QUESTIONS OIL, GAS, AND PETROCHEMICALS. The Energy and Resources Institute

MIDDLE DEVONIAN PLAY MICHIGAN BASIN OF ONTARIO. Duncan Hamilton

Exploring for oil with nuclear physics

MUDLOGGING, CORING, AND CASED HOLE LOGGING BASICS COPYRIGHT. Coring Operations Basics. By the end of this lesson, you will be able to:

PETROPHYSICAL EVALUATION CORE COPYRIGHT. Saturation Models in Shaly Sands. By the end of this lesson, you will be able to:

Understanding NMR. Geoff Page Baker Hughes Region Petrophysics Advisor Baker Hughes Incorporated. All Rights Reserved.

Ingrain Laboratories INTEGRATED ROCK ANALYSIS FOR THE OIL AND GAS INDUSTRY

GY 402: Sedimentary Petrology

Response of a Multidetector Pulsed Neutron Porosity Tool

Relinquishment Report for Licence P.1265, Block 12/28

Rocsol D-Series Technology

Exploration, Drilling & Production

Relinquishment Report. for. Licences: P.1596 (Blocks 205/3, 205/4a) P.1836 (Block 205/2b) P.1837 (Block 205/5b)

MAGNETIC SUSCEPTIBILITY OF DRILL CUTTINGS IN A NORTH SEA OIL WELL: A RAPID, NON- DESTRUCTIVE MEANS OF CHARACTERIZING LITHOLOGY

Robust Appraisal Planning Link Between Discovered Resource and Field Development

PETROLEUM GEOSCIENCES GEOLOGY OR GEOPHYSICS MAJOR

DEVEX 2016 Masterclass Pt:2 Continuous core data = Less Uncertainty? Craig Lindsay Core Specialist Services Limited

A Review of Log-Based Techniques for Measuring Clay Volume

COPYRIGHT. Optimization During the Reservoir Life Cycle. Case Study: San Andres Reservoirs Permian Basin, USA

Quantifying Hydrocarbon Saturation in Cased-hole A Case Study

Shear Wave Velocity Estimation Utilizing Wireline Logs for a Carbonate Reservoir, South-West Iran

and a contribution from Offshore Europe

URTeC: Summary

Petrophysical Rock Typing: Enhanced Permeability Prediction and Reservoir Descriptions*

Neutron Detection. n interactions with matter n detection High/low energy n detectors

Seismic mapping of the Utsira Formation. Petrophysical interpretations and fracture gradient estimates.

Integrating Geomechanics and Reservoir Characterization Examples from Canadian Shale Plays

Factors Contributing to High Gamma-Ray Levels in Early Miocene Bhuban and Boka Bil Sandstone Reservoirs of Titas-15 Well

Quanta Geo. Photorealistic reservoir geology service

Transcription:

ECS Elemental Capture Spectroscopy Sonde Fast, accurate lithology evaluation

Applications n Identify carbonate, gypsum, and anhydrite; quartz, feldspar, and mica; pyrite, siderite, coal, and salt fractions for complex reservoir analysis n Estimate mineralogy-based permeability n Determine well-to-well correlation from geochemical stratigraphy n Determine sigma matrix for cased hole and openhole sigma saturation analysis n Delineate coalbed methane n Estimate producibility and in situ reserves Benefits n Clay fraction values, independent of gamma ray, spontaneous potential, and density-neutron n Advanced, integrated petrophysical evaluation and analysis n Matrix density and neutron values for improved porosity values n Robust petrophysical evaluation with minimal user inputs in sand-shale reservoirs n Enhanced completion and drilling fluid recommendations n Quantitative lithology for rock properties modeling and pore pressure prediction from seismic data Features n Supports most geoscience disciplines n Well-to-well data correlation for exploration and development projects n Quantitative lithology for accurate determination of porosity, fluid saturation, and k-lambda permeability n Lithology for rock-properties modeling, seismic calibration, and pore-pressure prediction from velocity data n Better mechanical properties for fracture design and stimulation fluid selection Challenge: Fast petrophysical answers from elemental concentration logging Formation parameters and formationzonation levels can be defined by skilled interpreters or by referring to an established database. There are times though when neither is available. Geoscientists have long desired to provide a petrophysical answer from elemental concentration logging comprising at least porosity and water saturation in real time or within a few hours after logging a well. This information is essential to making decisions on running casing and completing wells. Solution: ECS Elemental Capture Spectroscopy sonde Pulsed neutron spectroscopy logging tools have been used in openhole formation evaluation since the late 1970s to measure elemental concentrations in rocks and estimate the major matrix properties from them. The early tools, however, were not widely used because they were physically long, costly to operate, and the data interpretation was complex. The ECS sonde, which is a short, simple-to-use logging tool, measures and processes gamma ray spectra, or the number of gamma rays received by the detector at specific energy levels. These measurements allow for more accurately defining the clay content, mineralogy, and matrix properties of each potential zone. The 4.5-m [15-ft] ECS sonde emits high-energy neutrons into the formation, and a detector measures the gamma rays emitted by the reactions of neutrons with elements in the formation. Electronics cartridge Am-Be source Detector Boron sleeve Electronics Dewar flask Heat sink

Results: Better measurements for better interpretation Using the neutron-induced capture gamma ray spectroscopy principle, the ECS sonde determines relative elemental yields by measuring the gamma rays produced when neutrons bombard the formation and lose energy as they are scattered, primarily by hydrogen. The primary formation elements measured by the ECS sonde in open and cased holes are the most commonly occurring elements: silicon, iron, calcium, sulfur, titanium, gadolinium, chlorine, barium, and hydrogen. Measuring yields with the ECS sonde Lithologic fractions of total clay, total carbonate, and QFM (quartz, feldspar, and mica) are derived from the concentrations of silicon, calcium, and iron. Matrix density is calculated from silicon, calcium, iron, and sulfur, and it is combined with the measured bulk density to derive an accurate total porosity. In a similar way, the elemental concentrations of silicon, calcium, and iron are used to correct the neutron log for rock matrix effects, thereby yielding neutron porosity that is significantly closer to total porosity. SpectroLith* lithology processing of spectra from the ECS sonde is based on a technique in which measurements of silicon, calcium, and iron are used to produce an estimation of clay as accurate as that derived from a measurement of aluminum. Carbonate concentrations are determined from the calcium concentration log with exceptional accuracy. The anhydrite volume is determined from the calcium and sulfur logs; thus, the remainder of the formation is composed of QFM. SpectroLith processing is used to compute pyrite, siderite, coal, and salt. DecisionXpress* output for a log of a siliciclastic sequence. A light gray mask indicates log intervals in which the input data are of poor quality because of hole conditions or other problems. The porosity, permeability, and fluid saturations are summed and averaged over the pay interval using cutoffs on permeability and water cut selected by the user. These can also be presented in a table. Quality-control flags in the far right track indicate the interpretation description for lithology (L), porosity (P), permeability (K), saturation (S), and relative permeability (R). Green indicates favorable interpretation, yellow means a moderately favorable interpretation, and red reflects an unfavorable interpretation. The shale interval above X,240 ft is largely affected by poor hole conditions. Pay Cable Tension Porosity Siderite Anhydrite Capillary-Bound Water Pyrite Water Free Water Carbonate Water Quartz/ Feldspar/ Mica Water Cut 1 0 Moved Clay 1 lbf 5,000 Gamma Ray Flow Profile Intrinsic Permeability Porosity Volume MD, ft 0 gapi 200 0 1 10,000 md 0.1 50 % 0 0 % 100 X,250 X,300 X,350 DecisionXpress Mineralogy Clay-Bound Water Typical gamma ray spectrum from the ECS sonde in a siliciclastic environment that has no calcium or sulfur. The thermal neutron capture gamma rays are shown divided into the contributions of the different elements present. Gamma rays from inelastic neutron reactions are also present, but are not used quantitatively. The capture yields of iron (Fe) and calcium (Ca) include small signals from aluminum and sodium. This contamination is taken into account during further processing. Number of gamma rays detected, counts/s H Inelastic Gd Si Cl Fe LPKSR 0 50 100 150 200 250 Gamma ray energy, measurement bin number

Complementary technologies The DecisionXpress petrophysical evaluation system integrates data from the ECS sonde and the Platform Express* integrated wireline logging tool to provide rapid data visualization and reprocessing capabilities at the wellsite or in a client s office. This combination provides a robust petrophysical evaluation with minimal user inputs in sand-shale reservoirs for planning of coring and sampling operations; decisions for casing, drilling ahead, or sidetracking; and the design of completion strategies. Accurate measurement of relative elemental yields with the ECS sonde, coupled with SpectroLith processing and DecisionXpress petrophysical evaluation, can help improve production, reduce costs, and minimize risks. Rapid evaluation of complex lithologies A Middle East operator drilling with two rigs needed rapid petrophysical wellsite analysis to help minimize the impacts of geological uncertainty and abrupt changes in formation-water resistivity on operations. Prospective sandstones tended to be thinly bedded and varied widely in grain size. A complex mineralogy, including glauconite, complicated log interpretation. The operator selected the DecisionXpress service because it integrates data from the Platform Express tool and the ECS sonde to determine mineralogy. This combination also provides a continuous matrix density measurement that can be used in subsequent log processing. The ECS data helped to identify zones containing significant amounts of calcite. This was not possible using standard logs, which are affected by barite in the drilling mud. Prompt, robust interpretations based on the DecisionXpress system were made to help the operator plan formation testing and fluid sampling operations for formation evaluation. Data from the Platform Express tool and the ECS sonde are integrated to determine mineralogy. This presentation shows borehole and depth information, red net pay flags, and yellow net reservoir flags in the depth track. Track 1 shows lithology from the Platform Express tool. Perforations in four zones and the flow profile are shown in Track 2. However, the water cut information in Track 3 reveals a zone near X,675 ft that ultimately produced water. Fluid interpretations in Track 4 suggest that the best oil potential exists just below X,600 ft and around X,700 ft. The dominant minerals, shown in Track 5, include quartz, feldspar and mica (yellow), and clay (gray), with minor amounts of carbonate minerals (blue). Summarized in qualitycontrol Track 6 are lithology (L), porosity (P), permeability (K), saturation (S), and relative permeability (R); where green reflects a favorable interpretation, yellow a moderately favorable interpretation, and red an unfavorable interpretation. Track 8 shows hydrocarbon volumes. Net Pay Net Reservoi r Mudcake Wa shout Bit Size 6 in. 16 Caliper 6 in. 16 Gamma Ray MD, ft 0 gapi 150 0 X,600 X,650 X,700 DecisionXpress Mineralogy Perforated Intervals Wa te r Flow Profile 1 Wa te r Wa ter Cut 1 0 Intrinsi c Permeability 10,000 md 0.1 Clay-Bound Water Capillary-Bound Wa te r Free Wa te r Moved Porosity 50 % 0 Porosity Siderite Pyrite Carbonate Quartz/ Feldspar/ Mica Clay Vo lume 0 % 100 L P K S R S w 100 % 0

Making timely decisions The owners of undeveloped offshore North Sea discoveries had been encouraged by their respective governments to either develop or relinquish the acreage containing the discoveries. After reprocessing seismic data and mapping possible stratigraphic traps, an operator initiated a multiwell drilling program in one of the blocks. To help understand the logging results, the operator used the DecisionXpress petrophysical evaluation system. Timely petrophysical analyses facilitated the rapid decisions required to sidetrack or to run casing and test the wells. Prompt analyses also provided the operator with important economic information to keep partners and other investors fully apprised of reservoir capacity and likely producibility. Petrophysical evaluation of North Sea well. The net pay flags in the depth track of this DecisionXpress display reveal nearly 50 ft of oil pay near X,150 ft. Track 1 presents the gamma ray curve and lithology determined by the DecisionXpress system. Track 3 shows hydrocarbon and water along with intrinsic permeability. Fluid saturations and porosity are shown in Track 4. Detailed mineralogy, presented in Track 5, is determined using the ECS sonde and DecisionXpress processing. As in all DecisionXpress presentations, a gray mask indicates that results are outside tolerance specifications. Mudcake Washout Cable Tension 10,000 lbf 0 Bit Size 6 in. 16 Calibrated Caliper 6 in. 16 DecisionXpress Water Net Reservoir Mineralogy Net Pay Environmentally Corrected Gamma Ray Flow Profile MD, ft 0 g API 200 0 1 X,100 Water k- Λ Permeability 10,000 md 0.1 Clay-Bound Water Capillary-Bound Water Moved Water Free Water Moved Data Quality Clay Quartz/Feldspar/Mica Carbonate Pyrite Anhydrite Siderite Coal Salt Data Quality Total Porosity Total Porosity L P K S R 50 % 0 100 % 0 X,150

Using the ECS sonde in cased holes In old cased wells with limited information available or in new wells where conditions of wellbore instability made it necessary to set casing before all of the zones of interest had been logged, elemental spectroscopy data can be acquired with the ECS sonde behind casing. SpectroLith results from a Middle East well are shown after applying the selected offsets on the iron, silicon, calcium, and sulfur yields. The red curves are the corresponding results from the openhole ECS log overlaid on the same interval. The match between the openhole and cased hole results is excellent as indicated in the mineralogy track and on the individual yields themselves. The few discrepancies are due to the presence of casing collars and some hole enlargement over the upper portion of the interval. ECS mineralogy and normalized yields recorded in open and cased hole over the same section of the reservoir. Openhole results are shown in red. Offsets were applied to cased hole yields prior to mineralogy computation.

ECS Measurement Specifications Output Logging speed, standard Range of measurement Vertical resolution Accuracy Depth of investigation Mud type or weight limitations Combinability Elemental yields, dry-weight elemental fractions, dry-weight SpectroLith lithology, and matrix properties 549 m/h [1,800 ft/h] 600 kev to 8 MeV 45.72 cm [18 in] 2%-coherence to standards computed 22.86 cm [9 in] None Combinable with most tools Special applications Automatic wellsite petrophysical interpretation Elemental statistical uncertainty at nominal conditions (549 m/h [1,800 ft/h] logging speed, resolution degradation factor of 5 to 16,000 counts/s count rate, and closure normalization factor of 3); Si, 2.16%; Ca, 2.19%; Fe, 0.36%; S, 1.04%; Ti, 0.10%; Gd, 3.48 x 10 6. Calcium carbonate used in large quantities as lost-circulation material may be detected by the tool. Magnesium yield is measured by the tool and can be used to split carbonate fractions in some cases. ECS Mechanical Specifications Max. temperature Max. pressure Borehole size Min. Max. OD Length Weight Tension Compression 177 degc [350 degf] 260 degc [500 degf] with internal flask, CO 2 cooling 138 MPa [20,000 psi] 172 MPa [25,000 psi] with high-pressure housing 16.51 cm [6.5 in] 50.80 cm [20 in] 12.70 cm [5 in] 13.97 cm [5.5 in] with high-pressure housing 3.09 m [10.2 ft] 138 kg [305 lbm] 222,410 N [50,000 lbf] 88,960 N [20,000 lbf]

www.slb.com/oilfield 06-FE-130 December 2006 *Mark of Schlumberger Copyright 2006 Schlumberger. All rights reserved. Produced by Schlumberger Marketing Communications