HW9.nb 1. be a symmetric (parity-even) function, with a close excited state with an anti-symmetric (parity-odd) wave function.

Similar documents
( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx"#t ( ) = 1 2" ( )"( x,t) PC 3101 Quantum Mechanics Section 1

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

Quantum Physics III (8.06) Spring 2005 Solution Set 5

221B Lecture Notes WKB Method

Name Solutions to Test 3 November 8, 2017

Summary: Method of Separation of Variables

1 1D heat and wave equations on a finite interval

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

221A Lecture Notes WKB Method

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6

Aike ikx Bike ikx. = 2k. solving for. A = k iκ

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Quantum Physics I (8.04) Spring 2016 Assignment 8

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

set is not closed under matrix [ multiplication, ] and does not form a group.

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Problem Set 3 Solutions

Solutions to Problems in Merzbacher, Quantum Mechanics, Third Edition. Chapter 7

Lecture 13 - Linking E, ϕ, and ρ

We divide the interval [a, b] into subintervals of equal length x = b a n

than 1. It means in particular that the function is decreasing and approaching the x-

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Consequently, the temperature must be the same at each point in the cross section at x. Let:

SUPPLEMENTARY INFORMATION

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Practice Problems Solution

Integral points on the rational curve

Appendix 3, Rises and runs, slopes and sums: tools from calculus

Math& 152 Section Integration by Parts

Chapter 14. Matrix Representations of Linear Transformations

The Wave Equation I. MA 436 Kurt Bryan

) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1

PHYSICS 116C Homework 4 Solutions

Problem Set 3 Solutions

We know that if f is a continuous nonnegative function on the interval [a, b], then b

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

Physics 220. Exam #1. April 21, 2017

TABLE OF CONTENTS 3 CHAPTER 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2. VECTORS AND MATRICES IN 3 DIMENSIONS

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Chapter 3 Polynomials

Quantum Physics II (8.05) Fall 2013 Assignment 2

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

7. Indefinite Integrals

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2011

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 2 solutions

Numerical integration

Chapter 0. What is the Lebesgue integral about?

MAT187H1F Lec0101 Burbulla

Line Integrals. Partitioning the Curve. Estimating the Mass

Unit 5. Integration techniques

Best Approximation in the 2-norm

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Candidates must show on each answer book the type of calculator used.

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

Do the one-dimensional kinetic energy and momentum operators commute? If not, what operator does their commutator represent?

The Dirichlet Problem in a Two Dimensional Rectangle. Section 13.5

1. Extend QR downwards to meet the x-axis at U(6, 0). y

Notes on the Eigenfunction Method for solving differential equations

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 61CM - Solutions to homework 9

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

The Riemann-Lebesgue Lemma

21.6 Green Functions for First Order Equations

Abstract inner product spaces

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

lim P(t a,b) = Differentiate (1) and use the definition of the probability current, j = i (

The Form of Hanging Slinky

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45

Line Integrals. Chapter Definition

dx x x = 1 and + dx α x x α x = + dx α ˆx x x α = α ˆx α as required, in the last equality we used completeness relation +

Main topics for the First Midterm

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Chapter 6 Notes, Larson/Hostetler 3e

Problem set 1: Solutions Math 207B, Winter 2016

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 4 Total 40 Points. 1. Problem Points

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

Each term is formed by adding a constant to the previous term. Geometric progression

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

Improper Integrals, and Differential Equations

Quadratic Forms. Quadratic Forms

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

F (x) dx = F (x)+c = u + C = du,

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS THE ALGEBRAIC APPROACH TO THE SCATTERING PROBLEM ABSTRACT

Scientific notation is a way of expressing really big numbers or really small numbers.

Conducting Ellipsoid and Circular Disk

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

SUPPLEMENTARY NOTES ON THE CONNECTION FORMULAE FOR THE SEMICLASSICAL APPROXIMATION

Quadratic Residues. Chapter Quadratic residues

MAC-solutions of the nonexistent solutions of mathematical physics

An approximation to the arithmetic-geometric mean. G.J.O. Jameson, Math. Gazette 98 (2014), 85 95

APPM 4360/5360 Homework Assignment #7 Solutions Spring 2016

Transcription:

HW9.nb HW #9. Rectngulr Double-Well Potentil Becuse the potentil is infinite for» x» > + b, the wve function should vnish t x = H + bl. For < x < + b nd - - b < x < -, the potentil vnishes nd the wve function is given simply by plne wve e i k x with energy E = k ê m. For - < x <, the potentil is lrge V 0, nd the wve function dmps exponentilly, e k x with k = mhv 0 - EL = m V 0 - k. Becuse the potentil is prity-invrint VH-xL = VHxL, we expect the ground stte to be symmetric (prity-even) function, with close excited stte with n nti-symmetric (prity-odd) wve function. For the prity-even ground stte, the wve function for - < x < must be yhxl = A cosh k x. For <» x» < + b, the wve function must be yhxl = B sin khx - - bl to ensure the boundry condition t» x» = + b. For - - b < x < -, yhxl = yh-xl = - B sin khx + + bl. To mtch the logrithmic derivtive y' HL ê yhl, we y' HL yhl need ÅÅÅ = k tnh k = k cot kh-bl. The conditions for x < 0 re precisely the sme thnks to the prity. For the prity-odd excited stte, the wve function for - < x < must be yhxl = A sinh k x. For < x < + b, the wve function must be yhxl = B sin khx - - bl to ensure the boundry condition t» x» = + b. For - - b < x < -, yhxl = -yh-xl = B sin khx + + bl. To mtch the logrithmic derivtive y' HL ê yhl, we need y' HL ÅÅÅ = k coth k = k cot kh-bl. The conditions t x = - re precisely the sme thnks to the prity. yhl First we tke the limit of the inifinite potenitl brrier V 0 Ø, nd hence k Ø. Then coth k = tnh k =, nd the condition is -k cot k b = k Ø. The only wy to stisfy this eqution is by tking k b = H n + L p so tht cot k b Ø -. The lowest energy is obtined by k b = p. Nmely, to the leding order in lrge V 0, k = ÅÅÅÅ p b nd E = p ÅÅÅÅ m b for both prityeven nd odd sttes. This mkes sense becuse the wve function fits right in between two infinite potentil brriers. Now we mke the potentil brrier finite but lrge (k p ), nd two sttes must split. To see the difference between two energy levels, we note tht the only difference is between tnh k nd coth k, nd for lrge k p, the difference is exponentilly smll, tnh k = - e - k + OHe -4 k L, coth k = + e - k + OHe -4 k L. Therefore we would like to sovle k H e - k L = -k cot k b to find k > ÅÅÅÅ p for prities. We expnd k b = p - e, nd b -k cos k b -k cot k b = ÅÅÅÅÅ = ÅÅÅÅÅÅ k sin k b e + OHeL = ÅÅÅÅÅÅÅ p b e + OHe0 L, nd hence ÅÅÅÅÅÅÅ p = k H e - k L, e = ÅÅÅÅÅÅ p b e k b H e- k L. Therefore the energy eigenvlue is E = p ÅÅÅÅ H - ÅÅÅÅÅÅ m b k b H e- k LL to the leding order. The difference in the energies between the two low-lying sttes is exponentilly suppressed s expected, D E = p ÅÅÅÅÅ 8 ÅÅÅÅÅÅ m b k b e- k. To plot the wve functions, we choose = b =, m =, =, nd V 0 = 0. Much lrger V 0 mkes it impossible to find the difference between the two energy eigenvlues numericlly. We cn solve numericlly for k, k Tnh@k D == -k Cot@k bd ê. 9k ->!!!!!! m V 0 - k = ê. 8 Ø, b Ø, m Ø, Ø < ê. 8V 0 Ø 0< è!!!!!!!!!!!!!! 0 - k TnhA è!!!!!!!!!!!!!! 0 - k E ã -k Cot@kD FindRootA è!!!!!!!!!!!!!! 0 - k TnhA è!!!!!!!!!!!!!! 0 - k E == -k Cot@kD, 8k, <E 8k Ø.576<

HW9.nb ksol = k ê. %.576 PlotAIfAAbs@xD <, CoshA "###################### 0 - ksol xe, CoshA "###################### 0 - ksol E ÅÅÅÅÅ Å Sin@ksol HAbs@xD - LDE, 8x, -, <E Sin@ksol HAbs@D - LD 5 0 5 0 5 0 5 - - Ü Grphics Ü k Coth@k D == -k Cot@k bd ê. 9k ->!!!!!! m V 0 - k = ê. 8 Ø, b Ø, m Ø, Ø < ê. 8V 0 Ø 0< è!!!!!!!!!!!!!! 0 - k CothA è!!!!!!!!!!!!!! 0 - k E ã -k Cot@kD FindRootA è!!!!!!!!!!!!!! 0 - k CothA è!!!!!!!!!!!!!! 0 - k E == -k Cot@kD, 8k, <E 8k Ø.5855< ksol = k ê. %.5855

HW9.nb PlotAIfAAbs@xD <, SinhA "###################### 0 - ksol xe, SinhA "###################### 0 - ksol E Sign@xD ÅÅÅÅÅ Å Sin@ksol HAbs@xD - LDE, 8x, -, <E Sin@ksol HAbs@D - LD 0 0 0 - - -0-0 -0 Ü Grphics Ü. Periodic delt-function Potentil () Using the form of the wve function given in the problem, yh-el = A + B yh+el = e i k HA e -i k + B e i k L y' H-eL = i kha + BL y' H+eL = i k e i k HA e -i k - B e i k L The wve function is continuous yh-el = yh+el, but its derivtive is discontinuous becuse of the delt-function potentil, yh+el - yh-el = ÅÅÅ m l yh0l. If you wnt to solve for "k" by hnd the most expedient method is to write the two equtions in the form of mtrix multiplying the column vector (A, B): eqn = Collect@A + B - E I k HA E -I k + B E I k L, 8A, B<D eqn = CollectAI k E I k HA E -I k A H - Â k-â k L + B H - Â k+â k L - B E I k L - I k HA - BL - m l ÅÅÅ HA + BL, 8A, B<E A J-Â k + Â Â k-â k k - ÅÅÅ m l N + B JÂ k - Â Â k+â k k - ÅÅÅ m l N

HW9.nb 4 mymtrix = 88Coefficient@eqn, AD, Coefficient@eqn, BD<, 8Coefficient@eqn, AD, Coefficient@eqn, BD<<; mymtrix êê MtrixForm i j k -  k-â k -  k+â k y  k -   k+â k k - m l z - k +   k-â k k - m l The eqution we wnt to solve is thus: mymtrix.8a, B< ã 80, 0< 9A H -  k-â k L + B H -  k+â k L, A J- k +   k-â k k - ÅÅÅ m l N + B J k -   k+â k k - ÅÅÅ m l N= ã 80, 0< For there to be nontrivil solution, the determinnt of the coefficient mtrix must be equl to zero. Mthemtic is not convenient for doing this mnipultion, but it isn't hrd to clculte the x determinnt by hnd nd set it equl to zero. It yields qudrtic eqution for e i k which cn be esily solved using the qudrtic eqution to give the required result. If you wnt to use Mthemtic to rrive t the solution, here is n exmple method: SolveA 9A + B ã E I k HA E -I k + B E I k L, I k E I k HA E -I k - B E I k L - I k HA - BL ã m l ÅÅÅ HA + BL=, 8B, k<e Solve::ifun : Inverse functions re being used by Solve, so some solutions my not be found; use Reduce for complete solution informtion. More 99B Ø ÅÅÅ m l J-A m l - A -  k m l -  A k +  A -  k k -  A -  k "####################################################################################################### ########## -4  k k 4 + H m l -   k m l + k +  k k L N, k Ø - ÅÅÅÅ J LogA- ÅÅÅÅÅ k J - k J- m l +   k m l - k -  k k + "####################################################################################################### ########## -4  k k 4 + H m l -   k m l + k +  k k L NNEN=, 9B Ø ÅÅÅ m l J-A m l - A -  k m l -  A k +  A -  k k +  A -  k "####################################################################################################### ########## -4  k k 4 + H m l -   k m l + k +  k k L N, k Ø - ÅÅÅÅ J LogA- ÅÅÅÅÅ k J - k J- m l +   k m l - k -  k k - "####################################################################################################### ########## -4  k k 4 + H m l -   k m l + k +  k k L NNEN== T h e r e f o r e, e i k = - ÅÅÅÅ k e-i k i j-i m lh - e i k L - kh + e i k L "################################ -4 4 k e i k + ################################ Hi m lh - e i k L ################ + kh ################ + e i k ####### LL y z k = - ÅÅÅÅ i j-m l sin k - k cos k "################################ -4 ############################################# k 4 k + H m l sin k + k cos k L y z k = cos k + m l sin k i - Hcos k + m %%%%%%%%%%%%%%%%%%%% l sin k k k L.

HW9.nb 5 As suggested in the problem, we define d = ÅÅÅÅÅÅÅ, nd the expression simplifies to e i k = cos k + ÅÅÅÅÅÅ k d sin k i - Hcos k + ÅÅÅÅÅÅ %%%%%%%%%%%%%%%%% k d sin k L. (b) m l In the limit d Ø, which is nothing but free prticle without potentil, we hve e i k = cos k i - cos!!!!!!! k = e i k, nd hence k = Hk + ÅÅ p n L. Or equivlently, k is the momentum modulo ÅÅ p n. Therefore, k nd hence the energy grows continuously s function of k. This cn be seen with lrge enough d numericlly: PlotA-I ê * LogACos@k D + Sin@k D + I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k d k k d Sin@k Dy z E ê. 8 Ø, d Ø 00< ê. 8k Ø p x<, 8x, 0, 6<, PlotRnge Ø 8-Pi, Pi<E PlotA-I ê * LogACos@k D + Sin@k D - I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k d k k d Sin@k Dy z E ê. 8 Ø, d Ø 00< ê. 8k Ø p x<, 8x, 0, 6<, PlotRnge Ø 8-Pi, Pi<E  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x =.5`*^-7. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x = 0.0976095949755`. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x = 0.0445450874`. More Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L 4 5 6 - - - Ü Grphics Ü Â Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x =.5`*^-7. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x = 0.0976095949755`. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø 00< ê. 8k Ø p x< is not mchine-size rel number t x = 0.0445450874`. More

HW9.nb 6 Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L - - 4 5 6 - Ü Grphics Ü Show@%, %%D - - 4 5 6 (c) - Ü Grphics Ü Looking t the eqution e i k = cos k + ÅÅÅÅÅÅ k d sin k i - Hcos k + ÅÅÅÅÅÅ %%%%%%%%%%%%%%%%% k d sin k L, if the rgument of the squre root is negtive, the l.h.s. becomes pure rel nd cnnot stisfy the eqution for rel k. Therefore there is no solution when» cos k + ÅÅÅÅÅÅ sin k» >. When d is finite but lrge, the combintion exceeds unity for k = n p + e (e > 0). This cn be k d seen by expnding it in terms of e, cos Hn p + el = H-L n I - ÅÅÅÅÅ e + OHe4 LM, sinhn p + el = H-L n He + OHe LL, nd hence cos k + ÅÅÅÅÅÅ k d sin k = H-Ln I + ÅÅÅÅÅÅ k d e - ÅÅÅÅÅ e + OHe LM, nd the mgnitude exceeds unity for 0 < e < ÅÅ k d > ÅÅÅÅÅ. The gp n p d must exist just bove k = ÅÅÅÅÅÅÅ n p for ny n, while the gp becomes smller for lrge n. (d) First for wek potentil d =,

HW9.nb 7 PlotA-I ê * LogACos@k D + k d 8k Ø p x<, 8x, 0, 4<, PlotRnge Ø 8-Pi, Pi<E Sin@k D + I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k k d Sin@k Dy z E ê. 8 Ø, d Ø < ê. PlotA-I ê * LogACos@k D + Sin@k D - I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k d k k d Sin@k Dy z E ê. 8 Ø, d Ø < ê. 8k Ø p x<, 8x, 0, 4<, PlotRnge Ø 8-Pi, Pi<E  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x =.6666666666666665`*^-7. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x = 0.6679669665`. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x = 0.4676078965`. More Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L 4 - - - Ü Grphics Ü Â Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x =.6666666666666665`*^-7. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x = 0.6679669665`. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 8 Ø, d Ø < ê. 8k Ø p x< is not mchine-size rel number t x = 0.4676078965`. More Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L

HW9.nb 8 4 - - - Ü Grphics Ü Show@%, %%D 4 - - - Ü Grphics Ü There re gps just bove k = ÅÅÅÅÅÅÅ n p the prt (c)., nd the gps become smller for higher n s expected from the nlytic considertions in Now for strong potentil d = ÅÅÅÅ, PlotA-I ê * LogACos@k D + k d Sin@k D + I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k k d Sin@k Dy z E ê. 8 Ø, d Ø ê < ê. 8k Ø p x<, 8x, 0, 4<, PlotRnge Ø 8-Pi, Pi<E PlotA-I ê * LogACos@k D + Sin@k D - I * - i jcos@k D + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% k d k k d Sin@k Dy z E ê. 8 Ø, d Ø ê < ê. 8k Ø p x<, 8x, 0, 4<, PlotRnge Ø 8-Pi, Pi<E  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x =.6666666666666665`*^-7. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x = 0.6679669665`. More  LogACos@k D + Power@áàD áà +  Plus@áàD!!!!!!!!!!!!! E ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x = 0.9599474947`. More

HW9.nb 9 Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L - - 4 - Ü Grphics Ü Â Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x =.6666666666666665`*^-7. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x = 0.6679669665`. More  Log@Cos@k D + Power@áàD áà -  Power@áàDD ê. 9 Ø, d Ø ÅÅÅÅ = ê. 8k Ø p x< is not mchine-size rel number t x = 0.9599474947`. More Generl::stop : Further output of Plot::plnr will be suppressed during this clcultion. \! \HMore \L 4 - - - Ü Grphics Ü

HW9.nb 0 Show@%, %%D - 4 - - Ü Grphics Ü The result is highly distorted from the free-prticle cse. Nonetheless the bnd structure is clerly seen. (e) It is prity, tht chnges the overll sign of k. This cn be seen from the explicit form of the wve function, yhxl = A e i k x + B e -i k x for H- < x < 0L yhxl = e i k HA e i khx-l + B e -i khx-l L for 0 < x <. The prity trnsforms it to yhxl = e i k HA e i kh-x-l + B e -i kh-x-l L = B e i Hk+kL e i k x + A e i Hk-kL e -i k x = A' e i k x + B' e -i k x for H- < x < 0L yhxl = B e i k x + A e -i k x = e -i k HB e i Hk+kL e i k Hx-L + A e i Hk-kL e -i k Hx-L L = e -i k HA' e i khx-l + B' e -i khx-l L 0 < x <. The two wve functions re relted by the chnge A Ø A' = B e i Hk+kL, B Ø A e i Hk-kL, e i k Ø e -i k. f o r