*- = f Z C,,r"(l - r)"-'# = f # = 1, m = 0, 1, 2,

Similar documents
ON THE GIBBS PHENOMENON FOR HARMONIC MEANS FU CHENG HSIANG. 1. Let a sequence of functions {fn(x)} converge to a function/(se)

J2 e-*= (27T)- 1 / 2 f V* 1 '»' 1 *»

A L A BA M A L A W R E V IE W

THE POISSON TRANSFORM^)

,. *â â > V>V. â ND * 828.

P a g e 5 1 of R e p o r t P B 4 / 0 9

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

Ht) = - {/(* + t)-f(x-t)}, e(t) = - I^-á«.


2 K cos nkx + K si" nkx) (1.1)

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

n

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

(i) tn = f î {nk)tk(i - ty-\dx{t) (»>o).

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Colby College Catalogue


SOME THEOREMS ON MEROMORPHIC FUNCTIONS

A PROBLEM IN ADDITIVE NUMBER THEORY*

238 H. S. WILF [April

THE MAXIMUM OF SUMS OF STABLE RANDOM VARIABLES


T h e C S E T I P r o j e c t

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s


Wireless & Hybrid Fire Solutions

A NEW METHOD OF INVERSION OF THE LAPLACE TRANSFORM* ATHANASIOS PAPOULIS. Polytechnic Institute of Brooklyn

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

SOME INTEGRAL INEQUALITIES

(4) cn = f f(x)ux)dx (n = 0, 1, 2, ).

BOUNDS FOR THE MAXIMAL CHARACTERISTIC ROOT OF A NON-NEGATIVE IRREDUCmLE MATRIX. R = max. r.,

Jsee x dx = In Isec x + tanxl + C Jcsc x dx = - In I cscx + cotxl + C

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

[ ]:543.4(075.8) 35.20: ,..,..,.., : /... ;. 2-. ISBN , - [ ]:543.4(075.8) 35.20:34.

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr

ON THE NUMBER OF POSITIVE SUMS OF INDEPENDENT RANDOM VARIABLES

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOME TAÜBERIAN PROPERTIES OF HOLDER TRANSFORMATIONS AMNON JAKIMOVSKI1

18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS. By M. Goldstein and R. M. Thaler

كلية العلوم قسم الرياضيات المعادالت التفاضلية العادية

THE DIFFERENCE BETWEEN CONSECUTIVE PRIME NUMBERS. IV. / = lim inf ^11-tl.

SUMMABILITY OF ALTERNATING GAP SERIES

Inverse Iteration on Defective Matrices*

Bessel s Equation. MATH 365 Ordinary Differential Equations. J. Robert Buchanan. Fall Department of Mathematics

Calculation of the Ramanujan t-dirichlet. By Robert Spira

TWO NEW PROOFS OF LERCH'S FUNCTIONAL EQUATION

ON THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

ON THE ABSOLUTE CONVERGENCE OF A SERIES ASSOCIATED WITH A FOURIER SERIES. R. MOHANTY and s. mohapatra

2 tel

SOME INEQUALITIES RELATED TO ABEL'S METHOD OF SUMMATION

THE RAYLEIGH FUNCTION NAND KISHORE

SOME FINITE IDENTITIES CONNECTED WITH POISSON'S SUMMATION FORMULA

On the asymptotic distribution of sums of independent identically distributed random variables

ON A CUBIC CONGRUENCE IN THREE VARIABLES. IP

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

A CONVERGENCE CRITERION FOR FOURIER SERIES

P a g e 3 6 of R e p o r t P B 4 / 0 9

Colby College Catalogue

Executive Committee and Officers ( )

MATH 220 solution to homework 4

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

ON THE NUMBER OF PAIRS OF INTEGERS WITH LEAST COMMON MULTIPLE NOT EXCEEDING x H. JAGER

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

SMOOTHNESS OF FUNCTIONS GENERATED BY RIESZ PRODUCTS

Colby College Catalogue

CLASSES OF L'-CONVERGENCE OF FOURIER AND FOURIER-STIELTJES SERIES CASLAV V. STANOJEVIC

EXAM 2, MATH 132 WEDNESDAY, OCTOBER 23, 2002

("-1/' .. f/ L) I LOCAL BOUNDEDNESS OF NONLINEAR, MONOTONE OPERA TORS. R. T. Rockafellar. MICHIGAN MATHEMATICAL vol. 16 (1969) pp.

(2) bn = JZ( )(**-*.)at,

A NOTE ON ENTIRE AND MEROMORPHIC FUNCTIONS

Y. H. Harris Kwong SUNY College at Fredonia, Fredonia, NY (Submitted May 1987)

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

TWO ERGODIC THEOREMS FOR CONVEX COMBINATIONS OF COMMUTING ISOMETRIES1 - S. A. McGRATH

(2) * ; v(x,y)=r-j [p(x + ty)~ p(x-ty)]dt (r > 0)

Multiple Time Analyticity of a Statistical Satisfying the Boundary Condition

THE RADICAL OF A NON-ASSOCIATIVE ALGEBRA

Czechoslovak Mathematical Journal

Department of Mathematics Indian Institute of Technology Hauz Khas, New Delhi India

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

ON UNICITY OF COMPLEX POLYNOMIAL L, -APPROXIMATION ALONG CURVES

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Uniform convergence of N-dimensional Walsh Fourier series

THE CONTIGUOUS FUNCTION RELATIONS FOR pf q WITH APPLICATIONS TO BATEMAN'S ƒ»«and RICE'S # n (r, p, v)

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

GENERALIZED LIMITS IN GENERAL ANALYSIS* SECOND PAPER

FORMULAE FOR G-FUNCTION

ON REARRANGEMENTS OF SERIES H. M. SENGUPTA

I N A C O M P L E X W O R L D

Transcription:

GIBBS' PHENOMENON FOR HAUSDORFF MEANS0 BY OTTO SZÂSZ 1. We define the general Euler means of a sequence (1.1) so, *u s2, by n (1.2) <r (r) = X) Cn,vr\X - r)»-i n = 0, 1, 2, ; here r is a positive number 0<r; l. For r = l o- (l) = s.. The transform (1.2) is regular, that is, if sn >s, then on{r) > s, as n» oo. We define the Hausdorff means of the sequence (1.1) by n /» 1 (1.3) Ä.» = Z Cn,,s I f(l - r)»-'#(r),» = 0, 1, 2, 0 J 0 where ^(r) is of bounded variation in O^r^l. The transform (1.3) is regular if and only if (1.4) f #r» -*(i) -rf-(o) = i, J 0 and if (1.5) \p(r) is continuous at r = 0(2). We may assume that ip(0) =0; then the conditions (1.6) *(D-1, *(+0) = HO) = 0. Observe that if s» = l,» = 0, 1, 2,, then (1.4) and (1.5) become *- = f Z C,,r"(l - r)"-'# = f # = 1, m = 0, 1, 2, «J o «^ o The transform (1.2) is a special case of (1.3), when we choose Presented to the Society, April 28, 1950; received by the editors April 3, 1950. (') The preparation of this paper was sponsored (in part) by the Office of Naval Research. (2) See for example, G. H. Hardy, Divergent series, Oxford, 1949, chap. 11. 440

GIBBS' PHENOMENON FOR HAUSDORFF MEANS 441 CO, for 0 ^ m < r (1.7) *(«)=<!. < <1 U, for r 2 «$ 1. Other special cases are (1.8) *(«) - 1 - (1 - «)' Rp>0, (1.9) *(«) = - f flog Y y, ici > 0. r(#) / o \ y / In case (1.8) r1 r1 r(v + i)r(«- v + p) I r"(l - r)n-"d\[>(r) = /> I r'(l - r)»-*-"-1^ = >-» r(«+ p + l) so that (1.3) becomes c r(n + 1} r(» + i)r(«- y + i) ' 1 rtn *" "~ /. Ln+p f l,p lsyî t^n+p.n 0 these are the Cesàro means of order p. In case (1.9) we get for (1.3) 1 " r1 / 1V-1 K = Z Cn,ys, r'(l - r)"-' ( log ) dr; T{p) o Ja \ r/ these are the Holder means of order p. It is known that Cesàro and Holder means of the same order are equivalent, that is, they sum the same class of series to the same value. 2. The Fourier series " sin vt 1 E -= {t-í), 0 < / g r, i v 2 converges for all t, and the function has a jump at i = 0. Hence the convergence is nonuniform at = 0; that is, the sequence sn{tn), where (2.1) *.(0- -' " sin vt i and i»0 has several limit points, depending on the manner in which tn»0. We have, more precisely, v / t sin / -dt, if ntn -* t, râo, o

442 OTTO SZÂSZ [November The maximal limit point is attained when r =w, in which case while /x sin t it -dt = X 1.17897 t 2 (w - <)/2->ir/2 así 0. This is called Gibbs' phenomenon. It then follows easily that if oo f(t) ~ X b* sin»^ i is the Fourier series of a function of bounded variation, and then (2A) f ' J 0 sin / -dt t n Sn(t) = ~^2 by sin vt, i 2 /"-sin/ Sn(/n)» /( + 0) Í, as» ft > T. K t = 1.17897 is called the Gibbs ratio for partial sums. Consider now the hn means of the sequence (2.1). The question arises: When does the sequence {hn(t)} present a Gibbs' phenomenon? This will depend on the choice of the function xf/(t). In the case of the general Euler transform (1.2) our result is (see [5])(3) r rr sin t hn(tn) * dt, as ntn * r. t Thus the maximal limit point is the same as in the case r = 1 of the partial sums, although Euler's summation method is quite powerful. For Cesàro means of order p Cramer [l ] proved the existence of a constant c, 0<c<l, such that Gibbs' phenomenon occurs for p<c, and does not occur for p^c. The Gibbs ratio is obtained by evaluating the expression 2 Ç7 ( u\p sin m 2 C1 sin tu G = max I II-1 -du = max f (1 u)v -du. t>0 7T J o \ T / U IT J 0o u Cooke [2] has shown that 0.40 < c < 0.48. (3) Numbers in brackets refer to the references cited at the end of the paper.

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 443 Earlier Gronwall gave the approximate value so that 3. In this section we shall prove: Theorem c = 0.4395. la. If ntn yr<», then, as ra ><» *.(*»)-» r1 J o J o rt sin ry --dydhr). Here hn(t) is the Hausdorff transform of the sequence (2.1). Clearly ' sin (w + 1/2)* Sn(t) = - + I dx, 2 ' o 2 sin x/2» t S /*«1 2_, Cn.^'il r)1"-'*, =-1-I -(1 - r + reix)neixl2dx, o 2 2 J o sin x/2 and, in view of (1.3), t r1 J r1 / ' 1 *»(') - - #W + I-z: (1 - r + re")»6» 2 2 sin x/2 y '2dxdrp(r). Let 1 r+reix=pe<a, where p and a depend on r and x; if r = 0, then p = l, and a. = 0 ; if r = 1, then p = 1, a = x. In general (3.1) p2 = (1 - r + r cos x)2 + r2 sin2 x = 1-2r(l - r)(l - cos x), (3.2) p cos a = 1 r + r cos *, p sin a = r sin *. Now Here, as 0<p^l, t J r1 r* p" *,,(/) =-h -e^+^dxdhr) 2 2 sin x/2 =-1-j (Iff sin (na+ */2)..,,, I pn- -dx#(r) 2 2 J o J o sin x/2 t 1 r1 r' 2 2 J o J o sin net cot x/2dxd\p{r) 1 r1 r' H-I I p" cos nadxd\p(r) 2 J o Í = - + Ax(t) + A2(t), say.

444 OTTO SZÂSZ [November so that Furthermore, hence cot y- I Mt) I < ~ f I <W') I - o(0, from 0<y sin y<y3, y I From (3.1), p2g 1, so that 2 J o hn(t) = 4i(0 + o(t), cos y- y sin y y sin y 1 cos y 1 /! / «^4i( ) = I I p" sin na cot x/2dx< #f» 2 J o / 4 /" Pnsin ) x + o \ dxdp(r) x I sin nad\ /(r) d* ) t y S y+» 2 2 Í-+0, i-»0. and i(0 = P"- *#(r)+0(/2 #W ) * \ / -J.7> «/O ''O sin na = B(0 + 0(/2), say, á*#(r) + 0{t2) Ä (0 «/o ''O sin na pn-á«#(f) + 0(/). * We now assume that t = tn»0, and nt -^n< o. For 0<p<l n-l 1-p"=(1-/)}Ep'<»(1-p)< «(1 - P2), hence (3.3) It follows that 1 - p» = X»(l - p2), 0 < X < 1. /' * / ' sin na C C sin «a -dxdrp(r) +» I I X(l - p2) - *# + 0(0 ; 0 J 0 X J o J o X

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 445 from (3.1) x 1 p2 = 4r(l r) sin2 < x2, so that C' C ' sin na ( rl r',,) h (t) = \ -dxá f(r) + O<n I I xdx #(r) } + O(0- * v J Here the second term is 0(nt2) 0(t), From (3.2) for small values of x and hence C1 r ' sin na *-(0 = '-d*#(0 + 0(0- J o J 0 * r sin * tan a = - 1 r(i cos *) = z, say, oo 22v 1 (3.4) a = arctan 3 = X) (-1)"-1-= rx + 0(rx*). i 2v 1 The formula now yields a +» a b sin a sin 6 = 2 cos-sin 2 2 Thus a -\- rx sin»a sin nrx = 2 cos n-sin 2 0(nrxz). /» i /» í sin fitx Í f* ^ /* ' "1 *»(0 = I I '- *#(r)+0< I I»*2 * #(r) j- + 0(t) J o J 0 x \ J o J 0 ) r1 cnt sin ry - y# + 0(nfi) + 0(t) J o J o y r1 Cnt sin ry --dydt y + 0(t); this proves Theorem 1. 4. To discuss the case w/ > we need some sharper estimates in place of (3.3) and (3.4). The result is:

446 OTTO SZÄSZ [November Theorem lb. Ifntn-^><x>, then lim hn(tn) = r/2. Here h (t) is the Hausdorff transform of the sequence (2.1). We first estimate for small positive e the difference e-n< (1 <=)». We have hence e~' > 1 -, 0 < e < 1, <r"e > (1 «)*, or 1 > (1 e)ne"e. Furthermore 0 < 1 - {(1 - e)e'}n < n{\ - (1 - t)e'\, and It follows that 0 < 1 - (1 - e)e< < e2 for 0 < e ^ 1/2. 0 < e~ni - (1 «)» < ne2e-nt, and, if we replace e by 1 p2 = 2r(l r)(l cos x) g 1/2 0 < e-»<i-v> _ p2 < (j _ ^i^-ftdv), or Je-n(l-(,2)/2 _ pn g-n(lv)/2 _ _ p»j < ^ _ p2)2e-n(l-/,2)g Thus e-n(l-p2)/2 _ pn < (J _ p2)2g-n(l-p2)/2 or We now find e-»(l-p2)/2 _ pn = ^ (1 _ p2)2e-n(l-p2)/2i 0 < /3 < 1. /*x /* ' sin «et r1 rl, sin «a 5(0= I I p"- *# = I I e-»d-p2)/2-d*#(r) t/ 0 J 0 X J o J o X r1 C*, sin «a +» 1 j ß(l - p2)2e-»(i-p-)/2- *#(r) J o J o x = Ci(0 +»C2(0, say.

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 447 Next X^ {* ' dx I 4r2(l - r)2(l - cos z)2e -a-ou-co.*) _ #(r) j J o * Now = f f r2(l - r)2x3 exp (- ^ r(\ - r)x2jdx #(r). f'/w \ 1 f' ( n \ I *3 exp (-r(\ r)x2 dx = I x2 exp I-r(l r)*2 )dx2 J, V 2i2 / 2 J0 \ 2tt2 / 1 r'2 / n \ "yj. y^\-^l-r^)dy t* f2 / n \ <tj ^{-^^-^yjdy ' 2 L exp V «r(l - r) T )\ so that rar(l r) [1_ejp(. r(1_r) )] Hence, Next wc2(0 =0 f t2r(i - r) #(r) = O(0. 5(0 = cx(0 + o(0, «(0 = Ci(o + o(0. exp ( a sin2 x/2) > exp (-*2 J, a = 2wr(l r), and exp ( a sin2 x/2) exp f-x2 I exp (-x21 < exp a I x2 sin2 x/2 I >.

448 OTTO SZÂSZ [November Furthermore hence 0 < *2/4 - sin2 x/2 = (x/2 - sin x/2)(x/2 + sin x/2) < 2x =, 8 4 *4 a(x2/4 - sin2 x/2) < nr(\ - r) > x3 x4 and exp (a(x2/4 - sin2 x/2)) - 1 < exp (nr(l - r)xi/2) - 1 = exp (nr(l r)x4/2){l exp (- nr(\ r)xi/2}, so that It follows that = 0(»r(l - r)x4). a / a \ exp ( a sin2 x/2) exp (- x2) = exp I-x2 )0(wr(l r)x*), 4 rl sin na «I exp ( 2«r(l r) sin2 x/2)- * Çl ( n \ sin»a = exp ( r(\ r)x2 J-dx \ 2 ) x + 0<nr(l - r) f exp Í - r(l - r)x2jx3dxi C' in \ sin na = 1 expi-r(l - r)x2j-dx + 0(t2), so that C1 T' / n \ sin»a  (0 =1 I exp Í-r(l - r)x*j- x#(r) + O(0- We next prove the lemma: Lemma. For small values of x and for O^r^l From (3.4) forr = l,a = x, a = a(r, x) = rx + 0(r(l r)x3).

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 449 " 1 /sinxv"-1 x = H(-iy-1- A ) > 1 V 1 \ COS X / - (sin x)2-1 ( 1 r2'-2 1 rx - a = rv (-1)"-1-<-> T 2k - 1 I (cos x)2"-1 (1 - r + r cos x)2-1/ " (sin x)2'"1 (1 - r + r cos x)2-1 - r2"-2(cos x)2"-1 " r i 2k - 1 (cos x)2»-1(l - r + r cos x)2'"1 Here the first term is 1 r + r cos * cos x 1 cos x r sin x- = r(l r) sin x cos x(l r + r cos x) cos x(l r + r cos x) which is positive and less than r(i r) sin x(l cos x)/cos2 x. Let (1 - r + r cos x)2-1 - r2'-2(cos x)2-1 = g,(r), then gy(l) =0, and the mean value theorem It now follows that which proves our lemma. Now the formula yields so that yields 0 ^ gy(r) Ú 2(1 - r)(2v - 1), ^2;0Srál. x3 rx - a < r(l - r)- + 2r(l - r) 2 (cos x)4"-2 Thus a = rx + br(\ r)x3, a -\- b a b sin a sin b = 2 cos - sin- 2 2 where 5 g 5o a constant. / 1 \. 5 sin «a sin nrx = 2 cos nlrx-\-8r(l r)x3 1 sin n r(l r)x3, r ' n sin «a / * n sin wrx I exp ( r(l r)x2)-dx = I exp (-r(l r)x2) -dx 2 x J0 2 x + 0< I exp I-r(l r)x2 \nr(x r)x2dx>. The last term is

450 OTTO SZÂSZ [November 0<nr(í - r) f exp ( - r(l - r)y)áyi = O(0, hence J1 r' / n \ sin nrx I expi - r(\ - r)x2j-dx + 0(t). Let r' / n \ sin nrx (4.2) I exp (-r(l r)x2l-dx=qn(r,t), /* ' sin fix í*r' (4.3)? (0, 0 = 0, «(1,0=1 -<** = J 0 x J o For0<r<l Let then /.»ri / 1 y \ sin y?n(r, 0=1 exp (-y2 \ 2rn )- y. / y r sin x I -dx = Si (y), J y X /"" ' /l - r \ qn(r, t) = - J exp ( y2j d Si (y) = x/2 sm y -dy. (4.4) - Si (rnt) exp (- rai2 J j _ r / <»«Ami / 1 j _ r \ I y Si (y) exp (-y21 dy. m \ 2rn / For fixed >0, qn(r, t) is a continuous function of r in O^r^l. From (4.3) From (4.4) for e^r^l, «>0 qn(r, tn) x/2 qn(0, in)» 0, qn(l, tn)» tt/2, as»» CO. i i i r i i r" /1_r\ < [ Si (rntn) -\-max Si (y) I y exp (-y2 ) dy m v>o \ 2rn / 1 - r rx / 1 - r \ + -max I Si (y) I y exp I-y2 I dy m»go, Ju \ 2rn /

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 451 < Si (rntn) + max Si (y) 1 - exp (- <o2 ) v>o L \ 2rn /A + max Si (y).!/&<. Let now co = co»<» so that w2=o(w); it then follows that qn(r, t )-^nr/2, uniformly in e^r^l, and boundedly in O^rgl. Hence /qn(r, tn)d\p(r) -» I #(r), as «-» co ; letting e I 0, we get, in view of bounded convergence, f qn(r, /»)#«-> ^- f #W = v {*(1)- *(+0)} = -^ J +o 2 J +o 2 Theorem lb now follows from (4.1) and (4.2). 5. Combining Theorems la and lb, we have the result: Theorem 2. Ifntn-^r», then For t < oo we find ' sin ry *»(*»)-* I I dyd\p(r), asn-><x>. «/ 0 *> 0 1 Cr sin fy rt sin y /" x sin rr /'* CT sin r-y *T sin y /* * sin rr I --dyd^(r) = I --áy- ^(r)- dr o J o y y r Thus the Gibbs ratio is C1,. sin rr {1 -*(')} - f. r 2 /*1,. sin rr 2 / T.. sin y max nax I {1 ip(r) I -dr max I {1 Hy/T) \ -dy. X t>o t>0 r t x X r>o r>0 J 0 y In view of Theorem 2 we get the following result: Theorem 3. For the Hausdorff means hn(t) r1.. sin rr lim sup hn(t) = max f {1 \p(r)} -dr; n-fx,<->0 t >o t>0 T>0 r if this maximum is attained for t=t', then lim sup hn(t) = lim h (tn). _,«, (-»o»< -» ' For Euler means it follows by (1.7) that the Gibbs ratio is

452 OTTO SZÄSZ [November 2 /'r rr sin tu 2 rt sin y -du = max I dy. x o u X r>0 J 0 For Cesàro means the Gibbs ratio is by (1.8) 2 r1 sin rr G = max I (1 r)p-dr. r>o x r For Holder means the Gibbs ratio is by (1.9) 2 r1 ( 1 /" / lv-1 ) sin rr G = max I < 1-I I log J dx >-dr. t>o x \ T(p) J o \ */ ) r Thus if p = 1, in either case Now 2 / * r1 sin rr G = max I (1 r)- x r 2 CT / r \ sin r = max x J.O-tJ-r* /" sin r T7 1 1 cos rv rr 1 cos c r - r = (1 - cos r) = - +- r r r J o r2 1 cos r CT 2 sin2 r/2 - + -~-* fj o dr thus 1 cos r / / r/2t/2 2 sin2 y - + --2dy- T 4y2 1 cos r /*T/2 / Tl2 /sin y^2 y\2 +/. (v)á,; 2 M cost ft/2siny 1 rt \ G = max <- + I -dy I sin r dr > x ( t y T P 2 = max fr/siny\2 I (-I dy x t>o * o \ y / = 1. The same is true for p>i from elementary properties of the Cesàro and Holder means. To discuss the case 0<p<\, observe that in general max /0' {\ ip(u)\

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 453 (sin Tu/u)du is reached when Now, if ip(u) is differentiable, j {1 \ /(u)} cos tu du = 0. if I {1 \f/(u)} cos tu du = I {1 \p(u)] du (sin tu) 1-4>(u) -sin r«h-i sin TU-ip'(u)du T 1 rl = I ^'(M) sin ru du = 0, T (5.1) I H(u) sin rw m = 0. For Holder means by (1.9) thus (5.1) becomes Let fy i r1/ in^1 r(i>)j«j V flog J y) y, in^"1 I I log 1 sin tu du = 0. 1 r1 r1 / 1 \p~l sin tu (5.2) - I (log-) dy-du = gp(r) = g(r), T(p) J o J u \ y I u then there is no Gibbs' phenomenon if and only if We have g(r) =" x/2 for all t > 0. (5.3) (t) = f {1 - H1")} cos tu du i r1 = -1 n'(u) sin tu du. Here T

454 OTTO SZÂSZ [November (5.4) 1 /»/ ix*-1 1 / 1 \P-! ^) = r^)(l0g7) T(p) 1- p l / 1 V"2 *"(«) = -r (log ) >0, 0</><l. T(p) u \ uf Pólya [4, pp. 374-375] proved that if f(t) >0 and/'(0 >0, then *) = f/(0 F(z) = I f(t) sin zi dt has only real and simple zeros; there is no zero in 0<z2=x, and each of the intervals vir<z<(v-\-x)iv, v = \, 2, 3,, contains exactly one zero. Pólya also proved that (5.5) sgnf(kx) = (-I)-1, k=1, 2, 3,, and (5.6) V(z) V'(0) " V(vw)/ 1 l \ z sin z»=.1 KX \Z KX Z + KX/ This result is applicable to f(t) =^'(0 if 0< <1. Thus, all zeros of g'(0 are real and simple, and each of the intervals j»x<t<(i'+1)x contains exactly one zero. Furthermore Now Tg'(r) If1 A /I 1 \ -if-i. = - uv(u)du + (-I)Y(kx) (-+ -). r sin r t J o»-i \t vît r + ex/ rl 1 T1 / IV"1 1 c I u\p'(u)du =- I «log du = - I xp-1e-2xdx = 2r", T(p) \ u) T(p)J0 so that, using (5.5) and (5.6) It follows that We write sin t ". g'(t) = 2-v-2Z\S'M r f ' C ' sin t ",. C ' t sin t I'M* =?(0 = 2-' - r - 2 E I «'(«r) I- t»=1 t'' kv,_i dr.

1950] GIBBS' PHENOMENON FOR HAUSDORFF MEANS 455 max gp(t) = m(p); T>0 it follows from the definition of Gibbs' phenomenon and from elementary properties of the Holder means that m(p) decreases to x/2 as p increases, thus there is a constant 7, 0<y^l, so that the Holder means present a Gibbs' phenomenon for p<y, but not for p^y. Clearly m(p)=ir/2 for p^y. Denote the positive zeros of g'(r) by n, r2,, then x < tj < 2x < T2 < 3x <. g(r) has a maximum atr = Ti, and a minimum at r=r2. Decomposing the integration in (5.2) into subintervals in which sin tu is either positive or negative, one can show that for = 0.6 and t>3tt (5.7) f,(0 <x/2. From (5.3) and (5.4) hence r1 / IV-1 " t2'-1u2"-1 np)rg'(r)= (log-) E(-l)'-17-- du \ «/ i (2v 1)1 T(p) " t2-1 1 -^Z(-i)-1-2" i (2k- 1)1 v* 1 «t2-1 1 (5-8) f(r)- _ (-l)-i-- --- 2P i (2k 1)!(2k 1) kp Using this formula, further computation shows that (5.7) holds also for = 0.6 and 0<r<3x. It follows that 7<0.6, and (5.7) holds for p>0.6 and r>0. We can also employ (5.8) to find a lower bound for 7. The computations were carried out by Fanny Gordon under the direction of Dr. Gertrude Blanch. It was found that for and p = 0.5800, t = 4.25318, 2"Tg'(r) = - 0.0000329, g(r) = 1.571899 > x/2 = 1.570796 Thus, 7>0.5800. Further calculation shows that 0.58<7<0.585, and for = 0.5826, we have n = 4.2598, and g(n) =1.5708 It is noticeable that 7 is essentially larger than the corresponding constant for Cesàro means: c = 0.4395. For the discussion of g(r) and g'(r) we may also employ asymptotic estimates similar to those of Gronwall. In closing we mention two notes on the Gibbs' phenomenon by B. Kuttner

456 OTTO SZÂSZ in J. London Math. Soc. vol. 20 (1945) pp. 136-139, and vol. 22 (1947) pp. 295-298. Here a different type of transforms is considered; we shall give more details in a forthcoming paper. References 1. H. Cramer, Études sur la sommation des series de Fourier, Arkiv for Matematik, vol. 13, no. 20, 1919. 2. R. G. Cooke, Disappearing Gibbs' phenomena, Proc. London Math. Soc. vol. 30 (1930) pp.144-164. 3. T. H. Gronwall, Zur Gibbsschen Erscheinung, Ann. of Math. (2) vol. 31 (1930) pp. 233-240. 4. G. Pólya, Über die Nullstellen gewisser ganzer Funktionen, Math. Zeit. vol. 2 (1918) pp. 352-383. 5. O. Szász, On the Gibbs phenomenon for Ruler means, Acta Scientiarum Mathematicarum vol. 12 (1950), Part B, pp. 107-111. University of Cincinnati, Cincinnati, Ohio. National Bureau of Standards, Los Angeles, Calif.