Triangular matrices and biorthogonal ensembles

Similar documents
Markov operators, classical orthogonal polynomial ensembles, and random matrices

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Exponential tail inequalities for eigenvalues of random matrices

Wigner s semicircle law

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

Concentration Inequalities for Random Matrices

Convergence of spectral measures and eigenvalue rigidity

Central Limit Theorems for linear statistics for Biorthogonal Ensembles

Orthogonal Polynomial Ensembles

Lectures 6 7 : Marchenko-Pastur Law

1 Intro to RMT (Gene)

Lecture I: Asymptotics for large GUE random matrices

Channel capacity estimation using free probability theory

Products of Rectangular Gaussian Matrices

Eigenvalue variance bounds for Wigner and covariance random matrices

Random Matrices: Beyond Wigner and Marchenko-Pastur Laws

Local semicircle law, Wegner estimate and level repulsion for Wigner random matrices

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

Comparison Method in Random Matrix Theory

Maximal height of non-intersecting Brownian motions

Universal Fluctuation Formulae for one-cut β-ensembles

Operator norm convergence for sequence of matrices and application to QIT

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Determinantal point processes and random matrix theory in a nutshell

Random regular digraphs: singularity and spectrum

Eigenvalues and Singular Values of Random Matrices: A Tutorial Introduction

Stein s Method and Characteristic Functions

Parallel Additive Gaussian Channels

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

Random Matrix Theory Lecture 1 Introduction, Ensembles and Basic Laws. Symeon Chatzinotas February 11, 2013 Luxembourg

The norm of polynomials in large random matrices

Freeness and the Transpose

Universality for random matrices and log-gases

On corrections of classical multivariate tests for high-dimensional data

Chapter 6 Inner product spaces

Bulk scaling limits, open questions

MIMO Capacities : Eigenvalue Computation through Representation Theory

Determinantal Processes And The IID Gaussian Power Series

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem

Random Matrices and Multivariate Statistical Analysis

Free Probability, Sample Covariance Matrices and Stochastic Eigen-Inference

c 2005 Society for Industrial and Applied Mathematics

Insights into Large Complex Systems via Random Matrix Theory

o f P r o b a b i l i t y Vol. 9 (2004), Paper no. 7, pages Journal URL ejpecp/

The Multivariate Normal Distribution. In this case according to our theorem

Geometric Dyson Brownian motion and May Wigner stability

11 a 12 a 21 a 11 a 22 a 12 a 21. (C.11) A = The determinant of a product of two matrices is given by AB = A B 1 1 = (C.13) and similarly.

What is the Relation between Eigenvalues & Singular Values? Mario Kieburg

Multiple orthogonal polynomials. Bessel weights

ORTHOGONAL POLYNOMIALS

Free Meixner distributions and random matrices

The Matrix Dyson Equation in random matrix theory

Second Order Freeness and Random Orthogonal Matrices

A Note on the Central Limit Theorem for the Eigenvalue Counting Function of Wigner and Covariance Matrices

NUMERICAL CALCULATION OF RANDOM MATRIX DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS. Sheehan Olver NA Group, Oxford

Math 577 Assignment 7

arxiv: v1 [math.pr] 22 May 2008

Numerical Methods for Random Matrices

Non-absolutely monotonic functions which preserve non-negative definiteness

Burgers equation in the complex plane. Govind Menon Division of Applied Mathematics Brown University

On corrections of classical multivariate tests for high-dimensional data. Jian-feng. Yao Université de Rennes 1, IRMAR

Fredholm determinant with the confluent hypergeometric kernel

Moments of the Riemann Zeta Function and Random Matrix Theory. Chris Hughes

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

L. Levaggi A. Tabacco WAVELETS ON THE INTERVAL AND RELATED TOPICS

Random Matrix: From Wigner to Quantum Chaos

Valerio Cappellini. References

Notes on Random Vectors and Multivariate Normal

Statistical Inference and Random Matrices

Quantum Computing Lecture 2. Review of Linear Algebra

Cayley-Hamilton Theorem

Distributions on matrix moment spaces

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

On the distinguishability of random quantum states

Convolutions and fluctuations: free, finite, quantized.

SINC PACK, and Separation of Variables

Asymptotics of Hermite polynomials

Fluctuations of random tilings and discrete Beta-ensembles

1.12 Multivariate Random Variables

REPRESENTATION THEORY WEEK 7

Free Probability and Random Matrices: from isomorphisms to universality

Semicircle law on short scales and delocalization for Wigner random matrices

arxiv: v1 [math-ph] 19 Oct 2018

Assessing the dependence of high-dimensional time series via sample autocovariances and correlations

Differential Equations for Dyson Processes

Refined Inertia of Matrix Patterns

A new type of PT-symmetric random matrix ensembles

Universality of local spectral statistics of random matrices

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

Distributions on unbounded moment spaces and random moment sequences

Large Deviations for Random Matrices and a Conjecture of Lukic

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 2

Non white sample covariance matrices.

ON THE SECOND-ORDER CORRELATION FUNCTION OF THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN WIGNER MATRIX

vibrations, light transmission, tuning guitar, design buildings and bridges, washing machine, Partial differential problems, water flow,...

The circular law. Lewis Memorial Lecture / DIMACS minicourse March 19, Terence Tao (UCLA)

Rectangular Young tableaux and the Jacobi ensemble

arxiv: v3 [math-ph] 21 Jun 2012

S.F. Xu (Department of Mathematics, Peking University, Beijing)

Transcription:

/26 Triangular matrices and biorthogonal ensembles Dimitris Cheliotis Department of Mathematics University of Athens UK Easter Probability Meeting April 8, 206

2/26 Special densities on R n Example. n n GUE matrix: Hermitian with elements N R (0, ) N C (0, ) N R (0, )...... N C (0, ) N C (0, ) N R (0, ) Eigenvalue density C n r<s n n (x s x r ) 2 e x2 j /2 dx j j=

3/26 Example 2. LUE (Laguerre Unitary Ensemble) matrix: XX with X C n m, n m N C (0, ) N C (0, ) N C (0, ) N C (0, ) N C (0, ) N C (0, ) X :=...... N C (0, ) N C (0, ) N C (0, ) Eigenvalue density for XX C m,n r<s n (x s x r ) 2 n j= x m n j e x j xj >0 dx j

4/26 Example 3. JUE (Jacobi Unitary Ensemble) matrix: XX XX + YY X C n m, Y C n m 2, n m, m 2 with elements i.i.d. N C (0, ). Eigenvalue density for XX (XX + YY ) C n,m,m 2 r<s n (x s x r ) 2 n j= x m n j ( x j ) m2 n xj (0,) dx j

5/26 Example 4. Beenakker-Rajaei (Phys. Rev. Letters (993)) Transmission eigenvalues for a quantum conductor with n channels. T i (0, ), i n. Conductance G = G 0 n i= Density of λ i := T i T i, i =, 2,..., n. r<s n (x s x r ){f (x s ) f (x r )} T i n e Vn(x j ) xj (0,) dx j j= f (x) := {sinh ( x)} 2. Gives correct Var(G/G 0 ).

5/26 Example 4. Beenakker-Rajaei (Phys. Rev. Letters (993)) Transmission eigenvalues for a quantum conductor with n channels. T i (0, ), i n. Conductance G = G 0 n i= Density of λ i := T i T i, i =, 2,..., n. r<s n (x s x r ){f (x s ) f (x r )} T i n e Vn(x j ) xj (0,) dx j j= f (x) := {sinh ( x)} 2. Gives correct Var(G/G 0 ). Example 5. K. Muttalib (J. Phys. A, (995)) Approximate f (x) by polynomial. Study the case of a monomial.

6/26 Fix θ > 0 C n i<j n {(x j x i )(x θ j x θ i )} n w(x i ) dx i i=

6/26 Fix θ > 0 C n i<j n {(x j x i )(x θ j x θ i )} n w(x i ) dx i i= A. Borodin (999). Special choices for w. Fix α, β >. () w(x) = x α ( x) β x (0,) Biorthogonal Jacobi ensemble. (2) w(x) = x α e x x>0 Biorthogonal Laguerre ensemble. (3) w(x) = x α e x2 Biorthogonal Hermite ensemble. Described limit point process near 0.

7/26 Recall r<s n (x s x r ) = det j (x j,k n k ) Biorthogonal ensembles Point process on R with n points and measure n det (ξ j(x k )) det (η j(x k )) dµ(x k ) j,k n j,k n k= GUE, LUE, JUE: Muttalib ensemble: ξ j (x) = η j (x) = x j ξ j (x) = x j, η j (x) = x (j )θ

8/26 Singular values A an n m complex matrix. Eigenvalues of AA : λ i (AA ), i =, 2,..., n. Singular values of A: s i (A) := λ i (AA ), i =, 2,..., n. s (A) s 2 (A) s n (A) We can write: A = UDV U C n n, V C m m unitary. D = diag(s (A), s 2 (A),..., s n m (A)) C n m

Singular values of a complex matrix 9/26 X = (X i,j ) i,j n with X i,j i.i.d. E(X, ) = 0, E( X, 2 ) =. Eigenvalues of XX : λ (n) λ (n) 2 λ (n) n > 0. Empirical spectral distribution of rescaled eigenvalues. L n := n n k= δ n λ(n) i

Singular values of a complex matrix 9/26 X = (X i,j ) i,j n with X i,j i.i.d. E(X, ) = 0, E( X, 2 ) =. Eigenvalues of XX : λ (n) λ (n) 2 λ (n) n > 0. Empirical spectral distribution of rescaled eigenvalues. L n := n n k= δ n λ(n) i Theorem (Marchenko-Pastur, 967) L n 4 x 0 x 4 dx 2π x

Singular values of a complex matrix 9/26 X = (X i,j ) i,j n with X i,j i.i.d. E(X, ) = 0, E( X, 2 ) =. Eigenvalues of XX : λ (n) λ (n) 2 λ (n) n > 0. Empirical spectral distribution of rescaled eigenvalues. L n := n n k= δ n λ(n) i Theorem (Marchenko-Pastur, 967) L n 4 x 0 x 4 dx 2π x If further X i,j N C (0, ). Density of (λ (n), λ(n) 2,, λ(n) n ): e n k= (k!)2 n k= x k i<j n (x i x j ) 2 x >x 2 > >x n>0

0/26 Triangular matrices X, 0 0 X 2, X 2,2 0 X (n) :=...... X n, X n,2 X n,n E(X, ) = 0, E( X, 2 ) =.

0/26 Triangular matrices X, 0 0 X 2, X 2,2 0 X (n) :=...... X n, X n,2 X n,n E(X, ) = 0, E( X, 2 ) =. Eigenvalues of X (n)x (n) : λ (n) λ (n) 2 λ (n) n 0. Empirical spectral distribution of rescaled eigenvalues. L n := n n k= δ n λ(n) i

/26 Theorem (Dykema-Haagerup, 2004) With probability, x k dµ 0 (x) = µ 0 density with support [0, e]. L n µ 0 kk (k + )!, k 0

/26 Theorem (Dykema-Haagerup, 2004) With probability, x k dµ 0 (x) = µ 0 density with support [0, e]. L n µ 0 kk (k + )!, k 0 New proof with method of moments. Key: n n k Tr{(XX ) k } n Counting rooted alternating plane trees. k k (k + )!

/26 Theorem (Dykema-Haagerup, 2004) With probability, x k dµ 0 (x) = µ 0 density with support [0, e]. L n µ 0 kk (k + )!, k 0 New proof with method of moments. Key: n n k Tr{(XX ) k } n Counting rooted alternating plane trees. k k (k + )! Theorem (C. 204). If E( X, 4 ) < then λ(n) n e.

/26 Theorem (Dykema-Haagerup, 2004) With probability, x k dµ 0 (x) = µ 0 density with support [0, e]. L n µ 0 kk (k + )!, k 0 New proof with method of moments. Key: n n k Tr{(XX ) k } n Counting rooted alternating plane trees. k k (k + )! Theorem (C. 204). If E( X, 4 ) < then λ(n) n e. Next: Joint distribution of (λ (n) distributions of X,., λ(n) 2,..., λ(n) n ) for special

2/26 Singular values of a triangular complex Gaussian matrix X i,j { 0 if i < j n N C (0, ) if n i j Eigenvalues of XX : λ > λ 2 > > λ n > 0

2/26 Singular values of a triangular complex Gaussian matrix X i,j { 0 if i < j n N C (0, ) if n i j Eigenvalues of XX : λ > λ 2 > > λ n > 0 Theorem (C. 204) Density of (λ, λ 2,..., λ n ): n e k= x k n k= k! i<j n (x i x j )(log x i log x j ) x >x 2 > >x n>0

2/26 Singular values of a triangular complex Gaussian matrix X i,j { 0 if i < j n N C (0, ) if n i j Eigenvalues of XX : λ > λ 2 > > λ n > 0 Theorem (C. 204) Density of (λ, λ 2,..., λ n ): n e k= x k n k= k! Biorthogonal ensemble: i<j n (x i x j )(log x i log x j ) x >x 2 > >x n>0 ξ j (x) = x j, η j (x) = (log x) j, dµ(x) = Ce x x>0 dx.

3/26 Connection with biorthogonal Laguerre ensemble (α = 0): n C n (θ) {(x j x i )(xj θ xi θ )} xi 0 e x i xi >0 dx i i<j n i=

3/26 Connection with biorthogonal Laguerre ensemble (α = 0): C n (θ) i<j n {(x j x i )(x θ j x θ i )} x θ y θ lim θ 0 θ n xi 0 e x i xi >0 dx i i= = log x log y

4/26 A special distribution on triangular matrices Parameters: θ 0, r > 0 The T (θ, r) distribution. X, 0 0 N C (0, ) X 2,2 0 X =...... N C (0, ) N C (0, ) X n,n c k := (k )θ + r Arithmetic progression in k =, 2,... X k,k : with density in C πγ(c k ) e z 2 z 2(c k ) X k,k = e iφ k χ 2ck / 2, φ k U(0, 2π)

5/26 Eigenvalue realization of the biorthogonal Laguerre ensemble Let X T (θ, r). Eigenvalues of XX : λ > λ 2 > > λ n > 0.

5/26 Eigenvalue realization of the biorthogonal Laguerre ensemble Let X T (θ, r). Eigenvalues of XX : λ > λ 2 > > λ n > 0. Theorem (C. 204) Density of (λ, λ 2,..., λ n ). C n,θ,r e n k= x k n j= x r j i<j n Biorthogonal Laguerre ensemble: α = r. (x i x j )(x θ i x θ j ) x >x 2 > >x n>0

6/26 Corollary L n := n µ θ has same moments as xx n k= δ n λ(n) i µ θ x = DT (ν θ, ) element in a -noncommutative probability space ν θ =uniform measure on {z C : z θ}

7/26 Further developments ) Eigenvalue realization of the biorthogonal Jacobi ensemble Weight x α ( x) β x (0,) instead of e x x α x>0.

7/26 Further developments ) Eigenvalue realization of the biorthogonal Jacobi ensemble Weight x α ( x) β x (0,) instead of e x x α x>0. Let X T (θ, r), Y T (θ, s). Eigenvalues of XX XX +YY : > λ > λ 2 > > λ n > 0.

7/26 Further developments ) Eigenvalue realization of the biorthogonal Jacobi ensemble Weight x α ( x) β x (0,) instead of e x x α x>0. Let X T (θ, r), Y T (θ, s). Eigenvalues of XX XX +YY : > λ > λ 2 > > λ n > 0. Theorem 2 (Forrester, Wang. 205) Density of (λ, λ 2,..., λ n ). C n,θ,r,s n j= x r j ( x j ) s i<j n (x i x j )(x θ i x θ j ) x >x 2 > >x n>0 Biorthogonal Jacobi ensemble: α = r, β = s.

8/26 2) Large deviations with density (λ (n), λ(n) 2,..., λ(n) n ). e n n i= V (x i ) Z n n i= x b j x i x j g(x i ) g(x j ) i<j V, g appropriate (g C ([0, )), g > 0,...). Theorem 3: (R. Butez, 206) The sequence of measures n n i= δ λ (n) i satisfies a large deviations principle with speed n 2 and certain good rate function I. I has a unique minimizer.

9/26 Proof of Theorem Step : Density of XX. Write uniquely XX = TT X = TV V = diag(eiθ, e iθ 2,..., e iθn ) T : Lower triangular with t j,j > 0 X g (T, V ) T h TT Density of TT at an a C n n positive definite.

20/26 Jacobians: t = h (a) X Jg(t, v) = g (T, V ) T h TT n n t j,j Jh(t) = 2 n j= j= t 2(n j)+ j,j f (a) = f h(t ) (a) = f T (h (a)) Jh (a) = f T (t) Jh(t) n f T,V (t, v) = f g (X )(t, v) = f X (g(t, v)) Jg(t, v) = f X (t) t j,j, f T (t) = (2π) n f X (t) n j= t j,j j=

2/26 Collecting everything: f X (x) = C n,b,θ e tr(xx ) f (a) =(2π) n f X (t) n j= t j,j Jh(t) = C n,θ,b e tr(a) ( n j= t 2 j,j n x k,k 2(c k ) k= ) cn ( n j= ) (+θ) t 2(n j) j,j = C n,θ,b e tr(a) {det(a)} cn {det(a ) det(a 2 ) det(a n )} θ+ a k := (a i,j ) i,j k, the k principal minor of a.

22/26 Step 2 : Eigenvalues of XX. Density: { C n i x j ) i<j n(x 2} f XX (HD x H )dh x >x 2 >...>x n>0 U(n) D x := diag(x, x 2,..., x n ) dh : normalized Haar measure on U(n)

22/26 Step 2 : Eigenvalues of XX. Density: { C n i x j ) i<j n(x 2} f XX (HD x H )dh x >x 2 >...>x n>0 U(n) D x := diag(x, x 2,..., x n ) dh : normalized Haar measure on U(n) a := HD x H Eigenvalues of the minors a n, a n 2..., a 2, a of a. λ (n ) R n, λ (n 2) R n 2,..., λ () R

23/26 a : x x 2 x 3 x 4 x 5 a 4 : λ (4) λ (4) 2 λ (4) 3 λ (4) 4 a 3 : λ (3) λ (3) 2 λ (3) 3 a 2 : λ (2) λ (2) 2 a : λ ()

23/26 a : x x 2 x 3 x 4 x 5 a 4 : λ (4) λ (4) 2 λ (4) 3 λ (4) 4 a 3 : λ (3) λ (3) 2 λ (3) 3 a 2 : λ (2) λ (2) 2 a : λ () G(x) := {(x (n ), x (n 2),..., x () ) : x x (n ) x (n 2) x () } subset of R n R n 2 R 2 R. Λ := (λ (n ), λ (n 2),..., λ () ) G(x)

a : x x 2 x 3 x 4 x 5 a 4 : λ (4) λ (4) 2 λ (4) 3 λ (4) 4 a 3 : λ (3) λ (3) 2 λ (3) 3 a 2 : λ (2) λ (2) 2 a : λ () G(x) := {(x (n ), x (n 2),..., x () ) : x x (n ) x (n 2) x () } subset of R n R n 2 R 2 R. Λ := (λ (n ), λ (n 2),..., λ () ) G(x) Y. Baryshnikov (200): Λ is uniformly distributed on G(x) 23/26

24/26 U(n) f XX (HD x H )dh = C n,θ,b e n j= x ( n ) j cn x j The last line equals Vol(G(x)) G(x) { n j= j= j k= x (j) k n } θ+ j j= k= ( n ) θ(n ) i<j n θ n(n )/2 x (x i θ xj θ j ) j= i<j n (x i x j ) and c n θ(n ) = r. dx (j) k

25/26 Collecting everything: { C n i x j ) i<j n(x 2} f XX (HD x H )dh x >x 2 >...>x n>0 U(n) = C { nc n,θ,b θ n(n )/2 (x i x j ) 2} e n j= x j i<j n ( n j= x j ) r i<j n (x θ i x θ j ) i<j n (x i x j ) x >x 2 >...>x n>0

Thank you 26/26