DIFFERENCE EQUATION METHOD FOR STATIC PROBLEM OF INFINITE DISCRETE STRUCTURES

Similar documents
DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

COMPUTER AIDED ANALYSIS OF KINEMATICS AND KINETOSTATICS OF SIX-BAR LINKAGE MECHANISM THROUGH THE CONTOUR METHOD

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

A Study of Some Integral Problems Using Maple

Introductions to ArithmeticGeometricMean

MCH T 111 Handout Triangle Review Page 1 of 3

Empirical equations for electrical parameters of asymmetrical coupled microstrip lines

Analysis of Cylindrical Shells Using Mixed Formulation of Curved Finite Strip Element

Influence of the Magnetic Field in the Solar Interior on the Differential Rotation

1.3 Using Formulas to Solve Problems

Analysis on Variable Fluid Viscosity of Non-Darcian Flow over a Moving Vertical Plate in a Porous Medium with Suction and Viscous Dissipation

Example 1. Centripetal Acceleration. Example 1 - Step 2 (Sum of Vector Components) Example 1 Step 1 (Free Body Diagram) Example

50 AMC Lectures Problem Book 2 (36) Substitution Method

X-Ray Notes, Part III

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

EuroGeo4 Paper number 315 DESIGN OF PILED EMBANKMENTS, CONSIDERING THE BASIC STARTING POINTS OF THE BRITISH STANDARD BS8006

Surds and Indices. Surds and Indices. Curriculum Ready ACMNA: 233,

ECE Microwave Engineering

Tutorial 2 Euler Lagrange ( ) ( ) In one sentence: d dx

I 3 2 = I I 4 = 2A

Eigenvectors and Eigenvalues

Price Competition and Coordination in a Multi-echelon Supply Chain

Section 2.3. Matrix Inverses

STRUNET CONCRETE DESIGN AIDS

The Area of a Triangle

Solids of Revolution

Section 35 SHM and Circular Motion


CS 491G Combinatorial Optimization Lecture Notes

Position Analysis: Review (Chapter 2) Objective: Given the geometry of a mechanism and the input motion, find the output motion

Optimization. x = 22 corresponds to local maximum by second derivative test

is the cut off frequency in rads.

Physics 505 Fall 2005 Midterm Solutions. This midterm is a two hour open book, open notes exam. Do all three problems.

Momentum and Energy Review

2 / r. Since the speed of the car is constant,

Lectures # He-like systems. October 31 November 4,6

Chapter 19 Webassign Help Problems

HARMONIC BALANCE SOLUTION OF COUPLED NONLINEAR NON-CONSERVATIVE DIFFERENTIAL EQUATION

SIMPLE NONLINEAR GRAPHS

R-107-H SUPERELEVATION AND PAVEMENT CROWNS MICHIGAN DEPARTMENT OF TRANSPORTATION SUPERELEVATED FINISHED SECTION LEGEND HIGH SIDE SHOULDER CHART RAMPS

Mark Scheme (Results) January 2008

CS 2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

MATH 1080: Calculus of One Variable II Spring 2018 Textbook: Single Variable Calculus: Early Transcendentals, 7e, by James Stewart.

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

A NEW COMBINED BRACKETING METHOD FOR SOLVING NONLINEAR EQUATIONS

Chapter Introduction to Partial Differential Equations

CHAPTER 29 ELECTRIC FIELD AND POTENTIAL EXERCISES

Chapter Seven Notes N P U1C7

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Physics 232 Exam II Mar. 28, 2005

Lecture 6: Coding theory

A Primer on Continuous-time Economic Dynamics

CHAPTER? 29 ELECTRIC FIELD AND POTENTIAL EXERCISES = 2, N = (5.6) 1 = = = = = Newton

SOLUTIONS TO CONCEPTS CHAPTER 11

Lecture 9-3/8/10-14 Spatial Description and Transformation

Several new identities involving Euler and Bernoulli polynomials

Properties of the natural logarithm and exponential functions

Homework Set 3 Physics 319 Classical Mechanics

CIRCULAR MOTION. b gb g CHAPTER 5 DYNAMICS OF UNIFORM PROBLEMS

CHAPTER 7 Applications of Integration

Applicability of Matrix Inverse in Simple Model of Economics An Analysis

Vector Integration. Line integral: Let F ( x y,

When current flows through the armature, the magnetic fields create a torque. Torque = T =. K T i a

Inverse Manipulator Kinematics (1/3)

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Solutions to Problems : Chapter 19 Problems appeared on the end of chapter 19 of the Textbook

Reflection Property of a Hyperbola

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Vector Integration

Consequences of nanofluid on Peristaltic flow in an asymmetric channel

Vibration with more (than one) degrees of freedom (DOF) a) longitudinal vibration with 3 DOF. b) rotational (torsional) vibration with 3 DOF

2 - Port Error Adapter

Gerald Gerlach; Wolfram Dötzel. Solutions for exercises for Introduction to Microsystem Technology: A Guide for Students. Solutions for exercises

one primary direction in which heat transfers (generally the smallest dimension) simple model good representation for solving engineering problems

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

mywbut.com Lesson 13 Representation of Sinusoidal Signal by a Phasor and Solution of Current in R-L-C Series Circuits

PHY2053 Summer C 2013 Exam 1 Solutions

2.Decision Theory of Dependence

Example 2: ( ) 2. $ s ' 9.11" 10 *31 kg ( )( 1" 10 *10 m) ( e)

ECE 274 Digital Logic RTL Design: Introduction. Digital Design. RTL Design: Capture Behavior, Convert to Circuit. Introduction.

Pythagoras Theorem PYTHAGORAS THEOREM.

CS 360 Exam 2 Fall 2014 Name

Physics 111. Lecture 11 (Walker: 6.1-2) Friction Forces. Frictional Forces. Microscopic Friction. Friction vs. Area

Equilibria of a cylindrical plasma

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

ERT 316: REACTION ENGINEERING CHAPTER 3 RATE LAWS & STOICHIOMETRY

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

AQA Maths M2. Topic Questions from Papers. Circular Motion. Answers

CIT 596 Theory of Computation 1. Graphs and Digraphs

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

FI 2201 Electromagnetism

CSCI565 - Compiler Design

ME 501A Seminar in Engineering Analysis Page 1

2 Parallel-Plate Transmission Line (Geometric Model) = c Assume it s a plane wave propagate in the z with polarization in y direction. d dz ~ ˆ.

Introduction to Robotics (Fag 3480)

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

Transcription:

FOUNATION OF IVIL AN ENVIRONMENTAL ENGINEERING No. Zziłw PAWLAK Jez RAKOWKI Poznn Univeit of Tehnolog Intitute of tutul Engineeing IFFERENE EQUATION METHO FOR TATI PROBLEM OF INFINITE IRETE TRUTURE In the wok n ie i peente whih enle one to eive funentl olution fo one- n two-ienionl iete te. The tti pole of infinite e n infinite giwok tip i oniee. The olution e foun uing the iffeene eqution etho. The equiliiu onition fo oth iete tutue e eive uing the finite eleent ethoolog. In eh e n infinite et of thee eqution i eple one equivlent iffeene eqution. The funentl funtion e eteine in nltil loe fo. The n e ue in the oun eleent etho pplie to iete tutue Ke wo: funentl olution finite eleent etho iffeene eqution etho iete tutue. INTROUTION The i of the ppe i to eive nltil olution fo tti pole of one- n two-ienionl infinite iete tutue. The funentl olution e foun fo egul iete e n giwok tip. Thee ontinuou te e ivie into egul eh of ientil e finite eleent. The equiliiu onition e tte uing finite eleent ethoolog n the e epee in one equivlent iffeene eqution. Thi eqution eple n infinite nue of equiliiu onition foulte on the i of eleent tiffne tie. The olution e otine in nltil loe fo fo it lo of oniee infinite iete tutue. Pulihing Houe of Poznn Univeit of Tehnolog Poznń IN -9

5 Zziłw Pwlk Jez Rkowki. TIMOHENKO BEAM Let u onie n infinite Tiohenko e ietize eleent with equll pe noe (Fig. ) n loe onentte foe P n oent M. M P. P k k M k Fig.. An infinite e In the lultion we ppl -of he-fleile e finite eleent (Fig. ) with et eleent hpe funtion. ϕ ϕ w w w Fig.. The finite e eleent The following eltionhip i fulfille fo thi eleent [] whee: f T { P P } T { w φ w φ } w i n P K q f (.) q φ i ϕi i M i i. ϕ e nol tnvee ipleent n totl ottion epetivel i i M i e nol foe n oent. The eleent tiffne ti K i eteine fo the epeion of tin eneg [] φ κga w U φ n it h the fo: whee K (.) [ K K ] (.)

iffeene eqution etho... 5 K K. The funtion of ipleent () w n o-etion ottion () φ long the e finite eleent eive in [] e of the fo w q T N () q N T φ (.) N N whee: GA κ E G e Young n Kihhoff ouli I i the oent of ineti A i the e of the e o etion κ i the he fto. Fig.. The intenl foe t noe Aeling two jent eleent ( ) n () (Fig. ) iel the following equiliiu onition fo n it e noe ujete to the nol foe P n oent M : Q Q M M P M

5 Zziłw Pwlk Jez Rkowki ( w w ) ( φ φ ) ( w w ) ( φ φ ) ( φ φ ) ( φ φ ) ( ) (.5) ( w w ) ( φ φ ) ( w w ) ( φ φ ) P. Intouing in (.5) the hifting opeto E E n entl iffeene opeto E E we otin two iffeene eqution with unknown φ n w : ( ) φ ( E E ) w ( ) ( E E ) w ( ) P φ. n n (.) Afte eliintion of φ in (.) we get one fouth-oe iffeene eqution with one unknown w ( E E ) w µ P µ (.7) o one eqution with unknown φ ( E E ) P φ µ µ (.7) whee µ. Let u fin the olution of (.7) fo the e loe one foe ting t the noe P P δ M ( δ i Koneke elt). Hving intoue the olution of the hoogeneou eqution n in fo: w φ w () gn φ (.8)

iffeene eqution etho... 5 we onie the equiliiu onition of noe n. It le to the efinition of ontnt i. utituting (.8) into (.) one otin ontnt i. Finll we get the foul: w ( P) µp( ) ( P) µp gn φ. In the e when noe p i loe ( funentl funtion: w p p P P p ( P) µp( p p ) ( P) µp ( p) gn( p) φ. (.9) δ ) eltion (.9) tke the fo of (.) Now let u fin the olution of (.7) fo the e loe onentte oent ting t noe M M δ P M. Thi e i ntieti. The olution of hoogeneou eqution e: φ φ w w. () gn The eltion etween i n i the eqution (.7) fo noe we get (.) n e foun fo (.). utituting (.) ( M ) µ( ) φ [ ] ( M ) µ ( ) gn w. Fo the e loe one oent otin the funentl funtion: w p φ p M M δ p ( M ) µ p ( p) to (.) ting t the noe p one ( M ) µ ( )( p) ( p) gn( p) ( p). (.) Auing in (.) n (.) tht iel the funentl olution fo infinite Eule-Benoulli e.

5 Zziłw Pwlk Jez Rkowki. GRIWORK TRIP Now let u onie the giwok tip whih onit of two et of inteeting e. The e of the length in -ietion e ipl uppote on thei en the e (with equl itne of noe ) in -ietion e infinite (ee Fig. ). M P η M P () Fig.. The infinite giwok tip The noe n e loe onentte foe P n oent M M (Fig. 5). Fo the lultion we ppl -of Eule-Benoulli e finite eleent (tnvee ipleent ngle of ottion n ngle of twit t eh en of eleent). Q Q P M M M M M M M M Q M M Q Fig. 5. The giwok noe ()

iffeene eqution etho... 55 Hving ele fou jent eleent in noe ( ; ) ( ; ) ( ; ) ( ; ) we get thee iffeene eqution equivlent to the FEM ti foultion []: [ w ( E E ) φ ] [ w ( E E ) φ ] P (.) GI [ ( E E ) w ] φ φ M (.) GI [ ( E E ) w ] φ φ M. (.) whee e the itne etween noe in n ietion epetivel GI n GI e the ening n toionl tiffnee of e in oth ietion. Afte eliintion of ottion φ φ in (.) we otin one ith-oe ptil iffeene eqution with one unknown [ ( )( ) µ ( ) ( )] w µ [( )( ) P ( E E )( ) M ( E E )( ) M w (.) whee µ µ µ µ µ P GI GI. Let u ue tht the tip i loe ingle foe ting t noe ( η) P. In oe to olve the eqution (.) we ue the iete Fouie δ δ η tnfotion in -ietion []:

Zziłw Pwlk Jez Rkowki 5 i f f f e ~ F f f f i e ~ ~ - F (.5) n the eigenfuntion tnfotion in -ietion l w w l l in ~. (.) Appling oth tnfotion (.5) n (.) to eqution (.) we otin the foul: () in in l N P W l η µ η (.7) whee l () M L l N o (.8) () () () () o o o o L () () () () () (). µ M o o o o o o o o o o The intege (.8) n e lulte nltill. Afte onfol tnfotion we get: () () () () F F F l N (.9) () ()... 7 5 F ()... 5 7 5 F () ()... 7 5 F

iffeene eqution etho... 57 () o ( o() ) () o ( o() ) [ ( o() ) ] whee: () n n o ( ) ( ) o ( ) o( ) o (.) µ µ µ () o ( o() ) [ µ ( o( ) ) ] ( o() ) o ( o() ) ( o( ) ) ( o() ) () o() 7 ( o() ) ( o( ) ) [ µ ( o() ) ( o() ) ( o() o() ) ( o() ) o µ ( o() ) ( o( ) ) () o() ( o() ) ( o( ) ) µ. µ ( o() ) ( o( ) ) Fo (.) the following euent eltionhip i vli ( n k...) fo n k fo n k () n () n n ( n )! n [( 5n 5 )! ] (.) ( n ) ( n ) ( n ). The vlue of integl (.) fo n e follow:

Zziłw Pwlk Jez Rkowki 58 gn gn gn n (.) gn gn gn n (.) gn gn gn n (.) i i 8 8 Ω 7 Ω.

iffeene eqution etho... 59 The foul (.) (.) (.) inlue funtion gn () whih eteine the ign of ople nue: if Re() > Re() I() > gn() if Re() < Re() I() <. All eining vlue of unknown ipleent the iple euent eltionhip given in (.). w e lulte fo. NUMERIAL EXAMPLE The oputtion wee pefoe fo the infinite giwok tip of with 5 loe unit foe t point (). The eult of nueil lultion e peente in Tle the plot of tip efotion i hown in Fig.. Tle. The nolize ipleent W ( ) of infinite tip 955 89 79 58 8 777 79 95 95 9 99 9 95 7 987 5 9 Fig.. The infinite giwok tip efotion

Zziłw Pwlk Jez Rkowki The funentl olution eive in etion n e ue to olve the tti pole of finite giwok in nlogou w in the oun eleent etho fo ontinuou te. Let u onie the iotopi giwok oniting of the et of ientil inteeting pepeniul e (Fig. 7) E I P () R Fig. 7. The iotopi giwok te The noe e egull pe in oth ietion with the itne. All e e ipl uppote t thei en. We intoue n itionl loing X k j to the given foe P δ δ in the infinite tip in oe to fulfil the equie oun onition in the noe ling on the e n 5 (Fig. 8). X - X - X - X - X - X - X - X - () () () () () () P (5) (5) X (5) (5) R X X 7 X 7 X X 7 X X 7 Fig. 8. Aitionl foe pplie to the infinite giwok tip The vlue of the itionl foe following eqution (iniet ppoh of BEM): X e eteine fo the k j

iffeene eqution etho... w i ( P X k j ) i ( P X k j ) w ( P ) ( P ) 5 i X k j M M 5 i X k j (.) fo i. Hving foun the foe X k j fo (.) we finll get the ipleent of the finite giwok: whee ( k j) X W ( k j) P W ( ) w k j kj (.) W i the funentl olution given in (.7). The lultion e ie out fo the following ienionle pete: E ν G 8 the e o etion: h. The plot of giwok ipleent i peente in Fig. 9. Fig. 9. The ipleent plot of finite giwok te The oniee iete giwok tip n e tete n ppoition of plte tip. The eult otine fo thi giwok oinie with one otine fo n equte Kihoff-Love plte. The eltion etween (P) (G) ipleent fo plte w n giwok w t point () ujete to the ( P) ( G) unit foe i: w w 8.

Zziłw Pwlk Jez Rkowki REFERENE. Bušk I.: The Fouie tnfo in the theo of iffeene eqution n it pplition Ah. Meh. to. (959).. Hinton E. Owen.R.J.: An intoution to Finite Eleent oputtion wne U.K. Pineige Pe 979.. Rkowki J.: The intepettion of the he loking in e eleent op. tutue 7 (99) 79 77.. Rkowki J. Świtk R.: On oe genelition of the eigenfuntion etho ue to the elti iete te Poznń Wwnitwo Politehniki Poznńkiej 98 (in Polih). Z. Pwlk J. Rkowki METOA RÓWNAŃ RÓŻNIOWYH W PROBLEMIE TATYKI NIEKOŃZONYH UKŁAÓW YKRETNYH t e z z e n i e W p pzetwiono etoę któ pozwl wznzć funkje funentlne l jeno- i wuwiowh ukłów ketnh. Rozwżono pole ttki nie-końzonh elek i niekońzonh p uztowh. Rozwiązni uzkno toują etoę ównń óżniowh. Wunki ównowgi l ou tpów ukłów ketnh wpowzono z wkoztnie eto eleentów końzonh. W kż z pzpków nieognizon ukł ównń ównowgi ł ztąpion pzez jeno ówno-wżne u ównnie óżniowe. Funkje funentlne pono w nlitznej zkniętej foie. Rozwiązni te ogą ć wkoztne w etozie eleentów zegowh toownej w ukłh ketnh. Reeive -8-8.