Physics Mechanics. Rule #2: LABEL/LIST YOUR KNOWN VALUES AND THOSE DESIRED (Include units!!)

Similar documents
Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

ME 141. Engineering Mechanics

Physics 201, Lecture 5

Ch.4 Motion in 2D. Ch.4 Motion in 2D

1. Kinematics of Particles

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Motion on a Curve and Curvature

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

3 Motion with constant acceleration: Linear and projectile motion

Physics 120 Spring 2007 Exam #1 April 20, Name

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Chapter 6 Plane Motion of Rigid Bodies

graph of unit step function t

Technical Vibration - text 2 - forced vibration, rotational vibration

t s (half of the total time in the air) d?

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

2-d Motion: Constant Acceleration

PHY2053 Summer C 2013 Exam 1 Solutions

Physics 101 Lecture 4 Motion in 2D and 3D

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Addition & Subtraction of Polynomials

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

HRW 7e Chapter 13 Page 1 of 5

Physics 2A HW #3 Solutions

Physics 15 Second Hour Exam

D zone schemes

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

Physics 232 Exam II Mar. 28, 2005

LAPLACE TRANSFORMS. 1. Basic transforms

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Chapter 4 Circular and Curvilinear Motions

Average & instantaneous velocity and acceleration Motion with constant acceleration

Classification of Equations Characteristics

when t = 2 s. Sketch the path for the first 2 seconds of motion and show the velocity and acceleration vectors for t = 2 s.(2/63)

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

A 1.3 m 2.5 m 2.8 m. x = m m = 8400 m. y = 4900 m 3200 m = 1700 m

Circular Motion. Radians. One revolution is equivalent to which is also equivalent to 2π radians. Therefore we can.

How to Solve System Dynamic s Problems

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

PHYSICS 151 Notes for Online Lecture #4

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

2/5/2012 9:01 AM. Chapter 11. Kinematics of Particles. Dr. Mohammad Abuhaiba, P.E.

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Computer Aided Geometric Design

Physics 207 Lecture 10

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric

A Kalman filtering simulation

Satellite Orbits. Orbital Mechanics. Circular Satellite Orbits

Version 001 test-1 swinney (57010) 1. is constant at m/s.

P a g e 5 1 of R e p o r t P B 4 / 0 9

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Department of Chemical Engineering University of Tennessee Prof. David Keffer. Course Lecture Notes SIXTEEN

On Fractional Operational Calculus pertaining to the product of H- functions

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

PHYS PRACTICE EXAM 2

The Covenant Renewed. Family Journal Page. creation; He tells us in the Bible.)

EF 151 Exam #2 - Spring, 2014 Page 1 of 6

Consider a Binary antipodal system which produces data of δ (t)

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2


PHYSICS 211 MIDTERM I 22 October 2003

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

Randomized Perfect Bipartite Matching

Section 35 SHM and Circular Motion

Control Volume Derivation

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

T h e C S E T I P r o j e c t

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Elastic and Inelastic Collisions

u(t) Figure 1. Open loop control system

IX.1.1 The Laplace Transform Definition 700. IX.1.2 Properties 701. IX.1.3 Examples 702. IX.1.4 Solution of IVP for ODEs 704

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Kinematics in two Dimensions

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

EECE 301 Signals & Systems Prof. Mark Fowler

ANALYSIS OF KINEMATICS AND KINETOSTATICS OF FOUR-BAR LINKAGE MECHANISM BASED ON GIVEN PROGRAM

Rectilinear Kinematics

Linear Motion, Speed & Velocity

Notes on cointegration of real interest rates and real exchange rates. ρ (2)

Physics Worksheet Lesson 4: Linear Motion Section: Name:

A L A BA M A L A W R E V IE W

( ) ( ) ( ) ( ) ( ) ( ) j ( ) A. b) Theorem

Laplace Examples, Inverse, Rational Form

IB Physics Kinematics Worksheet

Overview. Overview Page 1 of 8

Lecture 5. Chapter 3. Electromagnetic Theory, Photons, and Light

Transcription:

Phic Mechnic Rule #1: DRAW A PICTURE (Picoil Repeenion, Moion Dim, ee-bod Dim) Dw picue o wh he queion i decibin. Ue moion dim nd ee-bod dim o i ou in eein wh i oin on in he queion. Moion Dim: + ee-bod Dim: > < N icion N 1 3 Bll ollin Conn peed 1 3 4 C peedin up 1 3 4 Bo lidin o op D Enine Rule #: LABEL/LIST YOUR KNOWN VALUES AND THOSE DESIRED (Include uni!!) Lbel o li ll lue h wee ien o ou in he poblem. Alo, include n lue h wee no eplicil ed, bu cn be ineed om he poblem (i occu in mo poblem, bu oe unid, o li 9.8m ). Ll, lbel hoe lue h ou e eein well. Moion in One Dimenion (Tnlionl Kinemic) Equion o one-dimenionl moion ollow, bu i i impon o noe h no ll moion i one-dimenionl. In ode o ill ue hee equion, moion h occu in muliple dimenion mu be boen p ino one-dimenionl componen. The one-dimenionl equion m hen be ued o ech componen epel. Equion o One-Dimenionl Moion ( h been ued o denoe he poiion in n enel diecion; lo commonl ued) e unde - ph e unde - ph lope o - ph lope o - ph d d Equion o Conn + Veloci (zeo cceleion) Equion o Conn Acceleion 1 ( ) + + + + denoe "chne in" Time Poiion in n enel diecion Iniil Poiion inl Poiion Veloci Aee Veloci Innneou Veloci Iniil Veloci inl Veloci Acceleion Aee Acceleion Innneou Acceleion

Pojecile Moion Pojecile moion cn be impliied ino wo epe one-dimenionl moion: one moion o he objec oin up & down nd epe moion o he objec oin le o ih. Thee moion cn be conideed independenl. Once he moion e eped we e ee o ue he equion o one-dimenionl moion on ech componen. Equion o Pojecile Moion co (inoin i eince) in Hoizonl Rne Equion (dince eled when n objec lunche nd lnd me heih) Thi equion cn be deied uin equion o one-dimenionl moion, equion o pojecile moion, nd he c h. ( ) in Veicl Rne Equion (mimum heih o objec) Thi equion cn be deied uin equion o one-dimenionl moion, equion o pojecile moion, nd he c h he mimum heih. iue 1 ( in ) Lunch Anle o + i Iniil Veloci Iniil Veloci in diecion Iniil Veloci in diecion iue Acceleion in diecion Acceleion in diecion Acceleion due o i NOTE! h mniude nd diecion ince i i he eco o i (diecion would be poiie o neie in). h onl he mniude ince i i he cl o i (menin i lw poiie). Moion down icionle Inclined Plne ± in N Anle o Incline Acceleion down plne Acceleion due o Gi Gi in he diecion Gi in he diecion

Cicul Moion (Roionl Kinemic) Cicul moion eem lie il compliced wo-dimenionl moion, bu when boen down i cn be een h mn o he equion nd w we ppoch cicul moion e nel idenicl o he one-dimenionl equion. When looin he equion below ou m noice h he eem o be one-dimenionl equion h ju he dieen ible, nd h i ecl wh he e. eplce o o ddiionl equion o ole he ddiionl piece h ei when moion oe om line o cicul., eplce, nd eplce. The dieence wih cicul moion i we he whee whee, 1 1 3 3 + ne ne Genel Equion o Cicul Moion π T + ne e unde - ph e unde - ph lope o - ph lope o - ph d d Equion o Conn Anul Veloci/ Uniom Cicul Moion (zeo nul cceleion) + Equion o Conn Anul Acceleion/ Non-Uniom Cicul Moion (conn nul cceleion) 1 ( ) + + + + Rdiu T Peiod Tnenil Veloci Tnenil Acceleion ( in peed) Rdil Acceleion ( in diecion) Anul Poiion Iniil Anul Poiion inl Anul Poiion Anul Veloci Aee Anul Veloci Innneou Anul Veloci Iniil Anul Veloci inl Anul Veloci Anul Acceleion Aee Anul Acceleion Innneou Anul Acceleion Iniil Anul Acceleion inl Anul Acceleion

oce The bic ide behind oce i h oce i puh o pull eeed on n objec. We he ued equion o how n objec moion, nd now we ue oce o how wh n objec m be chnin i moion. When looin oce cin on n objec we will end o epe oce ino one-dimenionl componen ju we did wih moion bu we cn lo um ll he oce in hoe dimenion o ee wh we cll he euln oce o ne oce. The ide i h when numeou oce c on n objec ou cn dd hem ll oehe o ee wh he ne oce i, nd hi ne oce deemine wh ind o chne in moion he objec epeience. We ue he cceleion om hi ne oce o lin oce o ou moion equion. Genel oce Equion m ne m + + + + m 1 3... n Speciic oce Equion icion: n p n m n Gm m D C A D Noe on icionl oce When picin which icionl oce o ue i i impon o noe when ech one hould be ued. Sic icion,, hould be ued when he objec we e looin i no in moion o i bein poweed in i oll o bin. Kineic icion, uce. Rollin icion,, hould be ued when n objec i moin/lidin co, hould be ued when n unpoweed objec i ollin co uce. icionl oce lw poin in he diecion oppoie o he moion, o in he ce o ic icion, in he diecion o peen moion. Momenum & Impule Momenum cn be houh o quni h epeen how diicul i i o op n objec in moion o chne n objec diecion o moion. Ou min ue o momenum come om he c h in cloed em he ol momenum i conn (Coneion o Momenum). Thi c llow u o he bee undendin o he inecion o objec, picull in colliion nd eploion. Wh eem lie choic inecion in colliion nd eploion cn be boen ino p, nd o lon ou em i cloed, he um o he momen beoe he een i equl o he um o he momen e he een. I he em i no cloed, hen we he o e ino conideion n ouide oce in o iin momenum o ou em. Impule i he chne in momenum o n objec nd i equl o he poduc o oce nd he duion o ime h i i pplied. Momenum & Impule Equion p m J p J ( ) e unde - ph Coneion p o Momenum p p + p + p +... + p p + p + p +... + p 1 1 3 n 1 3 n oce m M Acceleion ne Ne oce oce in -diecion p Spin oce Spin Conn Dince Seched/Compeed n Noml oce Sic icion Coeicien o Sic icion Kineic icion Coeicien o Kineic icion Rollin icion Coeicien o Rollin icion D D oce (oppoie o moion) A Co-Secionl Ae ( o moion) C D Coeicien o D p Momenum J Impule Aee oce in -diecion Chne in Time Remembe: You cn onl ue he coneion o momenum i he em i ioled o cloed. Thi men h ou cn onl ue he coneion o momenum i hee e no ouide oce h e ddin o in momenum om he em.

Ene, Wo & Powe We cn hin o em hin ene, nd i hee e no ouide oce on hee em, hen he ene i coneed much in he w momenum i coneed. Ju n ouide oce cn chne he momenum o he em, n ouide oce cn chne he ene o em houh wh we cll wo. Powe i he e which ene i need o nomed. Ene & Wo Equion 1 K m U 1 ( ) p U m h o m " " U m Eh W d Ae unde - cue W, i i conn nd ih-line moion W co Coneion o Ene K + U + W K + U + E e h K Kineic Ene U p Elic Poenil Ene (Spin) Spin Conn Chne in poiion in n enel diecion U Giionl Poenil Ene h Heih Chne in Veicl Poiion E h Chne in Theml Ene W Wo Dince Teled in Sme Diecion oce W Wo Eenl e The coneion o ene i ueul in mn iuion becue, unlie he coneion o momenum, we cn ill ue he coneion o ene i hee e ouide oce. Ouide oce e en ino ccoun b wo done on he em. Powe E de P P co Roion o Riid Bod P Powe E Ene o he Sem The ollowin oionl moion equion cn be ued when ou he iid bod h i bein eoled ound ied poin. Time oce Veloci Roionl Moion Equion M m m + m + m + i i 1 3... 1 m 1 1+ m + m 3 3+... X ( mi i ) M i m1+ m + m3 +... 1 X dm M 1 I I dm m ii (o poin me) Ko I I + M d M Tol M X Cene o M in n enel diecion K o Roionl Kineic Ene Anul Veloci Rdiu I Inei Cene o M d Dince beween Ai o Roion nd Cene o M I Inei dince d om Cene o M bou pllel i Becue he inel o ind he inei bou cene o m cn be e diicul o ole, mo cle do no equie he clculion. Genel equion o he inei o dieen objec will be poided o ou o cn be ound in ou e.

Toque Toque cn be houh o he oionl equilen o oce. So o n emple when ou puh doo open ou e pplin oce o he doo, hi oce ee oque ound he pio poin (in hi ce i he hine) which will cue he doo o open. Poiie oque poide couneclocwie oion. Neie oque poide clocwie oion. Toque Equion τ τ ne τ I τ inϕ Pio Poin Ueul Tionomeic Equion opp in hp opp n dj Conn dj co hp c + b 4 M e M o Eh 5.98 1 6 Re Rdiu o Eh 6.3 1 m M moon M o Moon.36 1 6 Rmoon Rdiu o Moon 1.4 1 m 11 REO Rdiu o Eh Obi 1.5 1 m 9.81m 3 11 G 6.6 1 Nm ound Speed o ound in i 343m M o poon o neuon 1.6 1 mp me M o n elecon 9.11 1 31 1 ε Pemiii conn 8.85 1 C Nm 6 K Coulomb' lw conn 1 8.99 1 4πε Pemebili conn 1.6 1 Tm A 19 e undmenl uni o che 1.6 1 C 8 c Speed o lih in cuum 3. 1 m ϕ Cue No Roion 9 Nm C c hpoenue ( hp) Coeicien Sic Kineic Rollin Meil Rubbe on concee 1..8. Seel on eel (d).8.6. Seel on eel (lubiced).1.5 Wood on wood.5. Wood on now.1.6 Ice on ice.1.3 Mel Reiii(Ωm) Conducii(1/Ωm) luminum.8 1 8 3.5 1 coppe 1. 1 8 6. 1 old.4 1 8 4.1 1 ion 9. 1 8 1. 1 ile 1.6 1 8 6. 1 unen 5.6 1 8 1.8 1 Coneion τ Toque Dince om Pio Poin oce pependicul o ϕ Anle beween eco nd (Eended o mee one nohe) I Momen o Inei Anul Acceleion djcen ( dj) b oppoie ide ( opp) 1 mile 58 ee 169 mee 1.69 ilomee 1 inch.54 cenimee 1 hou 6 minue 36 econd 1 eoluion 36 π din 1 m.4 mi 3.8 h 19 1 ev 1.6 1 J 1 u 1.66 1 1. lb on Eh