Spectroscopic study of CH 4 at 3.24 µm for atmospheric applications. Development of the PicoSDLA-CH 4 sensor and the TRO-Pico balloon campaign

Similar documents
Line shape modeling and application to remote sensing

VALIDATION OF SCIAMACHY WATER VAPOR AND METHANE PROFILES BY BALLON-BORNE IN-SITU MEASUREMENTS WITH THE CHILD SPECTROMETER ONBOARD TRIPLE

An Improved Version of the CO2 Line-mixing Database and Software: Update and Extension

FIRST HIGH-RESOLUTION ANALYSIS OF PHOSGENE 35 Cl 2. CO AND 35 Cl 37 ClCO FUNDAMENTALS IN THE CM -1 SPECTRAL REGION

DIODE- AND DIFFERENCE-FREQUENCY LASER STUDIES OF ATMOSPHERIC MOLECULES IN THE NEAR- AND MID-INFRARED: H2O, NH3, and NO2

Line Intensities in the ν 6 Fundamental Band of CH 3 Br at 10 µm

Validation of IASI level 1 and level 2 products using IASI-balloon

HDO and D 2 O long path spectroscopy: Ongoing work of the Brussels-Reims Team.

Tropospheric trace gas concentrations using infrared spectroscopy from space. Meeting report

Balloon-borne observations of mid-latitude stratospheric water vapour: comparisons with HALOE and MLS satellite data

ENVISAT VALIDATION RESULTS OBTAINED WITH LPMA AND IASI-BALLOON FTIR

Infrared quantitative spectroscopy and atmospheric satellite measurements

VALIDATION OF MIPAS CH 4 PROFILES BY STRATOSPHERIC BALLOON, AIRCRAFT, SATELLITE AND GROUND BASED MEASUREMENTS

II. WAVELENGTH SELECTION

Linda R. Brown. Jet Propulsion Laboratory California Institute of Technology Pasadena, CA

GEISA 2013 Ozone and related atmospheric species contents description and assessment

CHAPTER 1. MEASURES OF ATMOSPHERIC COMPOSITION

S.M.A.- VIRGO. Large sapphire substrate absorption measurements for LIGO SMA. Université Claude Bernard LYON I IPNL - IN2P3 CNRS.

Studying methane and other trace species in the Mars atmosphere using a SOIR instrument

Quantitative spectroscopy of several tropospheric or statospheric molecules: recent updates performed in the GEISA database

Improved diode laser spectrometer for ortho/para ratio measurements in water vapor

Compact Hydrogen Peroxide Sensor for Sterilization Cycle Monitoring

Spectroscopic Applications of Quantum Cascade Lasers

Global Energy Balance: Greenhouse Effect

VALIDATION OF MIPAS TEMPERATURE PROFILES BY STRATOSPHERIC BALLOON AND AIRCRAFT MEASUREMENTS

Virginie Capelle. On behalf of Raymond Armante (*)

REMOTE SENSING OF ATMOSPHERIC TRACE GASES BY OPTICAL CORRELATION SPECTROSCOPY AND LIDAR

10. Stratospheric chemistry. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

OBSERVATIONS OF WATER VAPOUR ON BOARD LONG-DURATION SUPER PRESSURE BALLOON USING FLASH-B LYMAN-ALPHA HYGROMETER

GLORIA- an airborne imaging FTS

Role of the Asian Monsoon in stratosphere troposphere exchange

Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009

Observation of Exoplanets with the Stratospheric Observatory for Infrared Astronomy (SOFIA)

A tool for IASI hyperspectral remote sensing applications: The GEISA/IASI database in its latest edition

Neutral Winds in the Upper Atmosphere. Qian Wu National Center for Atmospheric Research

Mesoscale modelling of water vapour in the tropical UTLS: two case studies from the HIBISCUS campaign

Atmosphere-Space Interactions Monitor (ASIM) on the International Space Station

Polar Mesospheric Clouds and Cosmic Dust: Three years of SOFIE Measurements

Abstract: J. Urbar [1], J. Scheirich [2], J. Jakubek [3] MEDIPIX CR tracking device flown on ESA BEXUS-7 stratospheric balloon flight

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5

Supplementary Material

Spectroscopy of complex organic molecules on Titan A. JOLLY

Development Of Spatial Modulation Spectroscopy Of Single Nano-Objects In Liquid Environments For Biosensing Applications

TDLS complex. development for Airplane-laboratory Atmosphere

3D metrology with a laser tracker inside a vacuum chamber for NISP test campaign

The Orbiting Carbon Observatory (OCO)

In situ quantitative diagnosis of insulated building walls using passive infrared thermography

THE PICARD mission. Gérard Thuillier 1, Steven Dewitte 2, Werner Schmutz 3, and the PICARD team 4

Advanced drop tests from stratospheric balloons

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Frontiers in quantum cascade laser based analysis of greenhouse gas stable isotopes

Methane Sensing Flight of Scanning HIS over Hutchinson, KS, 31 March 2001

The AQUAVIT formal intercomparison of atmospheric water measurement methods

Presentation by Indian Delegation. to 49 th STSC UNCOPUOS. February 2012 Vienna

Spectroscopic database GEISA-08 : content description and assessment through IASI/MetOp flight data

Validation of H2O line and continuum spectroscopic parameters in the far infrared wave number range

ВЛИЯНИЕ ТОЧНОСТИ СПЕКТРОСКОПИЧЕСКОЙ ИНФОРМАЦИИ В ЗАДАЧАХ МОНИТОРИНГА МЕТАНА

Impact of Reabsorption on the Emission Spectra and Recombination. Dynamics of Hybrid Perovskite Single Crystals

Planetary Science from a balloon-based Observatory. January 25-26, 2012 NASA Glenn Research Center

Spectral line-shape model to replace the Voigt profile in spectroscopic databases

Tibor Kremic, Glenn Research Center

Oscillateur paramétrique optique en

ADM-Aeolus Science and Cal/Val Workshop

Lessons learned from IMaX spectropolarimeter and future perspectives. The Polarimetric Helioseismic Imager (SO/PHI) for the Solar Orbiter mission

GOSAT mission schedule

Aeolus ESA s Wind Lidar Mission: Objectives, Design & Status

Wind Imaging Spectrometer and Humidity-sounder (WISH): a Practical and Effective NPOESS P3I Sensor

Remote Sensing of the Atmosphere for Environmental Security

Long-term validation of MIPAS ESA operational products using MIPAS-B measurements: L1v7/L2v8 T, H 2 O, and O 3

Report on the Short Term Scientific Mission (STSM) conducted on the frame of the COST Action CM

G. Durry 1,2, N. Huret 3, A. Hauchecorne 1, V. Marecal 3, J.-P. Pommereau 1, R. L. Jones 4, G. Held 5, N. Larsen 6, and J.-B.

Introduction of Anmyeondo FTS Station as a New TCCON Site

Calibration of photo sensors for the space-based cosmic ray telescope JEM-EUSO

CH4 IPDA LIDAR MISSION DATA SIMULATOR AND PROCESSOR FOR MERLIN:

PREPARATIONS FOR THE GEOSYNCHRONOUS IMAGING FOURIER TRANSFORM SPECTROMETER

ATMOSPHERE REMOTE SENSING

Temperature profile of the Troposphere

NIR Solar Reference Spectrum Algorithm for the Orbiting Carbon Observatory (OCO)

New analysis of the 3 & 4 bands of HNO 3 by high resolution Fourier transform spectroscopy in the 7.6 µm region

Cantilever enhanced tunable diode laser photoacoustic spectroscopy in gas purity measurement case study: acetylene in ethylene

Hefei

Detection of ozone for use as an extrasolar biosignature

Cathryn Fox, Juliet Pickering Jon Murray, Alan Last.

Impact of different spectroscopic datasets on CH 4 retrievals from Jungfraujoch FTIR spectra

The in-flight calibration system for the airborne imager GLORIA

Relief is on the Way: Status of the Line Positions and Intensities for Nitric Acid

Exploring Mars in low Earth orbit 31 July 2014, by Aaron L. Gronstal

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

Measuring Carbon Dioxide from the A-Train: The OCO-2 Mission

Spectroscopic techniques: why, when, where,and how Dr. Roberto GIANGIACOMO

LOAC (Light Optical Aerosol Counter)

9/5/16. Section 3-4: Radiation, Energy, Climate. Common Forms of Energy Transfer in Climate. Electromagnetic radiation.

The path towards measuring Cosmic Ray Air Showers from Space

ILWS Related Activities in Germany (Update) Prague, June 11-12, 2008

Tracking board design for the SHAGARE stratospheric balloon project. Supervisor : René Beuchat Student : Joël Vallone

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Detection of quadrupolar nuclei by ultrafast 2D-NMR: exploring the case of deuterated analytes aligned in chiral oriented solvents

Rayleigh-Brillouin Scattering Experiment with Atmospheric Lidar from a Mountain Observatory

Aeolus ESA s Wind Lidar Mission: Technical Status & Latest Results

Stratospheric water vapour budget and convection overshooting the tropopause: modelling study from SCOUT-AMMA

Transcription:

Spectroscopic study of CH 4 at 3.24 µm for atmospheric applications. Development of the PicoSDLA-CH 4 sensor and the TRO-Pico balloon campaign M. GHYSELS 1, J. COUSIN 1, L. GOMEZ 1,N. AMAROUCHE 3, E. D. RIVIERE 1, H. TRAN 4, G. DURRY 1,2 1 Groupe de Spectrométrie Moléculaire et Atmosphérique, GSMA, UMR CNRS 7331 UFR Sciences Exactes et Naturelles, BP 1039, 51687 REIMS Cedex 2, France 2 IPSL, Laboratoire Atmosphères, Milieux, Observations Spatiales, UMR CNRS 8190, 78280 Guyancourt, France 3 Division technique de l'institut National des Sciences de l'univers, 1, place Aristide Briand, 92195, Meudon Cedex, France 4 Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA, UMR CNRS 7583), Université Paris XII, Avenue du Général de Gaulle, Batiment 350, 94010 Créteil Cedex, France M. Ghysels et al, ASA/HITRAN 2012 1

Why measuring methane? Methane is a tracer : convection, isentropic transport. Application: TRO Pico campaign in Brazil Methane is a greenhouse gas (it s contribution may increase in the future) Methane is a source of water vapor in the stratosphere by oxidation process. Indirect impact on the ozone layer. Validation of space mission dedicated to methane is needed (ex: LIDAR Merlin) M. Ghysels et al, ASA/HITRAN 2012 2

Why the PicoSDLA- CH4 compact sensor? PicoSDLA-CH 4 onboard TWIN (PI A. Engels, University of Frankfurt) to increase flight opportunities by releasing launch constraints : to be flown under weather balloons. to be flown as piggy back onboard larger gondola. M. Ghysels et al, ASA/HITRAN 2012 3

SDLA Weight : 80 kg L = 56 at 1.65 µm PicoSDLA-CH 4 Weight : 15kg L = 3.6 m at 3.24 µm SDLA L = 56 m at 1.65 µm (2000) 2000 2010 In situ measurements Direct absorption spectroscopy Collaboration with DT-INSU (Meudon) PicoSDLA-CH 4 : Precision <5% Measurement time <1s Weight < 15kg M. Ghysels et al, ASA/HITRAN 2012 4

M. Ghysels et al, ASA/HITRAN 2012 5

Optical cell Gold coating retroreflector DFG Laser head Detector Germanium filter M. Ghysels et al, ASA/HITRAN 2012 6

CDFG Laser module Laser head Optical fiber Novawave Technologies (Dr. J. JOST), Inc. (USA) 20 cm x 12 cm x 2.5 cm 980g Signal diode Pump diode DFG laser source 1.5 µm 1 µm PPLN crystal 3.24 µm DFG laser source R(6) transition ν 3 band of CH 4 (3086 cm -1, 3.24 µm, MIR) Strong fundamental band Reduction of optical path lenght : 56m 3.6 m M. Ghysels et al, ASA/HITRAN 2012 7

Balloon campaigns M. Ghysels et al, ASA/HITRAN 2012 8

Kiruna 2011 In the frame of ENRICHED project : 1 test flight as piggy back onboard TWIN experiment PicoSDLA-CH 4 onboard TWIN (PI A. Engels, University of Frankfurt) 9

1. 10-3 10 ms 20 km Atmospheric spectra P = 49.02 hpa T = -69.89 C (1.49 ± 0.01)ppmv Precision : 5% at 20km (elementary spectra) 12 km M. Ghysels et al, ASA/HITRAN 2012 10

TRO-Pico, Brazil 1 scientific flight, 14th march 2012 Data process underway Flight under small balloon during convection PicoSDLA-CH 4 TRO-Pico, march 2012 M. Ghysels et al, ASA/HITRAN 2012 11

Spectroscopic study M. Ghysels et al, ASA/HITRAN 2012 12

Why spectroscopy? Objectif : To Process balloon datas During flight : temperature range from 293 to 203 K Experiment : from 293 to 213K (limitation for cooling) M. Ghysels et al, ASA/HITRAN 2012 13

Temperature dependence of line coefficients Determination of γ air, β air, ζ air and temperature dependence Study on R(6) manifold, ν 3 band of CH 4 Collaboration with Ha Tran (LISA, Créteil) and Laura Gomez (INTA, Espagne) Home-made laser source M. Ghysels et al, ASA/HITRAN 2012 14

M. Ghysels et al, ASA/HITRAN 2012 15 ) ), ( 1 ), ( Im ), ( 1 ), ( (Re 1 ln 2 ) ( + + + + + = Φ z y s x w z z y s x w z y s x w z z y s x w x m D π ς π γ π Hard-LM profile Line-mixing [Pine, 1996] Rautian Hard-LM Rautian Line-mixing at low pressures 30 hpa Ambient temperature R(6) in air Experimental spectrum

Position (cm 1 ) γ air (T ref ) (1/atm) This work n γ γ air (295K) (1/atm) Pine 3085.83 0.0590 ± 0.0008 0.75 ± 0.10 0.0583 +1.2 3085.86 0.0612 ± 0.001 0.98 ± 0.10 0.0613 0.2 3085.89 0.0644 ± 0.002 0.90 ± 0.15 0.0630 +2.2 3086.03 0.0563 ± 0.002 0.76 ± 0.16 0.0568 0.8 3086.07 0.0592 ± 0.002 0.79 ± 0.20 0.0598 1.0 3086.08 0.0547 ± 0.0003 0.79 ± 0.05 0.0509 +7.5 Rel. Dif (%) Results Position (cm 1 ) β air (T ref ) (1/atm) This work n β β air (295K) (1/atm) Pine 3085.83 0.0227 ± 0.0002 0.82 ± 0.05 0.0230 1.3 3085.86 0.0216 ± 0.0003 0.93 ± 0.07 0.0222 2.7 3085.89 0.0179 ± 0.0004 1.05 ± 0.2 0.0183 2.2 3086.03 0.0196 ± 0.0005 0.93 ± 0.2 0.0202 3.0 3086.07 0.0230 ± 0.0003 1.00 ± 0.05 0.0242 5.0 3086.08 0.0299 ± 0.0005 0.71 ± 0.2 0.0299 0 Rel. Dif (%) Position (cm 1 ) ζ air (T ref ) (1/atm) This work n ζ ζ air (295K) (1/atm) Pine Rel. Dif (%) 3085.83 0.173 ± 0.02 1.06 ± 0.2 0.171 +1.2 3085.86 0.578 ± 0.002 1.14 ± 0.1 0.579 0.2 3085.89 0.521 ± 0.003 1.28 ±0.1 0.516 +1.0 3086.03 0.168 ± 0.05 1.51 ±0.25 0.176 4.5 3086.07 0.0698 ± 0.02 0.83 ±0.1 0.063 +10.8 3086.08 XX XX 0 XX 16

1.004 1.002 Kiruna (Sweden) 2011, Altitude 19.6 km 1 Transmission 0.998 0.996 0.994 0.992 0.99 0.988 3085.75 3085.8 3085.85 3085.9 3085.95 3086 3086.05 3086.1 3086.15 3086.2 2 x 10-3 Wavenumber (cm -1 ) 0-2 3085.75 3085.8 3085.85 3085.9 3085.95 3086 3086.05 3086.1 3086.15 3086.2 Application on in-situ measurements With HITRAN values : ρ CH4 = 1.49 ppmv With new parameters : ρ CH4 = 1.41 ppmv Differences of 5% M. Ghysels et al, ASA/HITRAN 2012 17

Predominant line-mixing at high pressures Conclusions Residuals of the same order of magnitude for LM and Hard-LM at high pressures Line-mixing also at low pressures Comparison at ambient temperature with Pine values [Pine, 1996] : good agreement Perspectives Process balloon spectra including new parameters (ongoing) M. Ghysels et al, ASA/HITRAN 2012 18

Equipe PicoSDLA: Scientific supervisor: Georges Durry (GSMA) GSMA, Université de Reims : Mélanie Ghysels, Julien Cousin, Laura Gomez-Martin Division technique de l'insu (Paris, CNRS) : Nadir Amarouche, Fabien Frérot, Jean-Christophe Samaké, Christophe Berthod, Louis Rey-Grange M. Ghysels et al, ASA/HITRAN 2012 19