Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As 2 S 3 chalcogenide planar waveguide

Similar documents
Highly Nonlinear Fibers and Their Applications

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides

Generation of supercontinuum light in photonic crystal bers

Optical Cherenkov radiation in an As 2 S 3 slot waveguide with four zero-dispersion wavelengths

Alexander Gaeta Department of Applied Physics and Applied Mathematics Michal Lipson Department of Electrical Engineering

Tailoring Nonlinearity and Dispersion of Photonic Crystal Fibers Using Hybrid Cladding

Sources supercontinuum visibles à base de fibres optiques microstructurées

Ultrafast nonlinear optical processing in photonics integrated circuits: Slow light enhanced

On-chip stimulated Brillouin scattering

Nonlinear effects and pulse propagation in PCFs

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Research Article Nonlinear Phenomena of Ultra-Wide-Band Radiation in a Photonic Crystal Fibre

PROCEEDINGS OF SPIE. On-chip stimulated Brillouin scattering and its applications

Harnessing and control of optical rogue waves in. supercontinuum generation

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Demonstration of ultra-flattened dispersion in photonic crystal fibers

Experimental studies of the coherence of microstructure-fiber supercontinuum

Polarization control of defect modes in threedimensional woodpile photonic crystals

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Silicon-waveguide-coupled high-q chalcogenide microspheres

Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOScompatible

COMPRESSION of soliton pulses propagating in conventional

Ultrabroadband parametric generation and wavelength conversion in silicon waveguides

Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers

Ultraflat broadband supercontinuum in highly nonlinear Ge 11.5 As 24 Se 64.5 photonic crystal fibres

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Maximizing the Bandwidth from Supercontinuum Generation in Photonic Crystal Chalcogenide Fibers

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 1, JANUARY /$ IEEE

Chalcogenide glass Photonic Crystal Fiber with flattened dispersion and high nonlinearity at telecommunication wavelength

Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides

How long wavelengths can one extract from silica-core fibers?

Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique

Optimum Access Waveguide Width for 1xN Multimode. Interference Couplers on Silicon Nanomembrane

Blue-enhanced Supercontinuum Generation in a Fluorine-doped Graded-index Multimode Fiber

Title. Author(s)Nagasaki, Akira; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 19(4): Issue Date Doc URL.

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical solitons and its applications

All-chalcogenide Raman-parametric Laser, Wavelength Converter and Amplifier in a Single Microwire

Numerical investigation of the impact of reflectors on spectral performance of Raman fibre laser

Four-wave mixing in PCF s and tapered fibers

Empirical formulae for hollow-core antiresonant fibers: dispersion and effective mode area

Dark Soliton Fiber Laser

Copyright 2008 IEEE. Reprinted from IEEE Journal of Selected Topics in Quantum Electronics, 2007; 13 (3):

Nonlinear Photonics with Optical Waveguides

Dispersive wave emission and supercontinuum generation in a silicon wire waveguide pumped around the 1550 nm telecommunication wavelength

Multi-photon absorption limits to heralded single photon sources

PUBLISHED VERSION.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

The Glass Ceiling: Limits of Silica. PCF: Holey Silica Cladding

SUPPLEMENTARY INFORMATION

Free carrier lifetime modification for silicon waveguide based devices

Modelling of high-power supercontinuum generation in highly nonlinear, dispersion shifted fibers at CW pump

Sensing: a unified perspective for integrated photonics

Advanced Vitreous State The Physical Properties of Glass

Simulations of nanophotonic waveguides and devices using COMSOL Multiphysics

Coherent Raman imaging with fibers: From sources to endoscopes

Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

Deep-blue supercontinnum sources with optimum taper profiles verification of GAM

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Design of Seven-core Photonic Crystal Fiber with Flat In-phase Mode for Yb: Fiber Laser Pumping

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Third-order nonlinear spectra and optical limiting of lead oxifluoroborate glasses

SUPER-LATTICE STRUCTURE PHOTONIC CRYSTAL FIBER

Square Lattice Elliptical-Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm

Dispersion Properties of Photonic Crystal Fiber with Four cusped Hypocycloidal Air Holes in Cladding

Jindan Shi, Xian Feng, Peter Horak, Kangkang Chen, Peh Siong Teh, Shaif-ul Alam, Wei H. Loh, David J. Richardson, Morten Ibsen

Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

Optical time-domain differentiation based on intensive differential group delay

Highly Birefringent Elliptical-Hole Microstructure Fibers With Low Confinement Loss

City Research Online. Permanent City Research Online URL:

Highly Coherent Supercontinuum Generation in the Normal Dispersion Liquid-Core Photonic Crystal Fiber

Geometrical parameters dependence towards ultra-flat dispersion square-lattice PCF with selective liquid infiltration

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

37. 3rd order nonlinearities

Silicon-based monolithic optical frequency comb source

Optics Communications

Progress In Electromagnetics Research B, Vol. 22, 39 52, 2010

Optical pulse dynamics in sub-wavelength nano-patterned silicon photonic wires

Supercontinuum light

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

DOWNLOAD OR READ : NONLINEAR PHOTONICS NONLINEARITIES IN OPTICS OPTOELECTRONICS AND FIBER COMMUNICATIONS 1ST EDITION PDF EBOOK EPUB MOBI

arxiv: v1 [physics.optics] 26 Mar 2010

Dmitriy Churin. Designing high power single frequency fiber lasers

Chalcogenide microporous fibers for linear and nonlinear applications in the mid-infrared

37. 3rd order nonlinearities

Analysis and Modeling of Microstructured Fiber Using The Analytical Method Based on The Empirical Equation

Nonlinearities in porous silicon optical waveguides at 1550 nm

Harnessing On-Chip. SBS Irina Kabakova, David Marpaung, Christopher Poulton and Benjamin Eggleton

New slant on photonic crystal fibers

University of Bath. Publication date: Document Version Peer reviewed version. Link to publication

Supercontinuum Source for Dense Wavelength Division Multiplexing in Square Photonic Crystal Fiber via Fluidic Infiltration Approach

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

Near Zero Ultra flat Dispersion PCF: Properties and Generation of Broadband Supercontinuum

Polarization mode dispersion reduction in spun large mode area silica holey fibres

Group interactions of dissipative solitons in a laser cavity: the case of 2+1

Transformation and control of ultrashort pulses in dispersion-engineered photonic crystal fibres

Periodic Poling of Stoichiometric Lithium Tantalate for High-Average Power Frequency Conversion

Reconfigurable optical-force-drive chirp and delay-line in. micro/nano-fiber Bragg grating

Transcription:

Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As 2 S 3 chalcogenide planar waveguide Michael R.E. Lamont, 1 Barry Luther-Davies, 2 Duk-Yong Choi, 2 Steve Madden, 2 and Benjamin J. Eggleton 1 1 Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), School of Physics, University of Sydney, NSW 2006, Australia egg@physics.usyd.edu.au 2 Centre for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), Laser Physics Centre, The Australian National University, Canberra, ACT 0200, Australia bld111@rsphysse.anu.edu.au Abstract: We demonstrate supercontinuum generation in a highly nonlinear As 2 S 3 chalcogenide planar waveguide which is dispersion engineered to have anomalous dispersion at near-infrared wavelengths. This waveguide is 60 mm long with a cross-section of 2 μm by 870 nm, resulting in a nonlinear parameter of 10 /W/m and a dispersion of +29 ps/nm/km. Using pulses with a width of 610 fs and peak power of 68 W, we generate supercontinuum with a 30 db bandwidth of 750 nm, in good agreement with theory. 2008 Optical Society of America OCIS codes: (320.6629) Supercontinuum generation ; (230.7390) Waveguides, planar. References and links 1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006). 2. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, - (2002). 3. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005). 4. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. S. J. Russell, "Soliton effects in photonic crystal fibres at 850 nm," Electron. Lett 36, 53-55 (2000). 5. J. Y. Y. Leong, P. Petropoulos, J. H. V. Price, H. Ebendorff-Heidepriem, S. Asimakis, R. C. Moore, K. E. Frampton, V. Finazzi, X. Feng, T. M. Monro, and D. J. Richardson, "High-nonlinearity dispersion-shifted lead-silicate holey fibers for efficient 1-mu m pumped supercontinuum generation," J. Lightwave Technol. 24, 183-190 (2006). 6. G. Brambilla, F. Koizumi, V. Finazzi, and D. J. Richardson, "Supercontinuum generation in tapered bismuth silicate fibres," Electron. Lett 41, 795-797 (2005). 7. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. C. Moore, K. Frampton, F. Koizumi, D. J. Richardson, and T. M. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12, 5082-5087 (2004). 8. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As 2 Se 3 chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007). 9. D.-I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton, "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires," Opt. Lett. 33, 660-662 (2008). 10. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. X. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, "Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide," Opt. Express 15, 15776-15781 (2007). (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14938

11. I. W. Hsieh, X. G. Chen, X. P. Liu, J. I. Dadap, N. C. Panoiu, C. Y. Chou, F. N. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, "Supercontinuum generation in silicon photonic wires," Opt. Express 15, 15242-15249 (2007). 12. L. H. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007). 13. P. V. Koonath, D. R. Solli, and B. Jalali, "Limiting Nature of Continuum Generation in Silicon," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2008), paper CFC4. 14. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, and B. J. Eggleton, "Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration," Opt. Express 15, 14414-14421 (2007). 15. M. R. E. Lamont, C. M. de Sterke, and B. J. Eggleton, "Dispersion engineering of highly nonlinear As 2 S 3 waveguides for parametric gain and wavelength conversion," Opt. Express 15, 9458-9463 (2007). 16. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, "Tailored anomalous group-velocity dispersion in silicon channel waveguides," Opt. Express 14, 4357-4362 (2006). 17. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, and J. S. Aitchison, "Group velocity inversion in AlGaAs nanowires," Opt. Express 15, 12755-12762 (2007). 18. W. Li, S. Seal, C. Rivero, C. Lopez, K. Richardson, A. Pope, A. Schulte, S. Myneni, H. Jain, K. Antoine, and A. C. Miller, "Role of S/Se ratio in chemical bonding of As--S--Se glasses investigated by Raman, x- ray photoelectron, and extended x-ray absorption fine structure spectroscopies," J. Appl. Phys. 98, 053503-053511 (2005). 19. V. G. Ta'eed, N. J. Baker, L. B. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15, 9205-9221 (2007). 1. Introduction Supercontinuum (SC) generation is both of fundamental interest and has applications in spectroscopy, medical imaging and broadband sources [1]. Broadband SC generation relies on both strong nonlinearity and anomalous dispersion, which leads to solitonic effects and efficient four-wave mixing (FWM) [2]. Early experiments focused on fiber based geometries, particularly photonic crystal fiber (PCF), in which the dispersion could be engineered due to strong confinement associated with the air-holes [3, 4]. Although strong confinement can be achieved in silica PCF, the low nonlinearity of silica necessitates kilowatt peak powers for SC generation. Recently, efforts have focused on increasing the optical fiber nonlinearity by using nonlinear glasses and this has led to reports of highly nonlinear lead-silicate fibers [5] and bismuth based PCFs [6, 7]. In this context the chalcogenide glass family is particularly attractive as these glasses can have optical nonlinearities several hundred times that of silica, are transparent in the mid-infrared, and are easily drawn into optical fibers. Furthermore, chalcogenide optical fibers have been tapered down to submicron dimensions, further increasing the effective nonlinearity and providing strong dispersion engineering [8, 9]. More recently, planar geometries are being considered for SC sources with the promise of scalable, low cost fabrication and the potential for integrated optical chip solutions. Psaila et al. recently reported supercontinuum generation in a laser inscribed chalcogenide waveguide [10]. However, these waveguides have a large effective area giving a low nonlinearity and almost no waveguide dispersion to counter the intrinsic normal material dispersion of the glass. Subsequently, μj pulses with tens of megawatts peak-powers were required to achieve SC generation. Silicon-on-insulator (SOI) is very attractive for photonic integration and there have been recent efforts to demonstrate SC in SOI nanowires [11, 12]. Silicon offers a high nonlinearity, of similar magnitude to As 2 S 3 chalcogenide glass, and exhibits low loss in the near infrared. Furthermore, despite the high normal material dispersion of silicon at near infrared wavelengths, its high refractive index enables strong confinement resulting in anomalous dispersion. However, silicon suffers from two-photon absorption (TPA), which (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14939

clamps the spectral broadening associated with SC generation and limits the achievable bandwidth [11, 13]. In this paper we report broadband SC generation in an As 2 S 3 chalcogenide planar waveguide which has been dispersion engineered to shift the zero-dispersion point (ZDP) of the vertically polarized TM mode to 1510 nm. The horizontally polarized TE mode remains in normal dispersion because the waveguide is not fully etched and is much wider than it is high. Short 610 fs pulses at a wavelength of 1550 nm and a peak power of 68 W (corresponding to 60 pj) were launched into the TM mode resulting in SC spectra with a 30 db bandwidth of 750 nm, and 60 db bandwidth greater than an octave a promising step towards on-chip SC sources. The low TPA and absence of nonlinear loss due to free-carriers, combined with this first demonstration of dispersion engineered waveguides, make chalcogenide an attractive platform for on-chip supercontinuum sources and other nonlinear devices. Fig. 1. Schematic of the dispersion engineered As 2 S 3 waveguide. 2. Device architecture The geometry of the As 2 S 3 waveguide is illustrated in Fig. 1. Using thermal evaporation, a 0.87 μm layer of As 2 S 3 was deposited onto a thermally oxidized silicon substrate. The 2 μm wide, 6.0 cm long waveguides were defined using photolithography and created using inductively coupled plasma reactive ion etching with CHF 3 gas to reduce the slab height by 380 nm [14]. The waveguide chip was then coated in a protective coating layer of inorganic polymer glass (IPG TM ). The propagation loss (α) of the waveguide was estimated to be 0.6 db/cm. As shown in Fig. 2(a), the dispersion of bulk As 2 S 3 is strongly normal at near-infrared wavelengths. However the dispersion experienced by a propagating mode is a combination of both the material properties and the geometry of the waveguide. Reducing the transverse dimensions (height and width) will increase the wavelength-dependence of the mode effective index and can result in anomalous waveguide dispersion. This waveguide dispersion can offset the normal material dispersion to give a total dispersion that is both near zero and anomalous [15]. Dispersion engineering has been used with other high-index, normaldispersion materials, such as silicon [16] and AlGaAs [17], as well as bismuth [6] and chalcogenide [9] fibers through use use of tapering. Because this waveguide is not fully etched, and because its height is much smaller than its width, the TM polarisation experiences more waveguide dispersion than the TE polarisation. This can be seen in Fig. 2 and (c) (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14940

Dispersion [ps/ nm/ km] 200 100 0-100 -200-300 TM -400 TE -500 As2S3-600 1.2 1.4 1.6 1.8 2 2.2 Wavelength [μm] (c) Fig. 2. (a) Dispersion of the As 2 S 3 waveguide for both the fundamental TM and TE modes as calculated using RSoft FemSIM, compared to the material dispersion. The vertical dashed line denotes λ = 1550 nm. The mode field for the fundamental TM mode (vertically polarized). (c) The mode field for the fundamental TE mode (horizontally polarized). since the TM mode interacts with the waveguide boundary much more than the TE mode. Simulations using RSoft FemSIM TM, shown in Fig. 2(a), predict that the TE mode has a reduced dispersion at 1550 nm, in comparison to the material value, but remains normal; whereas the TM mode has low anomalous dispersion. The reduction in the waveguide s transverse dimensions also enhances the nonlinearity of the mode by reducing the effective area (A eff ). Both the TE and TM modes have an A eff of 1.23 μm 2, and combined with the high nonlinear index (n 2 ) of As 2 S 3 at 3.0 10 18 m 2 /W, results in a nonlinear parameter (γ) of 10 /W/m or 9,100 times the γ of silica SMF fiber. 3. Experimental results and analysis The experimental layout is shown in Fig. 3. A 10 MHz mode-locked fiber laser produced pulses with a peak power of 136 W. Frequency resolved optical gating (FROG) measurements gave a full-width at half-maximum (FWHM) of 610 fs at the waveguide input. Light was coupled into the waveguide via lensed fibers, achieving a reflection and coupling loss of 3.7 db per facet. This results in a coupled peak power of 68 W, or ~0.6 mw of average power. A polarization controller (PC) was used to select either the TE or TM modes of the waveguide and the coupled power was varied by moving the lensed fiber further from the input facet. The output light was again collected using a lensed fiber and sent to both a power meter, to monitor the average power difference between data sets, and an optical spectrum analyzer (OSA) to record the output spectra. Pulsed Pump PC As 2 S 3 sample 50/50 coupler OSA Power meter Fig. 3. Experimental set-up for measuring SC generation in the As 2 S 3 waveguide. PC is the polarization controller, and OSA is the optical spectrum analyzer (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14941

Experiment Simulation 55W 38W 21W 14W 1.45 1.5 1.55 1.6 1.65 Wavelength [μm] Fig. 4. (a) Experimental SC spectra for pulses of varying peak power coupled into the TE mode of the waveguide. Simulated SC spectra for the same peak powers and polarization mode using the dispersion curves shown in Fig. 2(a). Fig. 4(a) shows the experimentally measured spectra for TE-polarized pulses at varying input powers. Because the dispersion of this mode is normal, D = 210 ps/nm/km at λ = 1550 nm, no solitonic behaviour or four wave mixing occurs and the observed spectra are simply broadened by self-phase modulation. This is confirmed by the good agreement obtained between the experiment and simulations using the split-step Fourier method (SSFM) to solve the nonlinear Schrodinger equation Fig. 4. The numerical model includes selfsteepening and Raman terms, with the Raman gain spectrum modeled following the results from Li et al. [18]. The nonlinear index was taken to be n 2 = 3.0 10 18 m 2 /W, with a fractional Raman contribution of f R = 0.11, and the nonlinear (two-photon) absorption coefficient was α 2 = 6.2 10 15 m/w [19]. The input pulse shape and phase was taken directly from the FROG trace. Although the TE mode remained in the normal dispersion regime, from Fig. 2(a) the TMpolarization is expected to have anomalous dispersion between 1510 nm and 2170 nm, with value +29 ps/nm/km at 1550 nm. The experimental spectra shown in Fig. 5(a) indeed demonstrate that this mode has anomalous dispersion, again supported by SSFM simulations at varying input powers as shown in Fig. 5. Note that the OSA used had an upper wavelength limit of 1700 nm, whereas the simulation had no upper limit. Thus, the broadest experimentally measured SC spectrum was over 500 nm wide at -30 db, while the simulation implies a bandwidth of 750 nm, as shown in Fig. 6(a). The noise floor of the experimental data was below -60 db, and at this level the simulation shows a SC bandwidth spanning over 1400 nm, or 1.4 octaves. (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14942

Experiment Simulation 68W 46W 29W 18W 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 Wavelength [μm] Fig. 5. (a) Experimental SC spectra for pulses of varying peak power coupled into the TM mode of the waveguide. Simulated SC spectra for the same peak powers and polarization mode using the dispersion curves shown in Fig. 2(a). However, the spectral evolution along the waveguide, shown in Fig. 6, has a greater symmetry than is generally observed [1]. This can be explained by the soliton fission length of the experiment. The dispersion length L D of the TM mode was 2.97 m, and at the highest peak power the nonlinear length L NL was 1.5 mm. This gives a very high soliton number, N = (L D /L NL ) 1/2 greater than 40 and a soliton fission length of 67 mm, which is comparible to the device length. Because of this, the primary nonlinear process driving the SC generation is FWM rather than soliton fission. This is supported by the appearance of idler terms, which can be seen after 2 cm of propagation. The apparent assymmetry occurs because FWM is balanced in frequency, and not wavelength; however, Raman scattering does introduce a slight shift of energy toward longer wavelengths. (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14943

Intensity [10 db/div.] Propagation Length [cm] Wavelength [µm] Fig. 6. (a) SC spectrum for an input pulse with 68 W peak power, and Spectral evolution for the same input pulse. The red horizontal lines indicate the -30 db and -60 db bandwidths. 4. Conclusion Highly nonlinear materials such as silicon or chalcogenide glasses are a promising platform for the realization of compact, on-chip SC generation. However, the strong normal dispersion of these materials makes dispersion engineering necessary to achieve the anomalous dispersion needed for four-wave mixing, a key process for efficient SC generation. Here we report, for the first time, the fabrication of an anomalous dispersion chalcogenide planar waveguide, with a dispersion of +29 ps/nm/km and a nonlinear parameter of 10 /W/m. Using this waveguide, we demonstrate broadband SC generation with a -30 db bandwidth of 750 nm, or a -60 db bandwidth of over an octave, using a 610 fs pulse with peak power of 68 W and a pulse energy of 60 pj. This can be compared to a maximum of 0.3 octaves, or 200 nm at a similar wavelength, achieved using 100 fs pulses in a dispersion engineered silicon waveguide [11]. Because of the low TPA and lack of free-carriers in As 2 S 3, much high peak powers can be utilized to generate a full SC spectrum, and with further reduction in the effective area of the waveguide this peak power may be reduced while maintaining a comparable SC bandwidth. Acknowledgments Funding from the Australian Research Council (ARC) through its Federation Fellow and Centres of Excellence programs is gratefully acknowledged. The Centre for Ultrahighbandwidth Devices for Optical Systems (CUDOS) is an ARC Centre of Excellence. (C) 2008 OSA 15 September 2008 / Vol. 16, No. 19 / OPTICS EXPRESS 14944