An Introduction to Optimal Control Applied to Disease Models

Similar documents
Optimal Control of PDEs


LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Framework for functional tree simulation applied to 'golden delicious' apple trees

An Example file... log.txt

Vectors. Teaching Learning Point. Ç, where OP. l m n

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure


The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

Examination paper for TFY4240 Electromagnetic theory

ETIKA V PROFESII PSYCHOLÓGA

4.3 Laplace Transform in Linear System Analysis

A Beamforming Method for Blind Calibration of Time-Interleaved A/D Converters

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Redoing the Foundations of Decision Theory

SOLAR MORTEC INDUSTRIES.

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

A Functional Quantum Programming Language

Planning for Reactive Behaviors in Hide and Seek

New method for solving nonlinear sum of ratios problem based on simplicial bisection

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

TELEMATICS LINK LEADS

F O R SOCI AL WORK RESE ARCH

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

Loop parallelization using compiler analysis

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

A Study on Dental Health Awareness of High School Students

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Matrices and Determinants

1. Allstate Group Critical Illness Claim Form: When filing Critical Illness claim, please be sure to include the following:

Systems of Equations 1. Systems of Linear Equations

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

New BaBar Results on Rare Leptonic B Decays

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Constructive Decision Theory

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Lecture 16: Modern Classification (I) - Separating Hyperplanes

SCOTT PLUMMER ASHTON ANTONETTI

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

6. Convert 5021 centimeters to kilometers. 7. How many seconds are in a leap year? 8. Convert the speed 5.30 m/s to km/h.

A Theory of Universal AI

The incident energy per unit area on the electron is given by the Poynting vector, '

This document has been prepared by Sunder Kidambi with the blessings of

Applications of Discrete Mathematics to the Analysis of Algorithms

Juan Juan Salon. EH National Bank. Sandwich Shop Nail Design. OSKA Beverly. Chase Bank. Marina Rinaldi. Orogold. Mariposa.

Optimization of a parallel 3d-FFT with non-blocking collective operations

Damping Ring Requirements for 3 TeV CLIC

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=

Rarefied Gas FlowThroughan Orifice at Finite Pressure Ratio

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Towards a High Level Quantum Programming Language

Full file at 2CT IMPULSE, IMPULSE RESPONSE, AND CONVOLUTION CHAPTER 2CT

Continuing Education and Workforce Training Course Schedule Winter / Spring 2010

Exponentially Rare Large Fluctuations: Computing their Frequency

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

Manifold Regularization

The Fourier series are applicable to periodic signals. They were discovered by the

U ight. User s Guide

Optimal data-independent point locations for RBF interpolation

Towards a numerical solution of the "1/2 vs. 3/2" puzzle

Cairns Hospital: Suspected Acute Coronary Syndrome Pathways. DO NOT USE if a non cardiac cause for the chest pain can be diagnosed

Optimal Control of Epidemic Models of Rabies in Raccoons

First-principles calculations of insulators in a. finite electric field

1. CALL TO ORDER 2. ROLL CALL 3. PLEDGE OF ALLEGIANCE 4. ORAL COMMUNICATIONS (NON-ACTION ITEM) 5. APPROVAL OF AGENDA 6. EWA SEJPA INTEGRATION PROPOSAL

Glasgow eprints Service

Population Dynamics in a Microfounded Predator-Prey Model. Thomas Christiaans. University of Siegen. Discussion Paper No

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

Human genome contains ~30K genes Not all genes are expressed at same time

A Study on the Analysis of Measurement Errors of Specific Gravity Meter

: œ Ö: =? À =ß> real numbers. œ the previous plane with each point translated by : Ðfor example,! is translated to :)

Search for MSSM Higgs at LEP. Haijun Yang. University of Michigan, Ann Arbor

Optimizing Stresses for Testing DRAM Cell Defects Using Electrical Simulation

DYNAMIC SAMPLED-DATA OUTPUT REGULATION: A SWITCHING ADAPTIVE APPROACH. HUANG Yaxin 1 LIU Yungang 1 ZHANG Jifeng 2,3

IE 400 Principles of Engineering Management. Graphical Solution of 2-variable LP Problems

LEAD IN DRINKING WATER REPORT

Unit 3F: Reading and Understanding in Urdu. Wednesday 19 May 2010 Afternoon Time: 35 minutes

Pontryagin s maximum principle

A General Procedure to Design Good Codes at a Target BER

BUY A CRUSH FOR YOUR CRUSH! Crush flavors will vary.

Solving SVM: Quadratic Programming

font faq HOW TO INSTALL YOUR FONT HOW TO INSERT SWASHES, ALTERNATES, AND ORNAMENTS

Sample Exam 1: Chapters 1, 2, and 3

Emefcy Group Limited (ASX : EMC) ASX Appendix 4D Half Year Report and Interim Financial Statements for the six months ended 30 June 2016

Harlean. User s Guide

PH Nuclear Physics Laboratory Gamma spectroscopy (NP3)

Queues, Stack Modules, and Abstract Data Types. CS2023 Winter 2004

Block vs. Stream cipher

236 Chapter 4 Applications of Derivatives

Transcription:

An Introduction to Optimal Control Applied to Disease Models Suzanne Lenhart University of Tennessee, Knoxville Departments of Mathematics Lecture1 p.1/37

Example Number of cancer cells at time (exponential growth) State Drug concentration Control known initial data minimize where the first term represents number of cancer cells and the second term represents harmful effects of drug on body. Lecture1 p.2/37

Optimal Control Adjust controls in a system to achieve a goal System: Ordinary differential equations Partial differential equations Discrete equations Stochastic differential equations Integro-difference equations Lecture1 p.3/37

Deterministic Optimal Control Control of Ordinary Differential Equations (DE) control state State function satisfies DE Control affects DE Goal (objective functional) Lecture1 p.4/37

Basic Idea System of ODEs modeling situation Decide on format and bounds on the controls Design an appropriate objective functional Derive necessary conditions for the optimal control Compute the optimal control numerically Lecture1 p.5/37

Design an appropriate objective functional balancing opposing factors in functional include (or not) terms at the final time Lecture1 p.6/37

Big Idea In optimal control theory, after formulating a problem appropriate to the scenario, there are several basic problems : (a) to prove the existence of an optimal control, (b) to characterize the optimal control, (c) to prove the uniqueness of the control, (d) to compute the optimal control numerically, (e) to investigate how the optimal control depends on various parameters in the model. Lecture1 p.7/37

# # " & Deterministic Optimal Control- ODEs Find piecewise continuous control and associated state variable to maximize $ #! " subject to ' # & % and ( * *) Lecture1 p.8/37

, +,, 0 +, 0,, 0 + Contd. Optimal Control Put / -., / -. / -. / -. achieves the maximum into state DE and obtain corresponding optimal state / -. optimal pair / -. Lecture1 p.9/37

2 2 6 1 7 2 2 6 1 2 2 6 1 Necessary, Sufficient Conditions Necessary Conditions If, are optimal, then the following conditions hold. 5 3 4 5 3 4 Sufficient Conditions If, and (adjoint) satisfy the conditions. then 5 3 4, 5 3 4 5 3 4 5 3 4 are optimal. Lecture1 p.10/37

Adjoint like Lagrange multipliers to attach DE to objective functional. Lecture1 p.11/37

8 < @ 8 < B A < 8 < B < A < E < Deterministic Optimal Control- ODEs Find piecewise continuous control and associated state variable to maximize ; 9 : ; 9 : : ; ;C 9 : ; 9 : 9 : B >? = subject to ; ; 9 : ; 9 : 9 : F B E ; D 9 : ; 9 and ; 9G I IH Lecture1 p.12/37

K K L J M R Q M K Q J P M K Q J Q S P U Q S P M K N P Q J Q S W V T Quick Derivation of Necessary Condition Suppose is an optimal control and corresponding state. variation function,. P N O u*(t)+ ah(t) u*(t) P N O N O T another control. state corresponding to P N O t, P P P N O N O T N O T N O T UO Lecture1 p.13/37

_ \ Z X [ Y \ b _ \ X b c [ ` e _ \ X f _ \ X b \ \ _ \ d X ^ c [ ^ Y a d Z Y ^ ^ Lecture1 p.14/37 Contd. `a Y ^ Z ], At y(t,a) x * (t) x 0 t all trajectories start at same position control Z ] Y ^ when Y _ Z X ] _g _ ^ ] X ] X ]. occurs at w.r.t. Maximum of

m hi v u t h w j v j k u t h w j v j y k t v Contd. nononpnrqs jlk h k m v k { mlz y m~ k j} { mlz j} y hx m m j x { mlz j x jy hx vƒ u m k j} { mlz j} y m ~ v k { m z hx m m j x { m z j x jy hx gives m j k i to our Adding Lecture1 p.15/37

Œ ˆ Contd. Ž Ž Ž Ž Œ Š ˆ l š š Ž Ž œ Ž Ž Š š š l Ÿ Ž lž Ž. ˆ ž here we used product rule and Lecture1 p.16/37

µ «µ ¹ «³ ±»» µ ¾ ¹ ² ± û» Contd. ««Ž ³ ² l± «ª ««ª ««º µ ³ ² «± ½ º¼» ««Ž. Ž ² Ž» Ž» terms are Arguments of ³ o o o ÁÀ µ µ ª ¾ ª ¾ ½ º¼» ««º µ. Ž ² Ž» terms are Arguments of Lecture1 p.17/37

Ô Ô Õ Ó Õ Ó Ò Ò Û Ü Ý Ô Ô Ô Û Õ Ó Õ Ó ã Ò Ò Contd. s.t. Ç Å Æ Ä Choose adjoint equation ÙÌ Ô ÊŽË Ò ÌlØ Ñ ÊÈË Ì Ö Ô ÊŽË Ò ÏÐªÑ Î Ì Í ÉÊŽË È transversality condition Ì Í ÊÚ È ÌàË ÊŽË Ìß È Ø Þ Ö Ê ÐªÞ Û Í arbitrary variation Ì ÊŽË ß Ú â Ë Ûâ for all Ì Í ÊŽË Ò Ì Ø Þ ÊŽË È Ì Ô Ö Ê Ë Ò ÐªÞ á Optimality condition. Lecture1 p.18/37

ê ê ê é è ç è ç è ç ë æ æ æ æ î è è ð ð ë ë ñ ñ è ê ò é ò é ó ë ó ë ç ê ä é ð ë Using Hamiltonian Generate these Necessary conditions from Hamiltonian ä å æ éíì ä å æ ä å æ integrand (adjoint) (RHS of DE) maximize w.r.t. at ï ï é ì optimality eq. ï ï ä ô éíì ô adjoint eq. transversality condition Lecture1 p.19/37

õ ö ü û ú ù õ ö ü û ú ù Converted problem of finding control to maximize objective functional subject to DE, IC to using Hamiltonian pointwise. For maximization öõø at as a function of For minimization öõø at as a function of Lecture1 p.20/37

þ þ ÿ ý þ þ ÿ ý ý þ ý þ þ ÿ ý þ ÿ Two unknowns introduce adjoint and (like a Lagrange multiplier) Three unknowns nonlinear w.r.t., and Eliminate by setting and solve for in terms of Two unknowns and with 2 ODEs (2 point BVP) + 2 boundary conditions. and Lecture1 p.21/37

Pontryagin Maximum Principle are optimal for above problem, then there and If s.t. exists adjoint variable is defined by at each time, where Hamiltonian and transversality condition Lecture1 p.22/37

% ' # # # ) % # $ & + # * 0 " & % # & % # - 2 3 # 1 # ' 3 # # Hamiltonian $ # "!! $ & $ # "!! is linear w.r.t., w.r.t. maximizes $ & "!! $ "!! (, + $. bounded controls, Bang-bang control or singular control "/. Example: 1 cannot solve for & % - and solve for 54, set is nonlinear w.r.t. optimality equation. Lecture1 p.23/37

= K E = E G H Lecture1 p.24/37 Example 1? BDC A >@? ; < 7986 : A >JI A >@? A >@? A F >? E G subject to What optimal control is expected?

P R Q a ] Y Y S W R ] Y c ] ] R [ c g e R R [ h d e R e [ S d R a Tc c [ h h d Y ` c f P j i Q c [ ` l k j i Q c k i ^ ^ Lecture1 p.25/37 c T Example 1 worked WXV SUT V MON L W [ T` Z\[ Y R_^ RHS of DE integrand b [ b d at g R [ f ` c [ ] b Sd b d ` W [ Z c [ Q [ c [ g Y [ ` g m R ` cnm

s y { u z r t y s u { u ~ z Example 2 w sd x v w x v@w p9q o x vj y ƒ x v@w x v w x } v@w u ~ subject to What optimal control is expected? Lecture1 p.26/37

Œ ˆ Œ Š Œ Š Hamiltonian Š ˆ The adjoint equation and transversality condition give Œ @Ž Š Š @Ž Lecture1 p.27/37

š Lecture1 p.28/37 Example 2 continued and the optimality condition leads to Ÿ @ž œ š š The associated state is Ÿ @ž œ

Graphs, Example 2 3 Example 2.2 2 State 1 0 1 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time 8 6 Adjoint 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time 0 2 Control 4 6 8 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Time Lecture1 p.29/37

³ ¹ µ ±» ¾ ½ ¹ ½» ¹ µ µ ¼»» ¹ ¹» ¹ Lecture1 p.30/37 Example 3 U±² «ª ± «\µ _ º µ º ¼ ¾ µ at» µ ¹ µ ¼ º ¼ ± «À» ± µ» µ Áµ

É Æ È Â Ç Ç Æ Æ É Ç Ç Ñ Â Ò Ó Ì Ì Â Ü Ä É Æ Ç Æ Ç Ê Ø ÙÚ Lecture1 p.31/37 Æ Ê Contd. ÃÅÄ Â Â/Ê ÃÅÄ É Í Ä ËÐ É ÇÏÎ Í Ä ËÌ. and then get É Ò Â Î Solve for Do numerically with Matlab or by hand Ø ÙÚ ÔÖÛ È ÔÖÕ Æ Ê

Exercise Ý Þß à á â ãåä æ çè é ä ê ë ì í æ î ï ä ãjð ç ë ì ï æ control ñ ë ò ò æ ë ð ó ê ë ó ë ó ã ì ç ë æ ô ë ä ô ë Lecture1 p.32/37

Exercise completed õ ö ø ù ú û ü ýÿþ ü þ ü û þ control û ü þ ü ý þ ý û þ þ þ þ ø ø ü û ü þ û ü û û ý þ û û Lecture1 p.33/37

# Contd. "! There is not an Optimal Control" in this case. Want finite maximum. Here unbounded optimal state unbounded OC Lecture1 p.34/37

& $ ( ) $ ( $ + *, $ * 1 2 ' % ( $ / Opening Example ' %& ' %& Number of cancer cells at time (exponential growth) State Drug concentration Control ' %& ' %& )& ' %.- $0/ known initial data minimize )& ' %& See need for bounds on the control. See salvage term. Lecture1 p.35/37

Further topics to be covered Interpretation of the adjoint Salvage term Numerical algorithms Systems case Linear in the control case Discrete models Lecture1 p.36/37

3 4 more info See my homepage www.math.utk.edu lenhart Optimal Control Theory in Application to Biology short course lectures and lab notes Book: Optimal Control applied to Biological Models CRC Press, 2007, Lenhart and J. Workman Lecture1 p.37/37