i 3 i 2 Problem 8.31 Shear flow in circular section The centroidal axes are located at the center of the circle as shown above.

Similar documents
BME 207 Introduction to Biomechanics Spring 2018

Chapter 5 Bending Moments and Shear Force Diagrams for Beams

13.4 Work done by Constant Forces

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Solution Manual. for. Fracture Mechanics. C.T. Sun and Z.-H. Jin

Job No. Sheet 1 of 8 Rev B. Made by IR Date Aug Checked by FH/NB Date Oct Revised by MEB Date April 2006

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

V. DEMENKO MECHANICS OF MATERIALS LECTURE 6 Plane Bending Deformation. Diagrams of Internal Forces (Continued)

Module 1. Energy Methods in Structural Analysis

CE 160 Lab 2 Notes: Shear and Moment Diagrams for Beams

1 Bending of a beam with a rectangular section

99/105 Comparison of OrcaFlex with standard theoretical results

MECHANICS OF MATERIALS

KINEMATICS OF RIGID BODIES

Lecture 13 - Linking E, ϕ, and ρ

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

Case (a): Ans Ans. Case (b): ; s 1 = 65(4) Ans. s 1 = pr t. = 1.04 ksi. Ans. s 2 = pr 2t ; s 2 = 65(4) = 520 psi

Electromagnetism Answers to Problem Set 10 Spring 2006

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Shear and torsion interaction of hollow core slabs

#6A&B Magnetic Field Mapping

DIRECT CURRENT CIRCUITS

Distributed Forces: Centroids and Centers of Gravity

Ans. Ans. Ans. Ans. Ans. Ans.

PhysicsAndMathsTutor.com

7.6 The Use of Definite Integrals in Physics and Engineering

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration

ME311 Machine Design

Best Approximation. Chapter The General Case

STATICS VECTOR MECHANICS FOR ENGINEERS: and Centers of Gravity. Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

Phys 7221, Fall 2006: Homework # 6

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

ragsdale (zdr82) HW2 ditmire (58335) 1

Solutions to Homework Set 3

STATICS. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Centroids and Centers of Gravity.

On the diagram below the displacement is represented by the directed line segment OA.

Practice Problem Set 3

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

4 VECTORS. 4.0 Introduction. Objectives. Activity 1

Duality # Second iteration for HW problem. Recall our LP example problem we have been working on, in equality form, is given below.

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Math 1B, lecture 4: Error bounds for numerical methods

Review of Calculus, cont d

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

Columns and Stability

Recitation 3: More Applications of the Derivative

Problems for HW X. C. Gwinn. November 30, 2009

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

l 2 p2 n 4n 2, the total surface area of the

Physics 220. Exam #1. April 21, 2017

HW Solutions # MIT - Prof. Kowalski. Friction, circular dynamics, and Work-Kinetic Energy.

Advanced Computational Analysis

Math 8 Winter 2015 Applications of Integration

JURONG JUNIOR COLLEGE

Question 1: Figure 1: Schematic

Fig. 1. Open-Loop and Closed-Loop Systems with Plant Variations

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS

Lesson 8. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

Homework 4 , (1) 1+( NA +N D , (2)

1 Online Learning and Regret Minimization

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Designing Information Devices and Systems I Discussion 8B

Sample Exam 5 - Skip Problems 1-3

13: Diffusion in 2 Energy Groups

JUST THE MATHS SLIDES NUMBER INTEGRATION APPLICATIONS 12 (Second moments of an area (B)) A.J.Hobson

Numerical Analysis: Trapezoidal and Simpson s Rule

Polynomials and Division Theory

Conducting Ellipsoid and Circular Disk

CAPACITORS AND DIELECTRICS

Homework Assignment 6 Solution Set

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Chapter E - Problems

7.1 Integral as Net Change and 7.2 Areas in the Plane Calculus

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Flow in porous media

Version 001 HW#6 - Circular & Rotational Motion arts (00223) 1

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

Explain shortly the meaning of the following eight words in relation to shells structures.

Chapter 5 Weight function method

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

The Form of Hanging Slinky

x = b a N. (13-1) The set of points used to subdivide the range [a, b] (see Fig. 13.1) is

1 Part II: Numerical Integration

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

The momentum of a body of constant mass m moving with velocity u is, by definition, equal to the product of mass and velocity, that is

Integral points on the rational curve

Plate Theory. Section 11: PLATE BENDING ELEMENTS

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

I. Equations of a Circle a. At the origin center= r= b. Standard from: center= r=

3. Vectors. Home Page. Title Page. Page 2 of 37. Go Back. Full Screen. Close. Quit

9.4. The Vector Product. Introduction. Prerequisites. Learning Outcomes

Centre of Mass, Moments, Torque

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Transcription:

Problem 8.31 Sher flow in circulr section i 3 R θ s i 2 t Remove@"Globl` "D H remove ll symbols L The centroidl xes re locted t the center of the circle s shown bove. (1) Find bending stiffness: From symmetry, = H 33 nd H 23 =. = 2 Ε πê2 πê2 HR Sin@θDL 2 tr θ π R 3 t Ε (2) Find sher flow distribution due to : The loding H ) is lso symmetric nd therefore the sher flow must vnish on the symmetry xis i 3. As result, f q Hq= pê2l = n the problem cn be nlyzed s two bck-to-bck semicirculr sections (see problem 8.18). Rther thn mke use of this importnt simplifiction, we will go hed nd construct "nive" solution, mking cut t q= insted. Sher flow f o in open (cut) system: θ Q 2 θ =Ε R Sin@αD tr α R 2 t Ε H 1 + Cos@θDL f oθ = Q 2 θ H 1 + Cos@θDL π R

2 chpter8esolutions.nb Closing sher flow f c : 2 π f oθ + f c wrp = R θ Gt 2 π Rf c 2 Gt 8f c < = 8f c <ê. Solve@wrp, f c D@@1DD : π R > Sher flow f o + f c : f θ = f oθ + f c êê Simplify Cos@θD π R NOTE: This is identicl to the expression for sher flow in semicirculr section, -p/2 q p/2. As result, the sher flow is zero on symmetry xis i 3 s pointed out t the beginning. (3) Find loction nd mgnitude of mx sher flow: It is cler from the expression for f q tht it is mximum t q=, p (where section crosses xis i 2 ), nd the vlue is: f θmx = f θ ê. θ π R

14 chpter8esolutions.nb Problem 8.34 Sher flow in circ. tube with flnges t i 3 i 2 R t t s3 s4 B θ s 2 A s 1 cut Remove@"Globl` "D H remove ll symbols L Sher is pplied to section. =αr; H simplifies the lgebr L (1) Find centroid nd bending stiffnesses: Since both xes re symmetry xes, the centroid is t the center of the circle s shown in the figure bove. 2 π =Ε HR Sin@θDL 2 tr θ π R 3 t Ε 2 π H 33 =Ε HR Cos@θDL 2 tr θ+ 2 1 12 3 t + t R + 2 2 êê Simplify 1 3 R3 t I3 π+2 α I3 + 3 α+α 2 MM Ε H 23 = ; H due to symmetry L (2) FInd sher flow on section: The presence of the flnges will hve no effect becuse they both lie on xis i 2 nd therefore their stiffness sttic moment, Q, is zero. As result, this problem reduces to s simple circulr tube. Nonetheless, we will illustrte the full "nive" solution tht ssumes we didn't relize this. Sher flow f oi in open (cut) section: Cut tube s indicted in figure to crete n open section described by s i where s 2 = R q 2 nd s 4 = R q 4. Use nottion where Q ij refers to xis i i nd perimetric coordinte s j.

chpter8esolutions.nb 15 Q 21 =Εs 1 t; H right flnge L f o1 = Q 21 θ 2R Q 22 =Ε Sin@θD tr θ H upper semicircle L R 2 t Ε H 1 + Cos@θ 2 DL f o2 = Q 22 + f o1 ê.s 1 H 1 + Cos@θ 2 DL π R Q 23 =Εs 3 t; H left flnge L f o3 = Q 23 θ 4 R Q 24 =Ε Sin@θD tr θ H lower semicircle L R 2 t Ε H 1 + Cos@θ 4 DL f o4 = Q 24 + f o2 + f o3 ê. 8θ 2 π,s 3 < êêsimplify H1 + Cos@θ 4DL π R

16 chpter8esolutions.nb Closing sher flow, f c : π f o2 + f c wrp = Gt π f o4 + f c R θ 2 + R θ 4 êê Simplify Gt 2 π Rf c 2 Gt 8f c < = 8f c <ê. Solve@wrp, f c D@@1DD : π R > f 1 = f o1 f 2 = f o2 + f c êê Simplify Cos@θ 2 D π R f 3 = f o3 f 4 = f o4 + f c êê Simplify Cos@θ 4D π R (3) Verify equilibrium t A & B nd flnge ends: f 1 ê.s 1

chpter8esolutions.nb 17 f 1 + f 4 f 2 ê. 8s 1, θ 4 π, θ 2 < True f 3 ê.s 3 f 2 + f 3 f 4 ê. 8θ 2 π,s 3, θ 4 < True (4) Find loction nd mgnitude of mx sher flow: By inspection of sher flow expressions, mx sher flow is in the circulr tube t A nd B. Using A: f mx = f 2 ê. θ 2 π R

24 chpter8esolutions.nb Problem 8.36 Sher flow in box-z cross section t i 3 i 2 s 2 i 3 s 1 s 5 s 4 cut i 2 s 6 c b s 3 Remove@"Globl` "D H remove ll symbols L Sher is pplied to section. α=β=1 ê 2; H problem specifiction L b =β; c =α; H simplifies the lgebr L (1) Find centroid nd bending stiffnesses: For equl flnge sizes, the centroid clerly is t the geometric center of the box. =Ε 2 1 12 3 t + 2t 2 2 2 3 3 t Ε H 33 =Ε 2 1 12 3 t + t 4 2 + 2t 4 2 5 12 3 t Ε H 23 =Ε t 2 4 + t 2 4 1 4 3 t Ε

chpter8esolutions.nb 25 H = H 33 HH 23 L 2 31 144 6 t 2 Ε 2 Find sher flow distribution in section: It is necessry to mke cut to crete n open section. It is generlly esier to mke the cut t corner or junction s shown in the figure bove. Sher flow f oi in cut section : NOTE: The first index defines the xis nd the second defines the perimetric coordinte number. Q 21 =Εs 1 t 2 ; Q 31 =Εs 1 t b 2 s 1 2 ; Q 22 =Εs 2 t 2 s 2 2 ; Q 32 =Εs 2 t b 2 ; Q 23 =Εs 3 t 2 ; Q 33 =Εs 3 t b 2 + s 3 2 ; Q 24 =Εs 4 t 2 + s 4 2 ; Q 34 =Εs 4 t b 2 ; Q 25 =Εs 5 t 2 ;

26 chpter8esolutions.nb Q 35 =Εs 5 t b 2 c + s 5 2 ; Q 26 =Εs 6 t 2 ; Q 36 =Εs 6 t b 2 + c s 6 2 ; f o5 = HQ 35 H 23 Q 25 H 33 L H êê Simplify 3s 5 H + 6s 5 L 31 3 f o6 = HQ 36 H 23 Q 26 H 33 L H êê Simplify 3s 6 H + 6s 6 L 31 3 f o1 = HQ 31 H 23 Q 21 H 33 L H + f o6 ê.s 6 c êê Simplify 3 I2 2 + 7s 1 + 6s 2 1 M 31 3 f o2 = HQ 32 H 23 Q 22 H 33 L H + f o1 ê.s 1 b êê Simplify 3 I7 2 + 13 s 2 1 s 2 2 M 31 3 f o3 = HQ 33 H 23 Q 23 H 33 L H + f o2 + f o5 ê. 8s 2, s 5 c< êêsimplify 3 I 8 2 + 7s 3 + 6s 3 2 M 31 3

chpter8esolutions.nb 27 f o4 = HQ 34 H 23 Q 24 H 33 L + f o3 ê.s 3 b êê Simplify H 3 I3 2 13 s 4 + 1 s 2 4 M 31 3 Continuity t cut in box: b f o1 + fc wrp = Gt f o2 + fc b f o3 + fc s 1 + Gt s 2 + G t f o4 + fc s 3 + s 4 G t 3fc Gt 45 31 G t fc =. 8fc< = 8fc< ê. Solve@wrp, fcd@@1dd : 15 31 > % êê N :.483871 > Compute finl sher flows: f 1 = f o1 + fc êê Simplify 3 I3 2 7s 1 6s 1 2 M 31 3 f 2 = f o2 + fc êê Simplify 3 I2 2 + 13 s 2 1 s 2 2 M 31 3

28 chpter8esolutions.nb f 3 = f o3 + fc êê Simplify 3 I 3 2 + 7s 3 + 6s 3 2 M 31 3 f 4 = f o4 + fc êê Simplify 3 I2 2 + 13 s 4 1 s 4 2 M 31 3 f 5 = f o5 êê Simplify 3s 5 H + 6s 5 L 31 3 f 6 = f o6 êê Simplify 3s 6 H + 6s 6 L 31 3 (3) Verify equilibrium t corners nd ends: f 6 ê.s 6 f 6 + f 4 f 1 ê. 8s 6 c, s 4, s 1 < êêsimplify True f 1 f 2 ê. 8s 1 b, s 2 < f 2 + f 5 f 3 ê. 8s 2, s 5 c, s 3 < êêsimplify True

chpter8esolutions.nb 29 f 3 f 4 ê. 8s 3 b, s 4 < f 5 ê.s 5 (4) Find loction nd mgnitude of mx sher flow: The points of mx sher flow cn be identified from plots. f1n = f 1 ê.s 1 ηb êê Simplify 3 62 I 6 + 7 η+3 η2 M p1 = PlotBf1n, 8η,,1<, AxesLbel :"s 1 ê", " f 1 ">, ImgeSize SmllF; f2n = f 2 ê.s 2 η êê Simplify 3 31 I 2 13 η+1 η2 M p2 = PlotBf2n, 8η,,1<, AxesLbel :"s 2 ", " f 2 ">, ImgeSize SmllF; f3n = f 3 ê.s 3 ηb êê Simplify 3 62 I 6 + 7 η+3 η2 M p3 = PlotBf3n, 8η,,1<, AxesLbel :"s 3 ê", " f 3 ">, ImgeSize SmllF;

3 chpter8esolutions.nb f4n = f 4 ê.s 4 ηêê Simplify 3 31 I 2 13 η+1 η2 M p4 = PlotBf4n, 8η,,1<, AxesLbel :"s 4 ", " f 4 ">, ImgeSize SmllF; f5n = f 5 ê.s 5 ηc êê Simplify 3 η H1 + 3 ηl 62 p5 = PlotBf5n, 8η,,1<, AxesLbel :"s 5 ", " f 5 ">, ImgeSize SmllF; f6n = f 6 ê.s 6 ηc êê Simplify 3 η H1 + 3 ηl 62 p6 = PlotBf6n, 8η,,1<, AxesLbel :"s 6 ", " f 6 ">, ImgeSize SmllF;

chpter8esolutions.nb 31 GrphicsGrid@88p1, p2<, 8p3, p4<, 8p5, p6<<d f 1 f 2.3.2.1 -.1 -.2.2.4.6.8 1. s 1ê -.2 -.3 -.4 -.5.2.4.6.8 1. s 2 f 3 f 4.2.1 -.1 -.2 -.3 s 3 ê.2.4.6.8 1..6.5.4.3.2.4.6.8 1. s 4 f 5 f 6.15.1.5.2.4.6.8 1. s 5 -.5 -.1 -.15.2.4.6.8 1. s 6 Mx sher flow is t opposite points in the two sides H f 2 & f 4 ). Using f 4 for clcultions: 8s crit < = 8s 4 <ê. Solve@ s4 f 4, s 4 D@@1DD : 13 2 > f mx = f 4 ê.s 4 s crit 747 124 f mx êê N.62419

Problem 8.43 Sher center of double-box section s 3 b s 6 t 1 i 3 t 1 i 2 t 2 t2 i 3 t w i2 i 3 s 2 f c1 s 7 s1 f c2 s 5 c b s4 Remove@"Globl` "D H remove ll symbols L In order to work this problem, vlues must be specified for the geometry. Following problem 8.38, we will use the following geometry: b = ; c = 3; t 1 = t 2 = t; t w = 2t; H problem specifiction L Axis i 2 is symmetry xis for this section nd therefore the sher center lies on this xis Hx 3 k = L. To determine x 2 k it is only necessry to pply, determine the resulting sher flow, nd use moment equipollence to find the sher center. The sher flow is determined in problem 8.38 nd is repeted here. ü Find sher flow distribution on section: The centroid is on the horizontl centerline of the section which is symmetry xis. As result, H 23 =, nd since only is pplied, it is only necessry to clculte (knowledge of b is not required). 1 =Ε 12 3 t 1 + 1 12 3 t w + 1 12 3 t 2 + 2ct 1 2 7 3 3 t Ε 2 + 2bt 2 2 2 ü Sher flow f oi in open (cut) section: It is necessry to mke 2 cuts to crete n open section. Mking cuts t corner or junction simplify the selection of perimetric coordintes - see bove figure. In the nottion below, the first subscript refers to the xis nd the second to the perimetric coordinte. Q 21 =Εs 1 t 1 2 ; f o1 = Q 21 3s 1 14 2 Q 22 =Εs 2 t 1 2 + s 2 2 ;

2 p8.43-f9.nb f o2 = Q 22 + f o1 ê.s 1 c êê Simplify 3 I3 2 + s 2 s 2 2 M 14 3 Q 23 =Εs 3 t 1 2 ; f o3 = Q 23 + f o2 ê.s 2 êê Simplify 3 H3 s 3 L 14 2 Q 24 =Εs 4 t 2 2 ; f o4 = Q 24 3s 4 14 2 Q 25 =Εs 5 t 2 2 + s 5 2 ; f o5 = Q 25 + f o4 ê.s 4 b êê Simplify 3 I 2 + s 5 s 5 2 M 14 3 Q 26 =Εs 6 t 2 2 ; f o6 = Q 26 + f o5 ê.s 5 êê Simplify 3 H s 6 L 14 2 Q 27 =Εs 7 t w 2 + s 7 2 ; f o7 = Q 27 6 I 2 + s7 2 M s 7 7 3 ü Find closing sher flows f c1 nd f c2 from comptibility t cuts: c f o1 f c1 f o2 f c1 c f o3 f c1 f o7 + f c1 f c2 wrp1 = s 1 + s 2 + s 3 s 7 êê Simplify Gt 1 Gt 1 Gt 1 Gt w 15 f c1 + 7f c2 + 36 14 G t

p8.43-f9.nb 3 b f o4 + f c2 f o5 + f c2 b f o6 + f c2 f o7 + f c1 f c2 wrp2 = s 4 + s 5 + s 6 s 7 êê Simplify Gt 2 Gt 2 G t 2 G t w 7 f c1 + 49 f c2 + 6 14 G t 8f c1,f c2 < = 8f c1,f c2 <ê. Solve@8wrp1, wrp2 <, 8f c1,f c2 <D@@1DD : 123 364, 27 364 > ü Find totl sher flow: f 1 = f o1 f c1 êê Simplify 3 H 41 + 26 s 1 L 364 2 f 2 = f o2 f c1 êê Simplify 3 I37 2 + 26 s 2 26 s 2 2 M 364 3 f 3 = f o3 f c1 êê Simplify 3 H37 26 s 3 L 364 2 f 4 = f o4 + f c2 êê Simplify 3 H 9 + 26 s 4 L 364 2 f 5 = f o5 + f c2 êê Simplify 3 I17 2 + 26 s 5 26 s 2 5 M 364 3 f 6 = f o6 + f c2 êê Simplify 3 H17 26 s 6 L 364 2 f 7 = f o7 + f c1 f c2 êê Simplify 3 I25 2 + 26 s 7 26 s 7 2 M 182 3 ü Find sher center: The lternte method given in eq. 8.4 or 8.54-55 is much esier if equipollence is enforced t the top of the center web, thus eliminting the contributions of f 3, f 6 nd f 7 to the moment. We will use this s point "" in the following clcultions.

4 p8.43-f9.nb b = 5 6 c t 1 c + 2ct 1 2 + t 2 H bl + 2bt 2 b 2 ì HH2 c+ L t 1 + H2 b+ L t 2 + t w LêêSimplify x 2 = b ; H loction of "" t top of center web L c R 1 = f 1 s 1 9 182 R 2 = f 2 s 2 31 91 b R 4 = f 4 s 4 3 91 R 5 = f 5 s 5 16 91 M = R 1 cr 2 + R 4 + br 5 êê Simplify 139 182 x 2k = x 2 + M ê. 1 H sher center horiz. loction L 19 273 x 2k êê N H numeric result L.695971 x 2 x 2k êê N H sher center distnce to left of center web L.763736

Untitled-3 5 Find sher center: The lternte method given in eq. 8.4 or 8.54-55 is much esier if equipollence is enforced t the top of the center web, thus eliminting the contributions of f 3, f 6 nd f 7 to the moment. We will use this s point "" in the following clcultions. c In[28]:= b = t 1 c + 2ct 1 2 + t 2 H bl + 2bt 2 b 2 ì HH2 c+ L t 1 + H2 b+ L t 2 + t w LêêSimplify Out[28]= 5 6 In[29]:= x 2 = b ; H loction of "" t top of center web L c In[3]:= R 1 = f 1 s 1 Out[3]= 81 1456 In[31]:= R 2 = f 2 s 2 Out[31]= 493 1456 b In[32]:= R 4 = f 4 s 4 Out[32]= 41 1456 In[33]:= R 5 = f 5 s 5 Out[33]= 249 1456 In[34]:= M = R 1 cr 2 + R 4 + br 5 êê Simplify Out[34]= 277 364

6 Untitled-3 In[35]:= x 2k = x 2 + M ê. 1 H sher center horiz. loction L Out[35]= 79 192 In[36]:= x 2k êê N H numeric result L Out[36]=.723443 In[37]:= x 2 x 2k êê N H sher center distnce to left of center web L Out[37]=.76989

Problem 8.45 Strength of cnt. bem with C-chnnel section i 3 L P s 1 b i e 1 i 3 M K N i 2 h s 3 d P s2 In[38]:= Remove@"Globl` "D H remove ll symbols L In[39]:= L = 2.; h =.4; b =.2; t =.4; H bem & section geometry @md L In[4]:= Ε=73 1 9 ; σ y = 4 1 6 ; ν=.25; H mteril specs @SI unitsd L In[41]:= P = 5 1 3 ; H @knd L In[42]:= G = Ε ; H sher modulus L 2 H1 +νl (1) Find loc. & mg. of mx bending moment, sher, & torque: From sttics, the mximum bending moment for tip-loded cntilever is t the root. Both the sher nd torque re constnt long the length of the bem. Thus the criticl section is t the root. For the given geometry nd tip lod: In[43]:= 8M 2 mx = PL, mx = P, M 1 mx = P Hd el< H use list to group for ssignment L Out[43]= 81., 5, 5 Hd el< All other sectionl lods re zero. (2) Find xil nd sher distribution on the criticl section: Initil clcultions: In[44]:= e = 3b H sher center loction from web using eq.h8.41l L 6 + h ê b Out[44]=.75

2 Untitled-4 In[45]:= b = 2bt b ì H2 bt+ htl H centroid loction from web L 2 Out[45]=.5 In[46]:= =Ε 1 12 h3 t + 2bt h 2 2 H bending stiffness L Out[46]= 6.22933 1 6 In[47]:= H 11 = 1 3 G H2 b+ hl t3 H torsionl stiffness L Out[47]= 498.347 Bending stress clcultions: For purposes of clculting the xil nd sher stresses on the section, we will use the 3 perimetric coordintes s i in the figure. Recll tht s 1 = E M 2 x 3. In[48]:= σ 1 top =Ε M 2 mx h H bending stress in top flnge L 2 Out[48]= 2.34375 1 7 In[49]:= σ 1 web =Ε M 2 mx h 2 s 2 H bending stress in web L Out[49]= 1.17187 1 8 H.2 s 2 L In[5]:= σ 1 bot =Ε M 2 mx h 2 H bending stress in bottom flnge L Out[5]= 2.34375 1 7 Sher stress due to The sher stress is constnt through the wll thickness, t si = f i êt where the sher flow for C-chnnel is given by eqs. (8.26, 8.27 & 8.28) s: f 1 =- 1 2 Ehts 1 ê, f 2 =- 1 2 Es 2 t Hh - s 2 L ê nd f 3 = 1 2 Ehts 3 ê.

Untitled-4 3 In[51]:= f 1 = 1 2 Ε hts mx 1 ; H sher flow in top flnge L In[52]:= τ s1 = f 1 ê t H sher stress in top flnge L Out[52]= 1.17187 1 7 s 1 In[53]:= f 2 = 1 2 Ε s 2 t Hh s 2 L mx ; H sher flow in web L In[54]:= τ s2 = f 2 ê t H sher stress in web L Out[54]= 2.92969 1 7 H.4 s 2 L s 2 In[55]:= f 3 = 1 2 Ε hts 3 mx ; H sher flow in bottom flnge L In[56]:= τ s3 = f 3 ê t H sher stress in bottom flnge L Out[56]= 1.17187 1 7 s 3 Sher stress due to torque: The sher flow due to torsion is given by eq.(7.65) s t t = GtM 1 ê H 11 with right-hnd positive sense. In[57]:= τ t = GtM 1 mx ê H 11 H sher stress due to torque L Out[57]= 1.17187 1 9 H.75 + dl (3) Find P mx (d) using von Mises yield criterion: The xil nd sher stresses define plne stress problem with s 2 =. The von Mises equivlent stress must be computed s function of the perimetric coordintes long the flnges nd web. Since t t is of opposite sign on the opposite wlls of the section, the extreme sher stress is the sum of the mgnitudes of t s nd t t. In[58]:= σ e1 = Iσ 1 top M 2 + 3 HAbs@τ s1 D + Abs@τ t DL 2 H von Mises stress in top flnge L Out[58]= 5.49316 1 14 + 3 I1.17187 1 9 Abs@.75 + dd + 1.17187 1 7 Abs@s 1 DM 2

4 Untitled-4 In[59]:= σ e2 = Hσ 1 web L 2 + 3 HAbs@τ s2 D + Abs@τ t DL 2 H von Mises stress in web L Out[59]= - J3 I1.17187 1 9 Abs@.75 + dd + 2.92969 1 7 Abs@H.4 s 2 L s 2 DM 2 + 1.37329 1 16 H.2 s 2 L 2 N The bottom flnge is identicl to the top nd will not be clculted. Clerly, s e1 is mx for the lrgest s 1 which is t the corner, nd this must be equl to s e2 t the top of the web. As result, s e2 is the governing stress. For slender bem such s the present cse, the sher stress due to is smll compred to the xil stress. However, becuse the torsionl stiffness, H 11, is extremely smll for open sections, even smll torque will produce reltively lrge sher stresses which my dominte the equivlent stress. This is constnt stress over the entire section,so it preserves the symmetry of s e over the section. Thus, the extreme vlue of s e2 will occur t either t the end of the web, s 2 =, or t the midpoint, s 2 = hê2. Both re plotted below: In[6]:= se1 =σ e2 ê.s 2 ; se2 =σ e2 ê.s 2 h ê 2; H σ e2 t web top nd midpoints L In[61]:= Needs@"PlotLegends`"D In[62]:= Plot@8se1, se2<, 8d,, b<, AxesLbel 8"d", "σ e2 "<, PlotStyle 8Blck, Dshed<, PlotLegend 8"Web end", "Web mid"<, LegendPosition 8.7,.4<D 2.5 μ 1 8 s e2 2. μ 1 8 Out[62]= 1.5 μ 1 8 1. μ 1 8 5. μ 1 7 Web end Web mid.5.1.15.2 d In[63]:= 8se1, se2< ê. d H web middle governs L Out[63]= 91.5425 1 8, 1.54261 1 8 = In[64]:= 8se1, se2< ê. d e H web end governs L Out[64]= 92.34375 1 7, 2.2975 1 6 =

Untitled-4 5 In[65]:= 8se1, se2< ê. d b H web middle governs L Out[65]= 92.54799 1 8, 2.55748 1 8 =