Lagging Pendulum. Martin Ga

Similar documents
28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

S13 PHY321: Final May 1, NOTE: Show all your work. No credit for unsupported answers. Turn the front page only when advised by the instructor!

Problem 1. Mathematics of rotations

Chapter 4. Motion in Two Dimensions. Professor Wa el Salah

Classical Mechanics Ph.D. Qualifying Examination. 8 January, :00 to 12:00

Contents. Objectives Circular Motion Velocity and Acceleration Examples Accelerating Frames Polar Coordinates Recap. Contents

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Lecture 19: Calculus of Variations II - Lagrangian

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 3, 2017

P321(b), Assignement 1

Physics 351, Spring 2015, Homework #7. Due at start of class, Friday, March 6, 2015

Centripetal Force. Equipment: Centripetal Force apparatus, meter stick, ruler, timer, slotted weights, weight hanger, and analog scale.

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Physics Mechanics. Lecture 32 Oscillations II

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Contents. Contents. Contents

6-1. Conservation law of mechanical energy

PHYSICS. Chapter 8 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

11/17/10. Chapter 14. Oscillations. Chapter 14. Oscillations Topics: Simple Harmonic Motion. Simple Harmonic Motion

A-level Physics (7407/7408)

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Classical Mechanics. FIG. 1. Figure for (a), (b) and (c). FIG. 2. Figure for (d) and (e).

The... of a particle is defined as its change in position in some time interval.

Constrained motion and generalized coordinates

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION

PHYS-2010: General Physics I Course Lecture Notes Section VIII

Show all work in answering the following questions. Partial credit may be given for problems involving calculations.

1/3/2011. This course discusses the physical laws that govern atmosphere/ocean motions.

UPDATED: NOVEMBER A particle of mass m and energy E moving in one dimension comes in from - and encounters the repulsive potential:

Projectile Motion. directions simultaneously. deal with is called projectile motion. ! An object may move in both the x and y

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 6. Circular Motion and Other Applications of Newton s Laws

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Chapter 8. Dynamics II: Motion in a Plane

Chapter 4. Motion in Two Dimensions

AP Physics QUIZ Chapters 10

Oscillatory Motion SHM

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

2 We alsohave a second constant of the motion, the energy, H = 2 (M + m) _X 2 +mr cos # _X _ #+ 2 mr2 _ # 2 mgr cos # = constant : For small displacem

Chapter 14 Oscillations

DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS

Figure 5.16 Compound pendulum: (a) At rest in equilibrium, (b) General position with coordinate θ, Freebody

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Chapter 4. Motion in Two Dimensions

Rotational motion problems

7 Pendulum. Part II: More complicated situations

Physics 101 Discussion Week 12 Explanation (2011)

8.012 Physics I: Classical Mechanics Fall 2008

Chapter 14 Periodic Motion

UPDATED: OCTOBER Problem #1

Symmetries 2 - Rotations in Space

Physics I. Unit 1 Methods in Science (Systems of Units) Competencies (Do) Students should be able to demonstrate scientific methods.

Oscillations. Phys101 Lectures 28, 29. Key points: Simple Harmonic Motion (SHM) SHM Related to Uniform Circular Motion The Simple Pendulum

Simple and Physical Pendulums Challenge Problem Solutions

Simple Harmonic Motion Practice Problems PSI AP Physics B

Chapter 9 [ Edit ] Ladybugs on a Rotating Disk. v = ωr, where r is the distance between the object and the axis of rotation. Chapter 9. Part A.

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

Chapter 15 Periodic Motion

Chapter 14: Periodic motion

Mechanics Departmental Exam Last updated November 2013

Physics 351, Spring 2015, Homework #6. Due at start of class, Friday, February 27, 2015

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

AP Pd 3 Rotational Dynamics.notebook. May 08, 2014

STABILITY ANALYSIS OF DYNAMIC SYSTEMS

3 Space curvilinear motion, motion in non-inertial frames

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Exams will be returned on Tuesday. Apologies for the delay.

Chapter 2 PARAMETRIC OSCILLATOR

Physics 351, Spring 2015, Homework #5. Due at start of class, Friday, February 20, 2015 Course info is at positron.hep.upenn.

Question 1: A particle starts at rest and moves along a cycloid whose equation is. 2ay y a

Good Vibes: Introduction to Oscillations

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

8.012 Physics I: Classical Mechanics Fall 2008

PHYS 1114, Lecture 33, April 10 Contents:

Mechanics IV: Oscillations

MSMS Basilio Bona DAUIN PoliTo

Axis Balanced Forces Centripetal force. Change in velocity Circular Motion Circular orbit Collision. Conservation of Energy

Lecture Notes for PHY 405 Classical Mechanics

Diving in Artificial Gravity: A Memorable Lesson on Fictitious Forces. A. John Mallinckrodt Physics Department Cal Poly Pomona

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Lecture 1: Introduction and Review

Physics 351, Spring 2017, Homework #12. Due at start of class, Friday, April 14, 2017

AP Physics 1. April 11, Simple Harmonic Motion. Table of Contents. Period. SHM and Circular Motion

Chapter 5 Oscillatory Motion

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Phys 7221, Fall 2006: Midterm exam

Oscillations. Oscillations and Simple Harmonic Motion

Chapter 14 Oscillations

8.012 Physics I: Classical Mechanics Fall 2008

1 2 Models, Theories, and Laws 1.5 Distinguish between models, theories, and laws 2.1 State the origin of significant figures in measurement

Rotational Kinematics

Mechanics Lecture Notes

PHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYS 211 Lecture 12 - The Earth's rotation 12-1

Classical Mechanics Comprehensive Exam Solution

Ocean Modeling - EAS Chapter 2. We model the ocean on a rotating planet

PHYSICS 221, FALL 2009 EXAM #1 SOLUTIONS WEDNESDAY, SEPTEMBER 30, 2009

Chapter 8. Accelerated Circular Motion

Transcription:

02 Lagging Pendulum Martin Ga 1

Task A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which can have a smaller radius, under certain conditions. Investigate the motion and stable trajectories of the bob. 2

What does it look like? Stationary point 3

Lagging pendulum lag = phase lag regarding Lagging attachment pendulum point by almost π Stationary point 4

Apparatus Power source (adjustable ω) Motor Pendulum 5

Apparatus R Thread L Bob 6

ሷ 16 Analytical theory: circular trajectories ω Assumption: bob moves only in vertical plane R Frame of reference: rotating with the arm α L Force Angular of acceleration: Centrifugal the thread α α = ω 2 0 sin force α + ω 2 R L ω 0 = + sin α cos α g/l Gravitational force Gravity Centrifugal 7

Analytical theory: circular trajectories α ሷ [arb. u.] dependence of αሷ on α? -2-1 0 1 2 Equilibrium points α [rad] ω 0 = g/l αሷ α = ω 2 0 sin α + ω 2 R L + sin α cos α = 0 Equilibrium condition 8

Analytical theory: circular trajectories ω 0 = g/l αሷ α = ω 2 0 sin α + ω 2 R L + sin α cos α = 0 Equilibrium condition 9

Analytical theory: circular trajectories Equlibrium condition: sin α + ω2 R Centrifugal 2 + sin α cos α = 0 ω 0 L force ω 0 = g/l Two free parameters: ω/ω 0 and R/L R L Natural frequency (Depends on L) dependence of ω/ω 0 10

Equilibrium angles 16 1,6 1,2 α [rad] 1 st 0,8 0,4 0-0,4 0 5 2 nd ω ω 0-0,8-1,2-1,6 R L = 0,2 3 rd trajectory ω 0 = g/l 11

Spotted circular trajectories Observed Observed Not observed 12

Spotted circular trajectories Observed Observed Not observed Are the trajectories stable? 13

Are the trajectories stable? Pendulum lower potential energy We should also add 2 nd dimension We will plot total effective potential energy α ሷ [arb. u.] 2 nd : Lagging α [rad] -2-1 0 1 2 3 rd -2-1 0 1 2 3 rd 2 nd : Lagging Traditional α [rad] 2 nd trajectory: unstable energy [arb. u.] Traditional Angular acceleration Integration Potential energy 14

3D Energy plot in corotating frame 16 3 rd position Lagging position y Energy Unstable (2 nd dimension) Unstable (all dimensions) Traditional position Stable falls down View from side x 15

Results Stability analysis does not correspond with the experiment, where the lagging motion (2 nd position) is observed 16

Stabilizing effect of Coriolis force 16 Coriolis acceleration: a C = 2ω v Angular velocity of the rotating frame Vector product perpendicular to both ω and v Velocity of the bob in rotating frame Potential energy map a cor Large Coriolis force could act as a centripetal force (that has the same direction) Bob 17 Small

Stabilizing effect of Coriolis force 16 Coriolis acceleration: a C = 2ω v Angular velocity of the rotating frame Vector product perpendicular to both ω and v Well-known problem: stability of L4, L5 Lagrange points also stabilized by the Coriolis force Coriolis Singh, Jagadish, force and Jessica could Mrumun Begha. act "Stability as of a equilibrium points in the generalized perturbed restricted centripetal three-body problem." force Astrophysics and Space Science 331.2 (2011): 511-519. (that has the same direction) Photo credits: By Lagrange_points.jpg: created by NASAderivative work: Xander89 - Lagrange_points.jpg, CC BY 3.0, Velocity of the bob in https://commons.wikimedia.org/ rotating frame w/index.php?curid=7547312 Potential energy map a cor Bob 18 Large Small

How does Coriolis stabilize? Energy [arb. u.] φ Lagging position θ 19

How does Coriolis stabilize? Energy [arb. u.] φ Lagging position Stable θ Fits experiment 20

Could Coriolis force stabilize 3 rd position? Energy [arb. u.] 3 rd position Unstable θ φ Fits experiment 21

Overview: predictions and experiment 16 1 st 2 nd 3 rd trajectory Position: Theoretical predictions: Stable Stable Unstable Experiment: Observed Observed Not observed Qualitative predictions Done Quantitative predictions 22

ω [rad.s-1] 16 Lagging angle: theory experiment 20 18 16 14 12 10 8 6 4 2 0 Theory Experiment 3 5 7 9 11 13 15 17 θ [deg] 23

Task A pendulum consists of a strong thread and a bob. When the pivot of the pendulum starts moving along a horizontal circumference, the bob starts tracing a circle which can have a smaller radius, under certain conditions. Investigate the motion and stable trajectories of the bob. tracing a circle smaller radius 24

CONDITIONS OF LAGGING MOTION 1. Parameters of pendulum: R/L, ω/ω 0 2. Initial conditions 25

Parameters: ω/ω 0 by R/L α [rad] 1,6 1,2 Equilibrium angles We can calculate critical angular velocity from theory 0,8 potential energy 0,4 ω E[arb. u.] 0 ω 0-0,4-0,8 0 5 inflex point equilibrium θ[rad] -1,2-1,6 Only 1 position Lagging position exists Critical angular velocity (ω c ) 26

Parameters: ω/ω 0 by R/L α [rad] 1,6 1,2 Equilibrium angles We can calculate critical angular velocity from theory 0,8 potential energy 0,4 ω E[arb. u.] 0 ω 0-0,4-0,8 0 5 θ[rad] -1,2-1,6 Only 1 position Critical angular velocity (ω c ) Lagging position exists equilibrium inflex point Can be solved only numerically conditions: E α ቚ ω c = 0 2 E α 2 ቚ ω c = 0 27

No solution 16 Critical omega theoretical prediction ω c /ω 0 10 9 8 7 6 5 4 3 2 1 0 Critical omega tends to diverge when R L 1 0 0,2 0,4 0,6 0,8 1 1,2 R/L 28

No solution 16 Critical omega theoretical prediction ω c /ω 0 10 9 8 7 6 5 4 3 2 1 0 Critical omega tends to diverge when R L 1 Always-unstable region R L coriolis R L < 1 0 0,2 0,4 0,6 0,8 1 1,2 sum gravity unstable region R/L 29

ω [rad.s-1] Critical angular velocity: theory-experiment 16 16 14 12 10 Theory Experiment (one position) Experiment (two positions) 8 6 4 2 0 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 L [m] 31

Conditions for parameters 1. Ratio of lengths: R L < 1 R L 2. Angular velocity: ω > ω c Where ω c is a function of R L and ω 0 = g L Conditions: parameters necessary for lagging motion 32

Initial conditions: time evolution In the beginning the motion is jerky (trembling) Later, bob stabilizes to lagging motion Stationary point Time-lapse video: trembling lagging Lagging motion: Long-exposure photograph Motion is being stabilized by air drag 33

Effect of air drag Bob parameters: mass = 1.29 ± 0.02 g diameter = (1.3 ± 0.1)cm a drag = c = 1 2 CSρ m 1 2 CSρ m v2 Object Effective drag coefficient Bob 0,03 m 1 Thread 0,10 m 2 L (L 0. 5m 1 m) Thread has also a great affect on damping 34

Numerical simulation We are unable to solve system analytically Numerical simulation from first principles Inertial frame of reference used Constraint modelled using Lagrange multipliers Air drag of the thread computed (may have different direction than that of the bob) (Spherical coordinates omitted due instabilities near poles) 35

Numerical simulation Runge-Kutta-Fehlberg algorithm (4 th order method) Computes both 4 th order and 5 th order Error estimate (difference between 4 th and 5 th order) Adapts stepsize if the error is too big Despite these upgrades: - Numerical instability (violation of constraint) Thread exchanged with very hard spring The lenght of thread stays constant in simulation & spring does not influence character of motion 36

Example output from simulation Trembling (initial motion) Lagging motion (relaxed motion) 37

θ [rad] Air drag: stabilization 0. 2 0.21 0.2 Parameters: R/L 0.114 ω = 4ω 0 θ initial = 0.15 'uhol.txt' using 1:2 0.19 0. 175 0.18 0.17 0.16 0. 15 0.15 0.14 3.3 π + 0. 1 3.25 3.2 π 3.15 3.1 φ [rad] Δθ 0.005 Dissipation ~15s Time Trembling Lagging 0 10 20 30 40 50 60 'uhol.txt' using 1:3 Stabilization Δφ 0.03 π 0. 1 3.05 ~15s Time 3 0 10 20 30 40 50 60 (Boundary is only qualitative and approximate) 38

Simulation: equilibrated angles θ 1,2 1 0,8 0,6 Phase transition (critical ang. velocity) 0,4 0,2 0-0,2-0,4-0,6 0 0,5 1 1,5 2 2,5 Initial angle (in simulation) Changes in θ created by drag are negligible 39

Initial conditions: angles 0,3 9 1,256637 1,884956 2,513274 3,141593 3,769911 4,39823 5,026548 Theta/Phi 5,654867 0 0,628319 1,256637 1,884956 2,513274 3,141593 3,769911 4,39823 5,026548 5 0,321751 θ [rad] 2, 0,289575 Traditional motion 0, 0,2574 0, 0,225225 0, 0,19305 Lagging 0, 0,160875 motion 0, 0,1287 0, 0,096525 0, Initial conditions 0,06435 0, 0,032175 0, 0, 010403 0, 096419 0, 077109 0, 010527 0, 044923 0, 048726 0, 151186 0, 040302 0, 053268 0, 211449 0, 061995 0, 033152 0, 079396 0, 011264 0, 001085 0, 134903 0, 013664 0, 209928 0, 110139 0, 024979 0, 014184 0, 118043 0, 065815 0, 058689 0, 097529 0, 048041 0, 038405 0, 087161 0, 010859 0, 054784 0, 119199 0, 089442 0, 095403 0, 052005 0, 083949 0, 125302 0, 195428 0, 046741 0, 085693 0, 095388 0, 086311 0, 104164 0, 006931 0, 1133 0, 206472 0, 172591 0, 080089 0, 107569 0, 06254 0, 085059 0, 090699 0, 0335 0, 134423 0, 162064 0, 088959 0, 109716 0, 12255 0, 025593 0, 081467 0, 060877 0, 067972 0, 148456 0, 06257 0, 01535 0, 134667 0, 133095 0, 019624 0, 041556 0, 01244 0, 096231 0, 156337 0, 039375 0, 101012 0, 151915 0, 140947 0, 073308 0, 029974 0, 051288 0, 121092 0, 1593 0, 114823 0, 150937 0, 158564 0, 147999 0, 122428 0, 106006 0, 114818 0, 140464 0, 158217 0, 154267 0, 15403 0, 15403 0, 15403 0 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 φ [rad] π 0 π v initial = 0 818721 0, 010403 0, 096419 0, 077109 0, 010527 0, 044923 0, 048726 0, 151186 0, 040302 213168 0, 211449 0, 061995 0, 033152 0, 079396 0, 011264 0, 001085 0, 134903 0, 013664 158319 0, 110139 0, 024979 0, 014184 0, 118043 0, 065815 0, 058689 0, 097529 0, 048041 152461 0, 087161 0, 010859 0, 054784 0, 119199 0, 089442 0, 095403 0, 052005 0, 083949 067673 0, 195428 0, 046741 0, 085693 0, 095388 0, 086311 0, 104164 0, 006931 0, 1133 198902 0, 172591 0, 080089 0, 107569 0, 06254 0, 085059 0, 090699 0, 0335 0, 134423 157745 0, 088959 0, 109716 0, 12255 0, 025593 0, 081467 0, 060877 0, 067972 0, 148456 042191 0, 01535 0, 134667 0, 133095 0, 019624 0, 041556 0, 01244 0, 096231 0, 156337 075842 0, 101012 0, 151915 0, 140947 0, 073308 0, 029974 0, 051288 0, 121092 0, 1593 146003 0, 150937 0, 158564 0, 147999 0, 122428 0, 106006 0, 114818 0, 140464 0, 158217 15403 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 0, 15403 40

Initial conditions: angles v = 0 [rad] 0,35 0,30 Theta/Phi 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 Theta/Phi 0,5 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,388 2, 817119346 2, 817128346 2, 817123346 2, 817127346 2, 817119346 2, 817127346 2, 817127346 2, 817136346 2, 817128346 2, 817136346 0,388 2, 817128346 2, 817128346 2, 817127346 2, 817120346 2, 817128346 2, 817136346 2, 817128346 2, 817127346 2, 817136346 2, 817128346 2, 817136346 2, 817136346 0,376 2, 817120346 2, 817136346 2, 817127346 2, 817127346 2, 817128346 2, 817128346 2, 817128346 2, 817136346 2, 817127346 2, 817136346 0,376 2, 817128346 0,364 Traditional 2, 817136346 2, 817130346 2, 817124346 2, 817136346 2, 817123346 2, 817123346 2, 817130346 2, 817127346 2, 817136346 2, 817119346 2, 817136346 2, 817127346 2, 817128346 2, 817128346 2, 817137346 2, 817128346 2, 817137346 2, 817136346 2, 817136346 2, 817123346 2, 817123346 0,364 motion 2, 817136346 2, 817128346 2, 817127346 2, 817123346 2, 817136346 2, 817137346 2, 817128346 2, 817128346 2, 817136346 2, 817127346 2, 817136346 2, 817119346 0,352 2, 817127346 2, 817136346 2, 817128346 2, 817136346 2, 817127346 2, 817127346 2, 817128346 2, 817136346 2, 817136346 2, 817123346 0,352 2, 817128346 2, 817128346 2, 817119346 2, 817123346 2, 817136346 2, 817136346 2, 817130346 2, 817129346 2, 817128346 2, 817128346 2, 817136346 2, 817136346 0,34 2, 817123346 2, 817128346 2, 817123346 2, 817136346 2, 817128346 2, 817124346 2, 817128346 2, 817119346 2, 817128346 2, 817128346 0,34 2, 817123346 2, 817136346 2, 817136346 2, 817123346 2, 817128346 2, 817123346 2, 817136346 2, 817130346 2, 817123346 2, 817130346 2, 817136346 2, 817123346 0,328 0, 163944346 0, 223560654 2, 817123346 2, 817127346 2, 817128346 2, 817121346 2, 817127346 2, 817129346 2, 817128346 2, 817136346 0,328 2, 817128346 2, 817128346 2, 817123346 2, 817131346 2, 817130346 2, 817128346 2, 817123346 2, 817119346 2, 817136346 2, 817127346 2, 817128346 0, 041997346 0,316 0, 122314346 0, 212172346 0, 166697346 0, 097147654 2, 817136346 2, 817128346 2, 817136346 2, 817128346 2, 817137346 2, 817127346 0,316 2, 817136346 2, 817123346 2, 817136346 2, 817127346 2, 817127346 2, 817127346 2, 817129346 2, 817136346 0, 224980654 0, 081378346 0, 213442346 0, 186003346 0,304 0, 027059654 0, 045459346 0, 124751346 0, 193572346 0, 219391346 0, 156782346 0, 017635346 0, 139999654 0, 209342654 0, 010972346 0,304 227523346 0, 227163346 0, 151246346 0, 160611654 0, 202834654 0, 041114654 0, 100772346 0, 194604346 0, 222528346 0, 170385346 0, 091256346 0, 012226346 0,292 0, 140728654 0, 083687654 0, 027518654 0, 027766346 0, 082105346 0, 130517346 0, 172570346 0, 201951346 0, 219466346 0, 222827346 0,292 Lagging motion 222203346 0, 222177346 0, 222655346 0, 222811346 0, 215780346 0, 194313346 0, 157106346 0, 110456346 0, 059533346 0, 001893346 0, 061606654 0, 115149654 0,28 0, 207364654 0, 178945654 0, 142864654 0, 101974654 0, 061495654 0, 026127654 0, 007344346 0, 037577346 0, 057921346 0, 070705346 0,28 076733346 0, 076448346 0, 074993346 0, 065983346 0, 048785346 0, 025059346 0, 006986654 0, 046429654 0, 085465654 0, 122325654 0, 154236654 0, 184826654 0,5 0 φ [rad] 0,5 41

Conclusion 1. Lagging motion at a potential maximum Stabilized by Coriolis force 2. Conditions for lagging motion 3. 3D equations of motion Phase diagrams predicted 42

Thank you for your attention! 16 1. Lagging motion at a potential maximum Stabilized by Coriolis force 2. Conditions for lagging motion 3. 3D equations of motion Phase diagrams predicted 43

02 Lagging Pendulum Martin Gazo 44

APPENDICES 45

What is Coriolis force? Bob moves away from the center Coriolis acceleration: a C = 2ω v Δr 46

What is Coriolis force? Bob moves away from the center F c Velocity change Δv = ωδr (in tangential direction) Coriolis acceleration: a C = 2ω v Δr Fictitious force acting sideways 47

Coriolis on parabolic potential Circular trajectories around equilibrium Ω ω 2 1,5 1 0,5 Centripetal Ω 2 r = C 2 r + 2 ω (Ωr) Centrifugal + Gravity (2 nd order Taylor expansion of potential) Ω Solution: Coriolis angular frequency of oscillation around equilibrium Ω = ω ± ω 2 C 2 0 0 0,2 0,4 0,6 0,8 1 1,2 Slope: C 2 /ω 2 No solution for steep potential 48

Simulation: Equations of motion 16 Lagrange approach Spherical coordinates θ, φ φ ሷ ~ 1 sin θ Numerically unstable near south pole Cartesian coordinates x, y, z Non-conservative forces (not included in potential energy; e.g. air drag) Lagrange multiplicator λ = m 2L 2 (gz x ሶ + ωrsinωt 2 yሶ ωrcosωt 2 zሶ 2 ω 2 R cosωt x Rcosωt + sinωt(y Rsinωt) +F Vx x R cos ωt + F Vy y R sin ωt + F Vz z 49

Fundamental equations 16 Definition of Lagrangian Kinetic and (total) potential energy For Lagrangian applies: If there are other forces (not yet included) then: Arbitrary coordinate Sum of all (generalized) forces which have not been included yet in potential energies 51 51

Fundamental equations 16 Definition of Lagrangian Kinetic and (total) potential energy Lagrange multiplier Constraint equation: Determines area where there the thread could be located (because of configuration in which it is) 52 52

Fundamental equations 16 Kinetic energy Constraint equation (total) potential energy Lagrange multiplier continuing Other two coordinates will be derived analogically 53 53

Fundamental equations 16 Values of forces in particular coordinates Lagrange multiplier - needed to be evaluated External forces - for example drag making derivatives 54 54

Let us derive λ first 16 modifying making a derivative once more modifying, marking part of the expression by 55 55

..now,,a 16 Defining Accelerations in particular coordinates 5656

..continuing with λ 16 addition modifying 57 57

Unstable motion 16 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 θ avg 0 5 10 15 20 25 Highly-unstable - Unstable in φ angle ω/ω 0 Zig-zag motion View from outside 58

Variation on textbook problem Special case: R = 0 Unstable R/L = 0 R/L = 0,001 R/L = 0,01 59

3D Energy plot 3 rd position Lagging position φ θ = 0 Energy Unstable (2 nd dimension) Unstable (all dimensions) Traditional position Stable 0 θ 60

Stability analysis of found positions Energy Total potential energy in the reference frame of arm [Arbitrary units] L = 0,3m R = 0,1m ω = 10rad. s 1 16 Color scale 61