Red veze za benzen. Slika 1.

Similar documents
Chapter 10 Chemical Bonding II

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Molecular Geometry and Bonding Theories

Page III-8-1 / Chapter Eight Lecture Notes MAR. Two s orbitals overlap. One s & one p. overlap. Two p orbitals. overlap MAR

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #5. While you wait, please complete the following information:

Chapter 10 Theories of Covalent Bonding

Chapter 3. Orbitals and Bonding

Chapter 9. Covalent Bonding: Orbitals

Ch. 9- Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories

Molecular Orbital Theory

Chapter 9 - Covalent Bonding: Orbitals

Chapter 10: Chemical Bonding II. Bonding Theories

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Covalent Bonding: Orbitals

Molecular Bond Theory

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 12: Chemical Bonding II: Additional Aspects

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

COVALENT BONDING: ORBITALS

General Chemistry. Contents. Chapter 12: Chemical Bonding II: Additional Aspects What a Bonding Theory Should Do. Potential Energy Diagram

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

Valence Bond Theory - Description

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation

Chapter 14: Phenomena

Can atomic orbitals explain these shapes or angles? What s in Chapter 9: Shapes of molecules affect: reactivity physical properties

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals.

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #5 KEY. While you wait, please complete the following information:

CHEMISTRY - ZUMDAHL 2E CH.4 - MOLECULAR STRUCTURE AND ORBITALS.

Homework 08 - Bonding Theories & IMF

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound.

Chapter 10. VSEPR Model: Geometries

Chapter 9 Molecular Geometry and Bonding Theories

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

PHYSICAL CHEMISTRY I. Chemical Bonds

CHEMISTRY - MCMURRY 7E CH.7 - COVALENT BONDING AND ELECTRON DOT STRUCTURES

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory

Structure and Bonding of Organic Molecules

Hybridization and Molecular Orbital (MO) Theory

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory;

Symmetry and Molecular Orbitals (I)

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Section 8.1 The Covalent Bond

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

Chapter 10. VSEPR Model: Geometries

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chemistry Lecture Notes

Molecular Geometry and Bonding Theories. Chapter 9

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Molecular-Orbital Theory

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

Essential Organic Chemistry. Chapter 1

Organic Electronic Devices

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

How Does Molecular Orbital Theory Explain Ionic And Covalent Bonding

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 4. Molecular Structure and Orbitals

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

William H. Brown & Christopher S. Foote

Lecture Notes D: Molecular Orbital Theory

Molecular Structure and Orbitals

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Its Bonding Time. Chemical Bonds CH 12

MOLECULAR STRUCTURE. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B. Molecular Structure - B

CHEMISTRY 112 LECTURE EXAM II Material

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

like carbon, has fewer than an octet. It is simply less likely but still imperative to draw.

PG-TRB MO & VB THEORY. POLYTECHNIC-TRB MATERIALS MATHS/COMPUTER SCIENCE/IT/ECE/EEE MECH/CIVIL/CHEMISTRY/PHYSICS ENGLISH /AVAILABLE.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

Name. CHM 115 EXAM #2 Practice KEY. a. N Cl b. N F c. F F d. I I e. N Br. a. K b. Be c. O d. Al e. S

Covalent Compounds: Bonding Theories and Molecular Structure

Carbon and Its Compounds

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

What Do Molecules Look Like?

Homework #2. Chapter 14. Covalent Bonding Orbitals

What are we going to learn today?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Molecular Shapes and VSEPR (Valence Shell Electron Pair Repulsion Theory)

Contents. Preface to the Second Edition. Acknowledgments

Valence Bond Model and Hybridization

VSEPR Model. Valence-Shell Electron-Pair Repulsion Bonds (single or multiple) and lone pairs are thought of as charge clouds

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Molecular shape is determined by the number of bonds that form around individual atoms.

Chapter 9: Molecular Geometry and Bonding Theories

Transcription:

Red veze za benzen Benzen C 6 H 6 je aromatično ciklično jedinjenje. Njegove dve rezonantne forme (ili Kekuléove structure), prema teoriji valentne veze (VB) prikazuju se uobičajeno kao na slici 1 a), gde su jednostruka i dvostruka veza naizmenično raspoređene u prstenu, a takođe koristi se i prikaz na slici 1b) koji proizilazi iz MO teorije i označava da je 6 π elektrona delokalizovano po celom prstenu Slika 1. Dve rezonantne forme benzena prema VB teoriji su takođe prikazane na slici 2. Prema VB opisu, svaki C atom u benzenu je sp 2 hibridizovan, a ceo molekul je planaran. Svaki C atom povezan je sigma vezom sa dva susedna C atoma i sa jednim H atomom. Na svakom C atomu ostaje po jedna nehibridizovana 2p z orbitala i po jedan zaostali valentni elektron u svakoj orbitali (slika 2). Prema VB teoriji, parovi susednih 2p z orbitala i 6 preostalih elektrona okupiraju regione preklapanja formirajući tri π veze na jedan ili drugi način prikazan na slici 2 (odnosno šematski na slici 1 a) Slika 2. VB prezentacija benzena.

Eksperimentalne studije strukture benzena pokazale su da on ne sadrži naizmenične proste i dvogube CC veze. Uobičajena dužina C C jednostruke veze je 1.54 Å, a dužina C=C dvostruke veze je 1.34 Å. Svih šest CC veza u benzenu su iste dužine, 1.39 Å, između dužine jednostruke i dvostruke veze. Ovo je dobro objašnjeno MO teorijom, koja predviđa da se šest 2p z orbitala C atoma preklapaju i mešaju formirajući tri π-vezivne i tri π-antivezivne molekulske orbitale. Na primer, najjače vezujuća π molekulska orbitala u benzenovom π MO sistemu je ona prikazana na slici 3. Šest π elektrona okupiraju tri vezivne molekulske orbitale ovog delokalizovanog sistema, odnosno, ovi elektroni su raspoređeni kroz molekul kao celinu, iznad i ispod ravni koju formiraju σ veze. Ovo rezultuje u identičnom karakteru svih CC veza u benzenu. Svaka CC veza ima red veze 1,5. MO prezentacija proširenog (delokalizovanog) π sistema (Slika 3) je ista kao ona koja se dobija usrednjavanjem dve rezonantne strukture iz teorije valentne veze. Slika 3. MO prezentacija benzena. U benzenu, 6 π elektrona dele 6 ugljenikovih atoma, tako da svaki ugljenikov atom ima polovinu π veze i jednu σ vezu. Odatle je red veze benzena 1,5 za svaku vezu.

Slika 3. Kompjuterska prezentacija jedne od molekulskih orbitala benzena. Benzen ima 6 π molekulskih orbitala, (koje sadrže 6 π-elektrona), tri vezivne i tri antivezivne, koje nastaju iz 6 p z orbitala atoma ugljenika. Oblik ovih 6 π-molekulskih orbitala i relativan raspored njihovih energija prikazan je na slikama 4 i 5. Gornji par vezivnih degenerisanih orbitala predstavljaju najviše popunjene molekulske orbitale (HOMO) benzena. π elektroni su delokalizovani kroz ceo prsten ugljenikovih atoma. Slika 4. Šest π-molekulskih orbitala benzena

Slika 5. Šest π-molekulskih orbitala benzena. Sa slike 5 može se videti da za energetski najnižu orbitalu, π 1, kooeficijenti orbitale su takvi da je vezivni karakter između svaka dva susedna C atoma podjednak. U π 2 orbitali vezivanje se javlja samo između atoma C 2 and C 3 i između atoma C 5 and C 6, pošto su koeficijenti za atome C 1 i C 4 nula. U orbitali π 3, C 1 je vezan sa C 2 i C 6, odnosno C 4 je vezan sa C 3 i C 5, a postoje anti-vezivne interakcije između C 2 and C 3 i između C 5 i C 6. Otuda, ako razmatramo par orbitala π 2 i π 3 njihov ukupan doprinos CC π vezivanju je podjednak za svaku vezu. Dakle, pošto ima u benzenu tri zauzete vezivne orbitale i 6 CC veza - π red veze je 1 / 2.

Bond order is a term used to determine the number of bonds in a covalent bond formation. For example, when Nitrogen forms a triple bond with another Nitrogen atom the bond order of the molecule is 3. Similarly, the bond order between a carbon and hydrogen atom (C-H) is 1. Bond order however, is not always a whole number, it can be a fraction as well. The bond order of resonating structures such as benzene is a fraction. The bond order also determines the stability of a bond. Bond order is directly proportional to the energy required to break the bond, that is the more the bond order higher is the energy required to break it. Bond Order Formula Bond order is a concept very commonly used in molecular orbital theory. According to this theory, bond order is half of the difference between the number of bonding electrons and the number of antibonding electrons. Bond Order = ½ (number of bonding electrons - number of antibonding electrons) Before calculating bond order, you must know what these bonding and antibonding electrons are. Bonding and antibonding orbitals are formed when two atoms combine to form a molecule. The bonding is governed by Pauli's Exclusion Principle, which states that no two electrons can have the same quantum numbers that is n, l, m, s and they must be different for the electrons to have opposite spins. The antibonding orbitals, as the name suggests, are at a higher energy level and are unstable and do not support bond formation, electrons in this orbital are the antibonding electrons. Similarly, bonding electrons, in very simple words are electrons in the binding orbitals, which are at a lower and stable energy state and therefore, support binding. Knowing the structures and placing the electrons in correct orbitals can help determine the electrons in the bonding or antibonding orbitals. How to Calculate Bond Order Calculating bond order can be understood only when you are clear with molecular orbital theory and the orbital structures of atoms. With the help of following examples, we can learn how to find bond order. Bond Order of C 2 - You must know the number of electrons in the bonding and antibonding orbitals. A clue to find this out is to draw an orbital structure and determine the number of electrons in each. In the case of C 2 - there is an extra electron in the bonding orbital. Thus, after applying the formula given above, Bond order = ½ (9-4) = 2.5 Bond Order of N 2 + and N 2 - The bond order for both these is 2.5 because, in both cases there is an unpaired electron either in the bonding or antibonding orbital, reducing the bond order by half. Bond Order for Benzene Benzene is an aromatic cyclic compound and therefore has resonance structures. In benzene, 6 pi electrons are shared by 6 carbon atoms, thus every carbon has half a pi bond and one

sigma bond. The bond order of benzene is therefore, 1.5 for each bond. Bond Order for Diatomic Molecule Linus Pauling, derived a formula to determine the bond order, which was later realized, can only be applied to diatomic molecules. It is given as, Bond order(s ij ) = exp[r ij - d ij / b] Here, R ij stands for experimentally measured bond length d ij stands for the single bond length and 'b' is a constant, calculated by Pauling as 0.353 http://www.scribd.com/doc/22888920/9-molecular-orbitals-in-chemical-bonding