Coupling Reactions with Alkyl Halides. Lizzie O Bryan Literature Seminar January 31, 2008

Similar documents
Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Nickel-Catalyzed Reductive Cross-Electrophile-Coupling Between Aryl and Alkyl Halides

Ligand Effects in Nickel Catalysis. Anthony S. Grillo Chem 535 Seminar October 22, 2012

Modern Synthetic Methods

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Direct Catalytic Cross-Coupling of Organolithium

Asymmetric Suzuki Cross-Couplings of Activated Secondary Alkyl Electrophiles: Arylations of Racemic - Chloroamides

Asymmetric Palladium Catalyzed Cross-Coupling Reactions. Topic Talk September 4 th, 2014 Morken Lab Emma Edelstein 1

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

Cross-Coupling Chemistry at Mononuclear and Dinuclear Nickel Complexes

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

A Stille or Suzuki reaction is a good choice for this coupling O O because they are functional group tolerant, no radical chemistry F

Organic Chemistry Laboratory Summer Lecture 6 Transition metal organometallic chemistry and catalysis July

Short Literature Presentation 10/4/2010 Erika A. Crane

Chem 634. Metal Mediated Substitution Chemistry. Reading: Heg Ch 1 2 (handout), CS-B 7.1, , 11.3, Grossman Ch 6

Zr-Catalyzed Carbometallation

Ate Complexes for Catalytic C-C Bond Forming Reaction 1/13

Enantioselective Protonations

CHEM 344 Organometallic Chemistry Practice Problems (not for credit)

Organic Tutorials 3 rd Year Michaelmas Transition Metals in Organic Synthesis: (General paper level) ! 1! Reading

Functionalization of C O Bonds. Stefan McCarver. MacMillan Lab Group Meeting

Additions to Metal-Alkene and -Alkyne Complexes

Recent Developments in Alkynylation

Supporting Information

Palladium-Catalyzed Alkylarylation of Acrylamides with

Electrophilic Carbenes

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Iron Catalysed Coupling Reactions

Rhodium Catalyzed Alkyl C-H Insertion Reactions

VI. Metal alkyls from oxidative addition / insertion

Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Ready; Catalysis Conjugate Addition

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Citation. As Published Publisher. Version. Accessed Thu Jan 11 23:13:40 EST 2018 Citable Link Terms of Use. Detailed Terms

Highly Efficient, Convergent, and Enantioselective Synthesis of Phthioceranic Acid

Use of Cp 2 TiCl in Synthesis

Tips for taking exams in 852

Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides

A Tandem Semipinacol Rearrangement/Alkylation of a-epoxy Alcohols: An Efficient and Stereoselective Approach to Multifunctional 1,3-Diols

Hybridization of Nickel Catalysis and Photoredox Catalysis. Literature seminar#1 B4 Hiromu Fuse 2017/02/04(Sat)

Bifunctional Asymmetric Catalysts: Design and Applications. Junqi Li CHEM Sep 2010

Development of Chiral Phosphine Olefin Ligands and Their Use in Asymmetric Catalysis

Chiral Bronsted Acids as Catalysts

Spiro Monophosphite and Monophosphoramidite Ligand Kit

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Organocopper Reagents

Nucleophilic Fluorination. Souvik Rakshit Burke group Literature Seminar July 13, 2013

"-Amino Acids: Function and Synthesis

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Recent advances in transition metal-catalyzed or -mediated cyclization of 2,3-allenoic acids: New methodologies for the synthesis of butenolides*

Sonogashira: in situ, metal assisted deprotonation

Organocopper Chemistry

The C-X bond gets longerand weakergoing down the periodic table.

Palladium-Mediated Functionalization of Heteroaromatic Cations: Comparative Study on Quinolizinium Cations

12.5 Organometallic Compounds

Oxidative Addition and Reductive Elimination

Asymmetric Radical Reactions. Zhen Liu 08/30/2018

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Name: Unit 3 Packet: Activation Energy, Free Radical Chain Reactions, Alkane Preparations, S N 2, E 2

The mechanism of Ni(iPr pybox) complexes as asymmetric Negishi C C coupling catalysts

Functionalized main-group organometallics for organic synthesis*

Dual Role of Silanol Groups in Cyclopropanation and Hiyama-Denmark Cross-Coupling Reactions

Nickel-Catalyzed Three-Component [3+2+2] Cocyclization of Ethyl Cyclopropylideneacetate and Alkynes

Carbonyl Ylide Cycloadditions

Reporter: You Lin. Supervisor: Prof. Yang Prof. Chen Prof. Tang

Organomagnesium (Grignard) and organolithium reagents

Suggested solutions for Chapter 40

Denmark Group Meeting. & Electrophilic rearrangement of amides

Chapter 12. Alcohols from Carbonyl Compounds Oxidation-Reduction & Organometallic Compounds. Structure

Mechanistic Insides into Nickamine-Catalyzed Alkyl-Alkyl Cross-Coupling Reactions

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

CHEM 203. Final Exam December 18, 2013 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CHEM 203. Final Exam December 18, This a closed-notes, closed-book exam. You may use your set of molecular models

!"#$%&&'!&(!)*+,-./!01"2.3$*4!"!#$!%$!%&'(') *+,!-$!%&'(').!'/ *&%&*,$.&-!"!3$!4$!5)01+!.*!06'2

Asymmetric Catalysis by Lewis Acids and Amines

Stereoselective reactions of enolates: auxiliaries

Catalytic Asymmetric Addition to Ketones Using Organozinc Reagents

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

Asymmetric Nucleophilic Catalysis

Total Syntheses of Minfiensine

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis

Mild Cobalt-Catalyzed Hydrocyanation of Olefins with Tosyl Cyanide

Functionalized Organometallic Reagents

Palladium-catalyzed alkylation of unactivated olefins*

Homogeneous Catalysis - B. List

Catalytic Asymmetric Acyl Halide-Aldehyde Cyclocondensation Reactions of Substituted Ketenes

Regioselective Reductive Cross-Coupling Reaction

Lecture 6: Transition-Metal Catalysed C-C Bond Formation

Chem 232. Problem Set 4. Table. Substrate Types and the Choice of S N 1 of S N 2

Highlights of Schmidt Reaction in the Last Ten Years

Measuring enzyme (enantio)selectivity

transmetallate displace ox. add. M + (insert) (β-elim.)

Journal Club Presentation by Remond Moningka 04/17/2006

R 2 R 4 Ln catalyst. This manuscript describes the methods for the synthesis and application of group 4 metallocene bis(trimethylsilyl)acetylene

Copper-catalyzed cleavage of benzyl ethers with diacetoxyiodobenzene and p-toluenesulfonamide

Transition Metal-Catalyzed Carbon-Carbon Bond Cleavage (C-C Activation) Group Meeting Timothy Chang

Catellani Reaction (Pd-Catalyzed Sequential Reaction) Todd Luo

Asymmetric Synthesis of Medium-Sized Rings by Intramolecular Au(I)-Catalyzed Cyclopropanation

Titanacyclopropanes as versatile intermediates for carbon carbon bond formation in reactions with unsaturated compounds*

Transcription:

Recent Advances in Nickel Catalyzed Cross Coupling Reactions with Alkyl Halides Lizzie Bryan Literature Seminar January 31, 2008

Transitions Metal Catalyzed Cross Coupling Reactions Extensively used for aryl-aryl, aryl-alkenyl, alkenyl-alkenyl couplings High functional group compatibility Limited use of alkyl electrophiles Cross-Coupling Reactions: A Practical Guide (Ed.: N. Miyaura), Topics in Current Chemistry Series 219; Springer-Verlag, New York, 2002.; Metal-Catalyzed Cross-Coupling Reactions, (Eds.: A. de Meijere, F. Diederich), Wiley-VCH, New York, 2004.

Cross Coupling Reactions between sp 3 Carbons Wurtz Reaction: rganomagnesium or organolithium reagents: R M R' X R' R M=Li,MgX cat. Cu I R M R' X R' R M=Li,MgX rganocuprates: Lipshutz, B. H.; Sengupta, S. rg. React. 1992, 41, 135-631. Comprehensive rganic Synthesis, Vol. 3 (Eds.: B. M. Trost, I. Fleming), Pergamon Press. xford 1991, 413-434.

Transition Metal Catalysis for the Cross Coupling of sp 3 Carbons The efficient formation of C(sp 3 )-C(sp 3 ) bonds from organic electrophiles and mild nucleophiles compatible with a wide range of functional groups represents one of the subjects remaining to be solved in transition metal catalyzed synthetic organometallic chemisty. -Cardenas C M' X C ML n C C X=halide,sulfonate;M'=Li,Mg,Zn,Al,Sn,B,Si;M=Ni,Pd,etc. Cardenás, D. J. Angew. Chem. Int. Ed. 2003, 42, 384-387.

Mechanism of Transition Metal Catalyzed Cross Coupling Reactions Slow oxidative addition β-hydride elimination Frisch, A. C.; Beller, M. Angew. Chem. Int. Ed. 2005, 44, 674-688. Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726-14727.

utline Alkyl-alkyl/aryl l l/ l cross couplings of alkyl l halides Asymmetric cross coupling reactions Cascade reactions Conclusions

Pioneering Work by Suzuki R I R' B Pd(PPh 3 3) 4 R R' K 3 P 4 / dioxane Ishiyama, T.; Abe, S.; Miyaura, N.; Suzuki, A. Chem. Lett. 1992, 691-694.

Knochel: Alkyl-Alkyl Negishi Couplings Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1995, 34, 2723-2725. Giovanninni, R.; Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. rg. Chem. 1999, 64, 3544-3553.

Proposed Mechanism of Ni-Catalyzed Alkyl-Alkyl Negishi Reactions R' R' reductive R' R 2 Zn elimination Ni X Ni R R [NiL 2 ] [Ni(acac) 2 ] R' R' R 2 Zn 2 R' X Ni R transmetallation ZnX Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1995, 34, 2723-2725. Giovanninni, R.; Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. rg. Chem. 1999, 64, 3544-3553.

Substrate Scope for Alkyl-Alkyl Negishi Reactions Devasagayaraj, A.; Studemann, T.; Knochel, P. Angew. Chem. Int. Ed. 1995, 34, 2723-2725. Giovanninni, R.; Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. rg. Chem. 1999, 64, 3544-3553.

Extension of Knochel s Methodology Giovanninni, R.; Studemann, T.; Dussin, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 2387-2390. Giovanninni, R.; Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. rg. Chem. 1999, 64, 3544-3553.

Extension of Knochel s Methodology Jensen, A. E.; Knochel, P. J. rg. Chem. 2002, 67, 79-85.; Giovanninni, R.; Knochel, P. J. Am. Chem. Soc. 1998, 120, 11186-11187.; Piber, M.; Jensen, A. E.; Rottlander, M.; Knochel, P. rg. Lett. 1999, 1, 1323-1326.

Kambe: Alkyl-Alkyl Kumada Coupling Reactions Cross coupling of primary alkyl halides and grignard reagents Alkyl fluorides can also be used as coupling partners cat. NiCl 2 or CuCl 2 R F R' MgX R R' Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646-5647. Terao, J.; Watanabe, H.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223.

Substrate Scope for Alkyl-Alkyl Kumada Reactions Entry R X R' MgX 1,3-butadiene (mol %) % Yield 1 n C 10 H 21 Br n Bu MgCl 10 100 2 Br Br n Bu MgCl 10 100 3 Ph Ts Et MgCl 30 87 4 n ct Br MgCl 30 72 5 n ct Cl 6 n ct F n Bu MgCl 50 96 n Pr MgCl 200 67 Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646-5647. Terao, J.; Watanabe, H.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223.

Mechanistic Studies Rate of reactivity: Br > F > Cl NiCl 2 CuCl 2 n-c 8 H 17 Cl 1.5 equiv n-c 13 H 28 0% 0% n-c 5 H 11 1.0 equiv MgBr NiCl 2 or CuCl 2 (3 mol %), 1,3-butadiene n-c 9 H 19 F 1.5 equiv THF, rt, 30 min n-c 14 H 30 8% 16% n-c 10 H 21 Br 1.5 equiv n-c 15 H 32 39% 40% Investigation of radical pathway Ph Ph F NiCl 2, 1,3-butadiene THF, rt, 6 h Ph Ph n-pr 72% yield n Pr MgCl n-pr Ph Ph not formed Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646-5647. Terao, J.; Watanabe, H.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222-4223.

Proposed Mechanism of Ni-Catalyzed Alkyl-Alkyl Kumada Reactions 0 Ni 0 L n Ni R' MgX R' Ni Mg + X RCH 2 R' R' Ni RCH 2 X R Terao, J.; Ikumi, A.; Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646-5647.

Extension of Kambe s Methodology Changing additive allows dialkyl zincs to be used in reaction Higher yields with alkyl fluorides Terao, J.; Todo, H.; Watanabe, H.; Ikumi, A.; Kambe, N. Angew. Chem. Int. Ed. 2004, 43, 6180-6182.

Fu: Negishi Cross Couplings with Secondary Alkyl Halides entry R X YZn R ' %yield 1 TsN Br IZn Me Me 66 2 Br BrZn Ph 62 3 Et Et I BrZn 3 Et 62 4 Ph I BrZn 74 5 N Br BrZn Ph 65 Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726-14727.

Fu: Suzuki Cross Couplings with Secondary Alkyl Halides Saito, B.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602-9603.

Vicic: Mechanistic Studies on Alkyl-Alkyl Cross Coupling Reactions Anderson, T. J.; Jones, G. D.; Vicic, D.A. J. Am. Chem. Soc. 2004, 126, 8100-8101.

Mechanistic Studies on Alkyl-Alkyl Cross Coupling Reactions Proposed radical mechanism: I (tpy)ni CH 3 I (tpy)ni CH 3 I (tpy)ni CH 3 (tpy)ni I CH 3 CH 3 CH 3 Anderson, T. J.; Jones, G. D.; Vicic, D.A. J. Am. Chem. Soc. 2004, 126, 8100-8101.

Mechanistic Studies on Alkyl-Alkyl Cross Coupling Reactions Jones, G. D. et. al. J. Am. Chem. Soc. 2006, 128, 13175-13183. Jones, G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A.; Chem. Commun. 2005, 4211-4213.

Mechanistic Studies on Alkyl-Alkyl Cross Coupling Reactions Investigation of (tpy)ni-ch 3 formation: Jones, G. D. et. al. J. Am. Chem. Soc. 2006, 128, 13175-13183.

Mechanistic Studies on Alkyl-Alkyl Cross Coupling Reactions Labeling studies: rganic based radical by EPR and DFT studies Jones, G. D. et. al. J. Am. Chem. Soc. 2006, 128, 13175-13183. Jones, G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A.; Chem. Commun. 2005, 4211-4213.

Revised Mechanism for Ni-Catalyzed Alkyl-Alkyl Cross Coupling Reactions N N Ni R I N N I- Ni R N N RZn-Br R N N Ni I N N Ni I - R N N Jones, G. D. et. al. J. Am. Chem. Soc. 2006, 128, 13175-13183.

Fu: Ni-catalyzed Alkyl-Aryl Cross Coupling Reactions with Secondary Alkyl Halides Suzuki: Hiyama: Stille:

Suzuki Cross Couplings of Unactivated Secondary Alkyl Halides entry R X (H) 2 B Ar % yield entry R X (H) 2 B Ar % yield 1 Me Me Br (H) 2 B Me 68 4 Br N 67 (H) 2 B Me 2 Br (H) 2 B 44 5 Br (H) 2 B S 63 CN 3 Br TBS (H) 2 B CF 3 63 6 Me Me I (H) 2 B n-hex 63 Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341.

Suzuki Cross Couplings of Unactivated Secondary Alkyl Halides Revisited entry R X (H) 2 B Ar % yield 1 Bn Me Br (H) 2 B 85 Cl 2 TsN Br (H) 2 B t-bu 66 3 Me Cl Me (H) 2 B Me 74 4 Me 6 Cl (H) 2 B Me 82 Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341.

Hiyama Cross Couplings of Unactivated Secondary Alkyl Halides Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788-7789.

Hiyama Cross Couplings of Unactivated Secondary Alkyl Halides Revisited Potential for asymmetric Hiyama reactions Higher yields CBzN Br F 3 Si cat. NiX 2 glyme cat. ligand CsF (3.8 equiv) DMA, 60 o C CBzN 6.5% NiBr 2, 7.5% bathophenanthroline, 63% 10% NiCl 2, 15% norephedrine, 82% Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem. Int. Ed. 2007, 46, 3556-3558.

Substrate Scope for Hiyama Cross Couplings of Secondary Alkyl Halides Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem. Int. Ed. 2007, 46, 3556-3558.

Stille Cross Couplings with Unactivated Secondary Alkyl Halides Uses monoorganotin reagents (R-SnX 3 ) 10% Ni Cl 2 15% 2,2'-bipyridine R X Cl 3Sn Ar R Ar Kt-Bu (7 equiv) X=Br,I 1.5 equiv t-buh: i-buh (7:3) R=1 o or 2 o alkyl 60 o C Can convert readily available triorganotin compounds into trichlorotin reagents Powell, D. A.; Maki, T.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510-511.

Substrate Scope of Stille Cross Couplings with Unactivated Secondary Alkyl Halides Powell, D. A.; Maki, T.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510-511.

Mechanistic Studies on Alkyl-Aryl Cross Coupling Reactions Hiyama and Suzuki: Exo product formed exclusively Stille: Diastereoselectivity independent of ligand Same diastereomeric ratios observed in radical cyclizations Powell, D. A.; Maki, T.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510-511.; Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341.; Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788-7789.; Echavarren, A. M. Angew. Chem. Int. Ed. 2005, 44, 3962-3965.

Asymmetric Examples of Cross Couplings with Secondary Alkyl Halides Bn N Ph Br R R' 2 Zn cat. NiX 2 cat. (R)-(i-Pr)-Pybox (i Pybox 0 o C Bn N Ph R' R

Cross Couplings of Secondary α-bromo Amides Racemic starting material Selective for coupling of α-bromo amide in the presence of other unactivated halides Amide is easily converted to other useful functional groups: Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594-4595.

Substrate Scope for Cross Couplings of Secondary α-bromo Amides Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 4594-4595.

Cross Coupling of Secondary Benzylic Halides Racemic starting material Selective for benzylic halide in the presence of an aryl halide Chiral indane products are useful intermediates in total synthesis Arp, F..; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483.

Substrate Scope for Cross Couplings of Secondary Benzylic Halides Me Hex 4 Cl n-bu 89% yield 96% ee CN 69% yield 94% ee Bn 72% yield 98% ee Me X = Br, 64% yield, 91% ee X=Cl,56% yield, 91% ee 63% yield 75% ee Arp, F..; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483.

Application to Total Synthesis (R)-3-ethyl indanone was used as an intermediate in the synthesis of LG 121071. Et 1. (R)-p-tol-BINAP, p CuCl, Nat-Bu PMHS, toluene, RT 2. NaH/EtH, reflux H PPA 70 o C, 3h 89% over 2 steps 83% Et 3 steps, 86% ee 74% overall yield Can be prepared via asymmetric cross coupling reactions in higher enantiomeric excess. Br Et ZnBr 10% NiBr 2 diglyme 13% (R)-(i-Pr)-Pybox DMA, 0 o C Et 92% ee 56% yield Arp, F..; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483.; Hamann, L. G.; Mani, N. S.; Davis, R. L.; Wang, X.-N.; Marschke, K. B.; Jones, T. K. J. Med. Chem. 1999, 42, 210-212.; Mani, N. S.; Wu, M. Tetrahedron: Asymmetry 2000, 11, 4687-4691.

Application to Total Synthesis Racemic trans-1,3-dimethyl indane was used as an intermediate in total synthesis of trans-trikentrin A and iso-trans-trikentrin B. Can be prepared enantioselectively using asymmetric cross coupling reactions. Arp, F..; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483.; MacLeod, J. K.; Monahan, L. C. Aust. J. Chem. 1990, 43, 329-337.; MacLeod, J. K.; Ward, A.; Willis, A. C. Aust. J. Chem. 1998, 51, 177-187.

Application to Total Synthesis Previous synthesis for intermediate in the total synthesis of (+)-nuciferol and (+)-nuciferal Me I H Bn H 4 steps from trans-2-butenediol PdCl 2,(Ph 3 P) 2 (2.8 mol %), CuI (1.9 mol %), Et 3 N, ultrasonic radiation 100% Me H H Bn H 2, 5% Pd-BaS 4, MeH, rt 94% Me H H Bn ethyl vinyl ether (xs) H Hg(I)(Ac) 2 (10 mol%) 1. H 2, 5% Pd-C, EtH sealed tube, 160 o C 2weeks 71% Me Bn 2. (PPh 3 ) 3 RhCl, C 6 H 6 reflux 58% over 2 steps Me H Me Bn 9 steps from trans-2-butenediol 27% overall yield Preparation via asymmetric cross coupling reactions: Arp, F..; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482-10483.; Takano, S.; Goto, E.; gasawara, K. Tet. Lett. 1982, 23, 5567-5570.; Takano, S et. al. Chem. Lett. 1989, 1781-1784.

Cárdenas: Ni-Catalyzed Cascade Reactions with Secondary Alkyl Halides Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795.

Substrate Scope for Cascade Reactions N N N s Bu s Bu (S)-(s-Bu)-Pybox C 2 Et C 2 Et H H H CH 3 H H H 65% 94% (97:3) 68% H H TsN Me 2 C Me 2 C 46% 83% 63% Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795.

Evidence for a Radical Mechanism Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795.

Proposed Mechanism for Cascade Reactions [Ni(py) 4 Cl 2 ] L 3 RZnBr R' I Z L 3 Ni I 3 R R' Z L 3 Ni II R 3 I R' Z R' Z I R' Z L 3 Ni II R I L 3 Ni III R I R' Z R' R R' Ni III L 3 I R R R' Z Z Z Phapale, V. B.; Buñuel, E.; García-Iglesias, M.; Cárdenas, D. J. Angew. Chem. Int. Ed. 2007, 46, 8790-8795.

Conclusions Primary and secondary alkyl halides can be utilized in Ni-catalyzed cross coupling reactions Fu and coworkers have shown that asymmetric cross couplings can be performed with activated alkyl halides Future directions: Expanded scope and functional group tolerance Asymmetric cross coupling reactions with unactivated alkyl halides Cross coupling reactions with tertiary ti alkyl l halides

Acknowledgements Prof. Michael T. Crimmins Crimmins Group: Dr. Anita Mattson Dr. Christie Stauffer Dee Jacobs Mariam Shamszad Matt Haley Jay Stevens Adam Azman Anne-Marie Dechert Mark Mans Tim Martin Colin Hughes Phil Williams

Formation of Bis(π-allyl)Ni complex

Mechanism of Kumada Reactions with 1,3,8,10 Tetraene Derivatives X X Ni 0 L n Ni X R'-M R' Ni M + RCH 2 R' R' Ni X RCH 2 X R

EPR Results A: EPR of monomethyl complex at RT B: EPR of monomethyl complex at 77K