Thermal transport in the Kitaev model

Similar documents
arxiv: v2 [cond-mat.str-el] 20 Nov 2017

Quantum Spin Liquids and Majorana Metals

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Spinon magnetic resonance. Oleg Starykh, University of Utah

Quantum Spin-Metals in Weak Mott Insulators

Magnets, 1D quantum system, and quantum Phase transitions

Spin liquids in frustrated magnets

arxiv: v2 [cond-mat.str-el] 31 Aug 2016

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Topological Electromagnetic and Thermal Responses of Time-Reversal Invariant Superconductors and Chiral-Symmetric band insulators

Gapless Spin Liquids in Two Dimensions

Valence Bonds in Random Quantum Magnets

Spin liquids on ladders and in 2d

Topological Phases in One Dimension

Excitations in the field-induced quantum spin liquid state of α-rucl3. Authors:

From graphene to Z2 topological insulator

Universal phase transitions in Topological lattice models

SPT: a window into highly entangled phases

Spin liquids on the triangular lattice

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Classification of Symmetry Protected Topological Phases in Interacting Systems

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological insulator (TI)

Quantum Quenches in Chern Insulators

Emergence of the Isotropic Kitaev Honeycomb Lattice with Twodimensional. Ising Universality in α-rucl 3

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Twisted Hubbard model for Sr2IrO4: magnetism and possible high temperature superconductivity. Fa Wang and T. Senthil, PRL 2011

Classification theory of topological insulators with Clifford algebras and its application to interacting fermions. Takahiro Morimoto.

Thermal Hall effect of magnons

Proximity-induced magnetization dynamics, interaction effects, and phase transitions on a topological surface

Criticality in topologically ordered systems: a case study

Symmetric Surfaces of Topological Superconductor

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

(Effective) Field Theory and Emergence in Condensed Matter

Kitaev honeycomb lattice model: from A to B and beyond

Some open questions from the KIAS Workshop on Emergent Quantum Phases in Strongly Correlated Electronic Systems, Seoul, Korea, October 2005.

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato


Lecture notes on topological insulators

Entanglement Chern numbers for random systems

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Spin Superfluidity and Graphene in a Strong Magnetic Field

Floquet Topological Insulators and Majorana Modes

Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Magnetic properties of honeycomb iridates and rhodates. Philipp Gegenwart

Andreas Kreisel. Institut für Theoretische Physik Johann Wolfgang Goethe Universität Frankfurt am Main. July,

Frustrated Magnetic Materials from an ab initio prespective Roser Valentí Institute of Theoretical Physics University of Frankfurt Germany

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Floquet theory of photo-induced topological phase transitions: Application to graphene

Topological Insulators

Heisenberg-Kitaev physics in magnetic fields

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Dirac fermions in condensed matters

Universal Quantum Simulator, Local Convertibility and Edge States in Many-Body Systems Fabio Franchini

Quantum spin systems - models and computational methods

Unusual ordered phases of magnetized frustrated antiferromagnets

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

Spin liquid phases in strongly correlated lattice models

5 Topological insulator with time-reversal symmetry

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

Electronic Structure of the Kitaev Material -RuCl3 Probed by Photoemission and. Inverse Photoemission Spectroscopies

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Quantum Phases in Bose-Hubbard Models with Spin-orbit Interactions

Universal Post-quench Dynamics at a Quantum Critical Point

Vortex States in a Non-Abelian Magnetic Field

Single particle Green s functions and interacting topological insulators

Skyrmions and Anomalous Hall Effect in a Dzyaloshinskii-Moriya Magnet

POEM: Physics of Emergent Materials

Spinon magnetic resonance. Oleg Starykh, University of Utah

Reducing and increasing dimensionality of topological insulators

Quantum order-by-disorder in Kitaev model on a triangular lattice

Unveiling the quantum critical point of an Ising chain

Composite Dirac liquids

Topological Insulators and Superconductors

Quantum phase transitions of insulators, superconductors and metals in two dimensions

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

When Landau and Lifshitz meet

Symmetry protected topological phases in quantum spin systems

A05: Quantum crystal and ring exchange. Novel magnetic states induced by ring exchange

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Symmetry Protected Topological Phases of Matter

Neutron scattering from quantum materials

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Resonating Valence Bond point of view in Graphene

Cenke Xu. Quantum Phase Transitions between Bosonic Symmetry Protected Topological States without sign problem 许岑珂

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

Quantum magnetism and the theory of strongly correlated electrons

Persistent spin current in a spin ring

Proximate Kitaev Quantum Spin Liquid Behavior in α-rucl 3

From Majorana Fermions to Topological Order

Weyl fermions and the Anomalous Hall Effect

Gauge dynamics of kagome antiferromagnets. Michael J. Lawler (Binghamton University, Cornell University)

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Transcription:

Novel Quantum States in Condensed Matter 217 (NQS217) YITP, Kyoto University, 1 November, 217 Thermal transport in the Kitaev model Joji Nasu Department of Physics, Tokyo Institute of Technology Collaborators: Yukitoshi Motome, Junki Yoshitake (UTokyo) J. Nasu, J. Yoshitake, and Y. Motome, Phys. Rev. Lett. 119, 12724 (217).

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 2

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 3

Quantum spin liquid (QSL) QSL Paramagnet Crossover Quantum fluctuation disturbs orderings. T κ-(bedt-ttf)2cu2(cn)3 No apparent symmetry breakings down to low T Fractional excitations Thermal conductivity No singularity in Cv or Specific heat S. Yamashita et al., Nat. Phys. 4, 459 (28). M. Yamashita et al., Nat. Phys. 5, 44 (29). Quantum spin liquid (QSL): Low-T behavior of Cv (T-linear) Dynamical response (continuum) Thermal transport herbertsmithite D. Watanabe et al., Proc. Natl. Acad. Sci. 113, 8653 (216). T.-H. Han et al., Nature 492, 46 (212). Neutron scattering Characterization of QSLs with emergent fermions Thermal Hall conductivity Kagomé volborthite 4

H = Jx Kitaev model Six S jx Jy <i j > x y y Si S j <i j > y Jz Siz S zj <i j > z A. Kitaev, Annals of Physics 321, 2 (26). S=1/2 spin Wp Bond-dependent interactions frustration Z2 flux (conserved quantity) Wp on each plaquette Assuming Wp=+1 Jz Jx H = ij ci c j 4 hi ji ground state: quantum spin liquid (Only NN interactions are finite) {ci } : Majorana fermions emerging from spins Free Majorana fermions on a honeycomb lattice; analogous to graphene Jy Dirac cones 5

H = Jx Kitaev model Six S jx <i j > x Jy <i j > y y y Si S j Jz Siz S zj <i j > z A. Kitaev, Annals of Physics 321, 2 (26). S=1/2 spin Wp Bond-dependent interactions frustration Z2 flux (conserved quantity) Wp on each plaquette ground state: quantum spin liquid (Only NN interactions are finite) Fractional fermionic excitations Emergent fermions may carry heat. Jz Gapless QSL Jx Jy Majorana Chern insulator by applying magnetic field in gapless phase Thermal Hall effect 6

Kitaev spin liquid: fractionalization Thermal fractionalization JN, M. Udagawa, and Y. Motome, Phys. Rev. Lett. 113, 19725 (214). JN, M. Udagawa, and Y. Motome, Phys. Rev. B 92, 115122 (215). Cv Localized Majorana fermions (LMF).3.3 S / ln 2 Si Itinerant Majorana fermions (IMF) L=8 L=1 L=12 L=2.2.1 1 TL TH.2 1-2 1-1 1 11-1 1-2 1 111 1.1.5 1-2 1 1-1 1 T/J 7 S.-H. Do et al., Nat. Phys. (217).

Realization of Kitaev QSLs Strong spin-orbit coupling t2g5 jeff=1/2 localized spin G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 12, 1725 (29) Kitaev-Heisenberg model y y x x H = Jx Si S j J y Si S j <i j > x Jz <i j > y Siz S zj <i j > z +JH <i j> Si S j Magnetic order A2IrO3 (A=Li,Na) Ir4+ 5d5 Tc~1K Y. Singh and P. Gegenwart, Phys. Rev. B 82, 64412 (21). Y. Singh et. al., Phys. Rev. Lett. 18, 12723 (212). R. Comin et. al., Phys. Rev. Lett. 19, 26646 (212). S. K. Choi et. al., Phys. Rev. Lett. 18, 12724 (212). α-rucl3 Ru3+ 4d5 K. W. Plumb et al., Phys. Rev. B. 9, 41112 (214). Y. Kubota et al., Phys. Rev. B 91, 94422 (215). L. J. Sandilands et al., Phys. Rev. Lett. 114, 14721 (215). J. A. Sears, M. Songvilay et al., Phys. Rev. B 91, 14442 (215). M. Majumder et al., Phys. Rev. B 91, 1841(R) (215). Ir4+ Siz Sjz Siy Sjy Tc~1K Six Sjx Kitaev term plays a dominant role. Y. Yamaji et al., Phys. Rev. Lett. 113, 1721 (214). K. Foyevtsova et al., Phys. Rev. B 88, 3517 (213). A. Banerjee et al., Nat. Mater. 15, 733 (216). 8

Dynamical response Raman scattering in RuCl3 L. J. Sandilands et al., Phys. Rev. Lett. 114, 14721 (215). Inelastic neutron scattering in RuCl3 A. Banerjee et al., Nat. Mater., Nat. Mater. 15, 733 (216). Raman scattering in β-,γ-li2iro3 A. Glamazda et al., Nat. Commun. 7, 12286 (216). Theory J. Knolle et al., Phys. Rev. Lett. 113, 18721 (214). 9

Comparison of experiment & theory Magnetic order occurs at ~1K in α-rucl3. Experiment a Theory ωi (1-f )2.2 Intensity (a.u.).3 Intensity (a.u.) Raman scattering Good agreement between the present theory and experimental results.5 L. J. Sandilands et al., Phys. Rev. Lett. 114, 14721 (215)..4 JN, J. Knolle, D. L. Kovrizhin, Y. Motome, R. Moessner, Nat. Phys., 12, 912 (216). ωf.3.2 b ωf n+1 ε2 ωf.1 [1-f(ε1)][1-f(ε2)] Bosonic background. 5 1 15 2 25 3 T (K).1 5 1 15 T (K) 2 25 -JySiySjy 3 ωi ε1 ωi ω Fermionic T dependence appears around 1K. ω c ε f f 2 Experiment -JxSixSjx -JJzSizSjz f(ε1)[1-f(ε2)] ωi -ε1 ωi High-energy features are consistent. S.-H. Do et al., Nat. Phys. (217). J. Yoshitake, JN, and Y. Motome, Phys. Rev. Lett. 117, 15723 (216) Theory Dynamical spin correlation Two-fermion excitation J. Yoshitake, JN, Y. Kato, and Y. Motome, Phys. Rev. B 96, 24438 (217) J. Yoshitake, JN, and Y. Motome, Phys. Rev. B 96, 64433 (217), 1

Thermal transport in α-rucl 3 I. A. Leahy et al., Phys. Rev. Lett. 118, 18723 (217). κ is enhanced in low-t whereas it is suppressed in intermediate-t by applying magnetic field. D. Hirobe, M. Sato, Y. Shiomi, H. Tanaka, and E. Saitoh, Phys. Rev. B 95, 241112 (217). Longitudinal thermal conductivity κ exhibits a peak at a peak in specific heat Another study for κ in RuCl 3 R. Hentrich et al., ariv:173.8623 (217). 11

Purpose Candidates of Kitaev materials Magnetic order at low T Two stances: Cooperation effect of the Kitaev and Heisenberg interactions What is the Kitaev QSL? How should it be observed? Our starting point Precursor of Kitaev QSL (fractionalization) above T c (~1K) What occurs in the pure Kitaev limit at finite temperature? Fractionalization of spins into Majorana fermions Topological nature with magnetic field Heat transport 12

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 13

Jordan-Wigner transformation H = Jx Six S jx <i j > x y Jy y Si S j Siz S zj Jz <i j > y <i j > z Honeycomb lattice: a zigzag xy chain connected by z-bonds Jordan-Wigner transformation regarding the honeycomb lattice as one open chain Si+ = (Si ) = i 1 Y 2ni )ai (1 i =1 Fermions: ai, ai ci = ai + c i = (ai ai )/i [c i c j, H ] = r i c i c j : local conserved quantity 1 2 H.-D. Chen and J. Hu, Phys. Rev. B 76, 19311 (27).. Y. Feng, G.-M. Zhang, and T. iang, Phys. Rev. Lett. 98, 8724 (27). H.-D. Chen and Z. Nussinov, J. Phys. A Math. Theor. 41, 751 (28). ai Introducing Majorana fermions Siz = ai ai i Jx H = ciic j 4 hi ji x i Jx H = ci c j 4 hi ji x i Jy Jz ciic jj + c c iic c jjcciiccjj 4 hi ji 4 hi ji y z i Jy ci c j 4 hi ji y i Jz r ci c j 4 hi ji z 14

Method Quantum spin model H = Jx Six S jx Jy <i j > x y y Si S j <i j > y Jz Siz S zj <i j > z Jordan-Wigner transformation Itinerant fermion model i Jx H = ci c j 4 hi ji x Si ci c i i Jy ci c j 4 hi ji y : Itinerant Majorana i Jz r ci c j 4 hi ji z r = i c i c j : Localized Majorana Free Majorana fermion system with thermally fluctuating fluxes W p = r r Sign problem-free Quantum Monte Carlo simulations Quantum nature of S=1/2 spins is fully taken into account! Simulations are classical and done for flipping Ising valuables ηr. Jx = J y = Jz = J 15

Specific heat and entropy Cv.3.3 L=8 L=1 L=12 L=2.2.1.2 TL 1 1-2 TH 1-1 1 Double peak structure 11 Release of a half of entropy at each crossover.1 S.5 (Entropy) Wp Six Sjx.15 1-2 1-2 1-11-1.1 11 1 x x 1 1 (NN correlation) 1 NN x bond Si S j = ci.5 1 1-2 1 : itinerant Majorana (matter Majorana) 11 Local conserved quantity (local conserved quantity) Wp = Y r r = i c i c j r 2p 1 Si 1-1 i ci c j 4 ci c i -2 1-1 T/J 1 1 1 c i : localized Majorana (flux Majorana) : itinerant Majorana Entropy release at T** development of spin correlation : localized Majorana Entropy release at T* coherent develop of Wp 16

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 17

Thermal conductivity Itinerant fermion model i Jx H = ci c j 4 hi ji x Si ci c i i Jy ci c j 4 hi ji y i Jz r ci c j 4 hi ji : Itinerant Majorana z r = i c i c j : Localized Majorana Itinerant Majoranas carry thermal current: JQ = @ T Energy polarization: Energy current: Thermal current: JQ = JE which is written by itinerant Majoranas (zero chemical potential for Majorana fermions) Kubo formula + gravitomagnetic energy magnetization K. Nomura, S. Ryu, A. Furusaki, and N. Nagaosa, Phys. Rev. Lett. 18, 2682 (212), H. Sumiyoshi and S. Fujimoto, JPSJ 82, 2362 (213). Isotropic case Jx = Jy = Jz = J xx = y y 18

AC thermal conductivity.3.3 L=8 L=1 L=12 L=2 Wp Cv.2.1.2 TL 1 1-2 TH 1-1 1 AC part of thermal conductivity vanishes in the free-flux case. W p = +1 11 Free.1 flux [H, JQ ] = with W p = +1 Fluctuation of fluxes yields finite value of κxx(ω). 1 1 11.16 Random flux 1-2 1-2 1-11-1 11 2. ω/j 1..8.5.4.. 1-2 High-energy contribution develops around TL 1-1 1 T/J T/J 1 κxx(ω)/j.12 1.5 Finite-ω contribution detects flux fluctuations. 1 Low-energy contribution increases around TH 19

AC thermal conductivity κ xx (ω)/j.6.4.1.8.6.4.2 T/J=.9 T/J=.375 T/J=.75 T/J=1.97...5 1. 1.5 2. 2.5 κ xx (ω ) ω/j AC part of thermal conductivity vanishes in the free-flux case. W p =+1 [H, J Q ] = W p =+1 with AC component grows with increasing T. The peak shifts to low-t side and decreases. Low-energy part shows size dependence..2 L=1 L=12. L=2..1.2.3.4.5.6 ω/j Dip becomes smaller with increase of size. DC component is obtained by the extrapolation. 2

Thermal conductivity Cv κ xx /J κ xx /J Iκ xx /J 2.3.2.1.8.7.6.5.4.3.2.1.2.1 T L L=8 L=1 L=12 L=2 1-2 1-1 1 1 1 T/J T H 1-2 1-1 1 1 1 DC component is obtained by extrapolation. κ xx takes a peak around T H. Transport is governed by itinerant Majoranas. Integrated AC thermal conductivity: I xx apple = Z 1 apple xx (!)d! Fluctuation of fluxes yields finite value of. Iapple xx Iapple xx detects flux fluctuations. 21

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 22

Introduction of magnetic field HK = Jx Six S jx Jy <i j > x y y Si S j <i j > y Jz Siz S zj <i j > z A. Kitaev, Annals of Physics 321, 2 (26). Magnetic field for the direction perpendicular to the honeycomb plane y z x Hh = h Si + Si + Si i Hheff = h (i jk) y Six S j Skz :low-energy effective model h Model Hamiltonian: H = HK + Hheff Effective magnetic field: h = 3 h h3 2 k with /J.1 Majorana Chern insulator by applying the Magnetic field Chiral edge mode i y j x 23

Longitudinal thermal conductivity Cv κ xx /J.4.3.2.1..8.6.4 T L.4.3.2.1 T H L=12 ~ h/j=.12 ~ h/j=.24 ~ h/j=.36 ~ h/j=.48 h/j=. κ xx takes a peak around T H. κ xx ~ is insensitive to h. κ xx /T.2..4.3.2. 1-2 1-1 1 1 1 κ xx /T at low T limit vanishes due to the gap opening..1. 1-2 1-1 1 1 1 T/J 24

Transverse thermal conductivity Cv.4.3.2.1..2 T L T H L=12 ~ h/j=.12 ~ h/j=.24 ~ h/j=.36 ~ h/j=.48 h/j=. κ xy takes a peak around T H. κ xy /J.1 κ xy ~ increases with increasing h. contrasting behavior to κ xx..3 1-2 1-1 1 1 1 π/12 κ xy /T.2.1 Quantization at low T Deviation from π/12 around T L. 1-2 1-1 1 1 1 T/J Nonmonotonic behavior 25

Effect of flux excitation κ xy /J.2.1 T L MC random flux zero free flux T H ~ h/j=.48 W p = ±1 : Z 2 flux W p κ xy /T.3.25.2.15.1.5 π/12 1-2 1-1 1 1 1 T/J W p +1: ground state (free flux) W p = MC result deviates from zero-flux one around low-t crossover. High-T peak is well accounted for by random flux excitation. 1: flux excitation 26

Deviation from Plateau Magnetic field dependence of gaps Arrhenius plot for κ xy /T Flux gap Majorana gap Flux gap is almost independent of h. Majorana gap linearly depend on h. ~ ~ Deviation of κ xy /T from the quantized value is determined by the flux gap. 27

Magnetic field dependence κ xy /T κ xx /T.6.5.4.3.2.1..3.2.1. -.1 -.2 -.3 -.6 -.4 -.2..2.4.6 ~ h/j T/J=.675 T/J=.3 T/J=.99 T/J=1. Longitudinal component Almost zero at low T almost unchanged by h Transverse component ~ Enhancement by h Linear dependence for h ~ at finite T κ xy is proportional to h 3. h h3 2 ~ Contrasting magnetic-field dependence between κ xx and κ xy. 28

Contents Introduction Method Thermal transport w/o magnetic field Thermal transport w/ magnetic field Summary 29

Summary Kitaev model on a honeycomb lattice Quantum Monte Carlo simulation in Majorana representation Magnetic field is introduced as an effective model. Without magnetic field Longitudinal thermal conductivity exhibits a peak at high-t crossover attributed to the itinerant Majorana fermions Dynamical component detects flux fluctuation. With magnetic field Thermal Hall conductivity is proportional to h 3. Peculiar T dependence of κ xy /T due to the flux excitations. 3