Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Similar documents
Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Modèles hybrides préservant l asymptotique pour les plasmas

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Monte Carlo methods for kinetic equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Numerical methods for kinetic equations

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Exponential methods for kinetic equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

Models of collective displacements: from microscopic to macroscopic description

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

Anomalous transport of particles in Plasma physics

Hypocoercivity for kinetic equations with linear relaxation terms

analysis for transport equations and applications

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS

Adaptive semi-lagrangian schemes for transport

Berk-Breizman and diocotron instability testcases

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS

Moments conservation in adaptive Vlasov solver

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Kinetic relaxation models for reacting gas mixtures

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

What place for mathematicians in plasma physics

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field

Implicit kinetic relaxation schemes. Application to the plasma physic

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE

Accurate representation of velocity space using truncated Hermite expansions.

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Asymptotic-Preserving Schemes

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Numerical methods for plasma physics in collisional regimes

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

arxiv: v1 [math.na] 7 Nov 2018

Modelling and numerical methods for the diffusion of impurities in a gas

An improved unified gas-kinetic scheme and the study of shock structures

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

On the Boltzmann equation: global solutions in one spatial dimension

Model adaptation in hierarchies of hyperbolic systems

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

arxiv: v1 [math.na] 25 Oct 2018

Physical Modeling of Multiphase flow. Boltzmann method

PHYSICS OF HOT DENSE PLASMAS

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Direct Modeling for Computational Fluid Dynamics

Postprint.

Admissibility and asymptotic-preserving scheme

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

The Moment Guided Monte Carlo Method

Lecture 5: Kinetic theory of fluids

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Landau Damping Simulation Models

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Particle in Cell method

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016

Monte Carlo method with negative particles

Fluid Equations for Rarefied Gases

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation

Monte Carlo Collisions in Particle in Cell simulations

Finite volumes schemes preserving the low Mach number limit for the Euler system

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

Stochastic Particle Methods for Rarefied Gases

Multi-water-bag model and method of moments for Vlasov

Different types of phase transitions for a simple model of alignment of oriented particles

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

Gyrokinetic simulations of magnetic fusion plasmas

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation.

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

Benchmarks in Computational Plasma Physics

Conservative semi-lagrangian schemes for Vlasov equations

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models

Overview of Accelerated Simulation Methods for Plasma Kinetics

Introduction Statistical Thermodynamics. Monday, January 6, 14

Figure 1.1: Ionization and Recombination

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models

Global existence for the ion dynamics in the Euler-Poisson equations

Different types of phase transitions for a simple model of alignment of oriented particles

Transcription:

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe Analyse Numérique 23 mars 2017 1 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Nantes, LMJL. 2 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Rennes 1, IRMAR & ENS Rennes. 3 CNRS & Université de Rennes 1, IRMAR & INRIA Rennes - Bretagne Atlantique, IPSO & ENS Rennes. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 1

Outline 1 Problem and objectives 2 3 4 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 2

Introduction Our problem Objectives Particle systems: some applications Plasma physics. Plasma: gaz constituted of at least two species of charged particles (positive ions and electrons). Natural state: stars, ionosphere, aurora borealis,... Industrial state: TV screen, neon light, nuclear fusion,... ITER project Radiative transfer. Interaction between photons and matter. Examples: radiotherapy,... A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 3

Introduction Our problem Objectives Numerical simulation of particle systems Different scales, for example collisions parameterized by the Knudsen number ε different models. Kinetic model Particles represented by a distribution function f (x, v, t). Solving a Boltzmann or Vlasov-type equation t f +A(v,ε) x f +B(v,E,B,ε) v f = S(ε) potentially coupled with Maxwell or Poisson equations. Accurate and necessary far from thermodynamical equilibrium. In 3D = 7 variables = heavy computations. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 4

Introduction Our problem Objectives Fluid model Moment equations on physical quantities linked to f (density ρ, mean velocity u, temperature T, etc.). Lost of precision. Small cost and sufficient at thermodynamical equilibrium. General difficulties Find a well adapted model for the problem, with a good precision/cost ratio. If two scales in the same simulation, develop a numerical scheme efficient in each regime: spatial coupling of two schemes, with an interface, or asymptotic-preserving (AP) scheme 4. 4 Jin, SIAM JSC 1999. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 5

AP scheme Problem and objectives Introduction Our problem Objectives Problem ε h 0 Discretized Problem h,ε ε 0 ε 0 Limit h 0 Discretized limit h h: space step x or time step t. Prop.: Stability and consistency ε, particularly when ε 0. Standard schemes: constraint h = O(ε). Aim: Construct a scheme for which h is independent of ε. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 6

Introduction Our problem Objectives Our 1st Problem ε 1D Vlasov-BGK equation, diffusion scaling t f + 1 ε v xf + 1 ε E vf = 1 ε2(ρm f) (1) x [0,L x ] R, v V = R, charge density ρ = V f dv, electric field E given by Poisson equation x E = ρ 1, M(v) = 1 2π exp ( v2 2 ), periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the drift-diffusion limit t ρ x ( x ρ Eρ) = 0. (2) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 7

Introduction Our problem Objectives Our 2nd Problem ε 1D radiative transport equation, diffusion scaling t f + 1 ε v xf = 1 ε2(ρm f) (3) x [0,L x ] R, v V = [ 1,1], charge density ρ = 1 2 V f dv, M(v) = 1, periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the diffusion limit t ρ 1 3 xxρ = 0. (4) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 8

Objectives Problem and objectives Introduction Our problem Objectives Tools Idea Construction of an AP scheme. Reduction of the numerical cost. Micro-macro decomposition 5,6 for these models 7 (in [7], grid in v for the micro part). Use particles for the micro part since few points in v are enough at the limit. 5 Lemou, Mieussens, SIAM JSC 2008. 6 Liu, Yu, CMP 2004. 7 Crouseilles, Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 9

Derivation of the micro-macro system First-order reformulation for the 2nd Problem ε (3) Micro-macro decomposition 5,7 : f = ρm + g with g the rest. N = Span{M} = {f = ρm} null space of the BGK operator Q(f) = ρm f. Π orthogonal projection in L 2( M 1 dv ) onto N: Πh := h M, h := h dv. Hypothesis: first moment of g must be zero = g = 0, since f = ρ. True at the numerical level? If not, we have to impose it. 5 M. Lemou, L. Mieussens, SIAM JSC 2008. 7 N. Crouseilles, M. Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 10 V

Derivation of the micro-macro system First-order reformulation Applying Π to (3) = macro equation on ρ t ρ+ 1 ε x vg = 0. (5) Applying (I Π) to (3) = micro equation on g t g + 1 ε [v xρ+v x g x vg ] = 1 ε2g. (6) Equation (3) micro-macro system: t ρ+ 1 ε x vg = 0, t g + 1 ε F(ρ,g) = 1 (7) ε 2g, where F(ρ,g) := v x ρ+v x g x vg. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 11

Difficulties Problem and objectives Derivation of the micro-macro system First-order reformulation Stiff terms in the micro equation (6) on g. In previous works 5,7, stiffest term (of order 1/ε 2 ) considered implicit in time = transport term (of order 1/ε) stabilized. But here: use of particles for the micro part = splitting between the transport term and the source term, = not possible to use the same strategy. Idea? Suitable reformulation of the model. 5 M. Lemou, L. Mieussens, SIAM JSC 2008. 7 N. Crouseilles, M. Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 12

Derivation of the micro-macro system First-order reformulation Strategy of Lemou 8 : 1. rewrite t g + 1 ε F(ρ, g) = 1 ε 2 g as t (e t/ε2 g) = et/ε2 F(ρ, g), ε 2. integrate in time between t n and t n+1 and multiply by e tn+1 /ε 2 : g n+1 g n t = e t/ε2 1 t 3. approximate up to terms of order O( t) by: t g = e t/ε2 1 t No more stiff terms and good properties. 8 Lemou, CRAS 2010. g n ε 1 e t/ε2 F(ρ n, g n )+O( t), t g ε 1 e t/ε2 F(ρ, g). (8) t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 13

Properties Problem and objectives Derivation of the micro-macro system First-order reformulation Where Consistency: ε > 0 fixed, as t goes to zero, equation (8) is consistent with the initial micro equation (6). Asymptotic behaviour: t > 0 fixed, as ε goes to zero, we get from (8) g = εv x ρ+o(ε 2 ), which injected in the macro equation (5) provides the limit model (4). (8) t g = e t/ε2 1 t g ε1 e t/ε 2 t [v x ρ+v x g x vg ], (5) t ρ+ 1 ε x vg = 0, (4) t ρ 1 3 xxρ = 0. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 14

Algorithm Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Reformulated system t ρ+ 1 ε x vg = 0, Algorithm: t g = e t/ε2 1 t g ε 1 e t/ε2 F(ρ,g). t 1. Solving the micro part by a Particle-In-Cell (PIC) method. 2. Projection step to numerically force to zero the first moment of g (matching procedure 9 ). 3. Solving the macro part by a finite volume scheme (mesh on x), with a source term dependent on g. Remark: already used in the hydrodynamic limit 10. 9 P. Degond, G. Dimarco, L. Pareschi, IJNMF, 2011 10 A. C., N. Crouseilles, M. Lemou, KRM, 2012 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 15

1. PIC method Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Equation t g = e t/ε2 1 g ε 1 e t/ε2 F(ρ,g) t t t g +ε 1 e t/ε2 [v x g] t = e t/ε2 1 t g ε 1 e t/ε2 [v x ρ x vg ] =: S g. t Model: having N p particles, with position x k, velocity v k and weight ω k, k = 1,...,N p, g is approximated by N p g Np (x,v,t) = ω k (t)δ(x x k (t))δ(v v k (t)). k=1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 16

Problem and objectives Classical PIC algorithm PIC method Finite volumes scheme Properties Second-order in time Mesh generation on x for fields Fields computing on the mesh Initialization of positions, velocities and weights of particles Computation of charge and current densities on the mesh (deposition) Interpolation of fields on the particles Evolution of weights (if source term) Movement of particles (in x and v) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 17

Regularization using shape functions PIC method Finite volumes scheme Properties Second-order in time Use of shape functions such as B-spline of order l B l (x) = (B 0 B l 1 )(x), with In particular B 0 (x) = { 1 x if x < x/2, 0 else. B 1 (x) = 1 x Order 0: Nearest Grid Point. Order 1: Cloud In Cell. { 1 x / x, if x < x, 0 else. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 18

Deposition and interpolation PIC method Finite volumes scheme Properties Second-order in time Deposition: computation of the moment of order p on the cell i: v p g i = v p g (x,v,t) dv B l (x i x) dx = R N p V ω k (t)v p k (t)b l(x i x k (t)). k=1 Interpolation: evaluation of a quantity E on particle k: N x E (x k,t) = E (x i,t)b l (x i x k (t)). i=1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 19

Solving t g +ε 1 e t/ε2 t [v x g] = 0 PIC method Finite volumes scheme Properties Second-order in time 1. Initialization: particles randomly (or quasi) distributed in phase space (x, v), weights initialized to ω k (0) = g (x k, v k, 0) LxLv N p. (L x x-length of the domain, L v v-length.) 2. Deposition ρ i (t n ). 3. Movement of particles thanks to motion equations: dx k dt (t) = ε1 e t/ε2 v k (t). t For example x n+1 k = x n k +ε(1 e t/ε2 )v k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 20

PIC method Finite volumes scheme Properties Second-order in time Solving t g = S g 4. Evolution of weights ω k (step specific to kinetic equations with source term): with dω k dt (t) = S g (x k,v k ) L xl v N p S g = e t/ε2 1 g ε 1 e t/ε2 [v x ρ x vg ]. t t In practice: ω n+1 k ω n k t = e t/ε2 1 ωk n t ε1 e t/ε2 [α n k t +βn k ], with α n k = vn+1 k x ρ n (x n+1 k ) L xl v N p and βk n = x vg (x n+1 k ) L xl v. N p A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 21

2. Projection step Problem and objectives PIC method Finite volumes scheme Properties Second-order in time We now have N p g n+1 (x,v) k=1 ω n+1 k δ ( x x n+1 k ) ( ) δ v v n+1 k. Nothing ensures g n+1 = 0 at the numerical level. We have to impose it. How? By applying a discrete approximation of (I Π) to each weight ω k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 22

3. Macro part Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Equation t ρ+ 1 ε x vg = 0. Finite volume method ρ n+1 i = ρ n i t ε vg n+1 i+1 vg n+1 i 1. 2 x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 23

Numerical limit Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Micro equation is discretized as v xρ x vg ω n+1 k = e t/ε2 ωk n {}}{{}}{ ε(1 e t/ε2 ) α n k + βk n. When ε 0, βk n = O(ε) thus ωn+1 k = εα n k +O(ε2 ) and vg n+1 i = ε v 2 n i }{{} x ρ n i +O(ε 2 ). 1/3 Np Injecting in the macro equation ρ n+1 i = ρ n i t ε x vg n+1 i gives ρ n+1 i = ρ n i + t 3 xxρ n i, = we recover a discretization of the limit equation (4). A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 24

"Maneuver" Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Use this idea to implicit the diffusion term. v xρ x vg Write ω n+1 k = e t/ε2 ωk n ε(1 {}}{{}}{ e t/ε2 ) α n k + βk n. Let h n i := e t/ε2 g n i ε(1 e t/ε2 ) x vg and approximate vg n+1 i = ε(1 e t/ε2 ) 1 3 xρ n i + h n i. Inject it in the macro equation and take the diffusion term implicit ρ n+1 i = ρ n i + t(1 e t/ε2 ) 1 3 xxρ n+1 i t ε xhi n. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 25

AP property Problem and objectives PIC method Finite volumes scheme Properties Second-order in time For fixed ε > 0, the scheme is a first-order (in time) approximation of the reformulated micro-macro system, for fixed t > 0, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (4) = AP property. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 26

PIC method Finite volumes scheme Properties Second-order in time Second-order scheme in time: new reformulation When integrating in time t (e t/ε2 g) = et/ε2 ε F(ρ,g), use a midpoint method for the right-hand side g n+1 = e t/ε2 g n te t/2ε2 F ε ( ρ n+1/2,g n+1/2) +O ( t 3). Make appear a discrete time derivative g n+1 g n = e t/ε2 1 ( g n e t/2ε2 F ρ n+1/2,g n+1/2) +O ( t 2). t t ε Perform Taylor expansions at t n+1/2 ( t g n+1/2 = e t/ε2 1 g n+1/2 t ) t 2 tg n+1/2 ( e t/2ε2 F ρ n+1/2,g n+1/2) +O ( t 2). ε A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 27

PIC method Finite volumes scheme Properties Second-order in time New second-order micro-macro system: t ρ+ 1 ε x vg = 0, t g = 2 t e t/ε2 1 e t/ε2 + 1 g 2 e t/2ε2 ε e t/ε2 + 1 [v xρ+v x g x vg ]. Time scheme: RK2 g n+1/2 =g n + e t/ε2 1 e t/ε2 + 1 gn t ε ρ n+1/2 =ρ n t 2ε x vg n+1/2, g n+1 =g n + 2 e t/ε2 1 e t/ε2 + 1 ρ n+1 =ρ n t ε x vg n+1/2. Prediction step on t/2: e t/2ε2 e t/ε2 + 1 F (ρn,g n ), Correction step on t: g 2 t ε e t/2ε2 ( e t/ε2 + 1 F ρ n+1/2,g n+1/2), A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 28

PIC method Finite volumes scheme Properties Second-order in time ρ n+1 i Choice of g in order to have a second-order scheme in time and the right asymptotic limit: g = gn +g n+1 2. Do not "maneuver", but correct the macro equation: = ρ n i t ε x vg n+1/2 i + t(1 e t/ε2 ) 21 3 xx( ρn+1 i 2 +ρ n i ). Same PIC/FV discretization in space as for the first-order scheme. Use only B-splines of order l 1 for depositions and interpolations. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 29

Properties Problem and objectives PIC method Finite volumes scheme Properties Second-order in time For fixed ε > 0, the scheme is a second-order (in time) approximation of the reformulated micro-macro system, for fixed t > 0, the scheme degenerates into an implicit second-order (in time) scheme of the diffusion equation (4) = AP property. The scheme can be (and has been) extended to the Vlasov-BGK-Poisson case. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 30

ETR case Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1+cos ( 2π ( x + 1 )), x [0,1],v [ 1,1]. 2 Micro-macro initializations: ( ( ρ(x,t = 0) = 1+cos 2π x + 1 )) 2 and g(x,v,t = 0) = 0. Density ρ(x,t) = 1 2 1 1 f(x,v,t)dv. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 31

Asymptotic behaviour ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 64, N p = 10 4, t = 10 3 (left), T = 0.1, N x = 64, ε = 10 6, t = 10 2 (right). Density ρ 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 ETR, AP property Limit ε=10-6 ε=10-2 ε=0.25 ε=1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x Density ρ 1.3 1.2 1.1 1 0.9 0.8 ETR, limit Limit ε=10-6, Np=10 4 ε=10-6, Np=100 0.7 0 0.2 0.4 0.6 0.8 1 1.2 x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 32

Convergence Problem and objectives ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 16, N p = 100. Error on ρ in L norm 10 0 10-1 10-2 10-3 10-4 ETR, convergence (1) 10-5 ε=1 10-6 ε=0.5 10-7 ε=0.1 ε=10-6 10-8 Slope 2 10-9 10-4 10-3 t 10-2 10-1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 33

Landau damping Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) and g(x,v,t = 0) = 0. Parameters: α = 0.05, k = 0.5. Electrical energy E(t) = E(t,x) 2 dx. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 34

ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 5, t = 0.1. log(e) 0-2 -4-6 -8-10 Landau damping, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid -18 0 50 100 150 200 250 300 εt log(e) 0-5 -10-15 -20 Landau damping, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 35

ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = 0.01. 5 Landau damping, ε=0.5 0 log(e) -5-10 -15 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -20-25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 36

ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = 0.001 (left), N x = 128, N p = 100, t = 0.01 (right). 0 Landau damping, ε=0.1 0 Landau damping, ε=10-4 -5-5 log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit -20-20 -25 0 5 10 15 20 25 30 t -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 37

Two stream instability ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = v2 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) g (x,v,t = 0) = 1 ( v 2 1 ) ) exp ( v2 (1+α cos(kx)). 2π 2 Parameters: α = 0.05, k = 0.5. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 38

ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 6, t = 0.1 (left), N x = 128, N p = 10 5, t = 0.1 (right). log(e) 0-2 -4-6 -8-10 TSI, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid -18 0 50 100 150 200 250 300 εt log(e) 0-5 -10-15 -20 TSI, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 39

ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = 0.01. 5 TSI, ε=0.5 0 log(e) -5-10 -15 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -20-25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 40

ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = 0.001 (left), N x = 128, N p = 100, t = 0.01 (right). 0 TSI, ε=0.1 0 TSI, ε=10-4 -5-5 log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit -20-20 -25 0 5 10 15 20 25 30 t -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 41

Convergence Problem and objectives ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 16, N p = 100. Error on ρ in L norm 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 Landau damping, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope 2 10-11 10-4 10-3 10-2 10-1 t Error on ρ in L norm 10-2 10-4 10-6 10-8 10-10 TSI, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope 2 10-4 10-3 10-2 10-1 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 42

Conclusions Problem and objectives ETR case Vlasov-BGK-Poisson cases Diffusion (resp. drift-diffusion) limit recovered when ε 0. AP scheme. g 0 when ε 0 = few particles are sufficient at the limit, whereas grid methods have a constant cost, whatever the value of ε. Noise due to PIC method reduced (because only on g) = at equivalent results, fewer particles are necessary. Computational cost reduced at the limit. Second-order in time. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 43

Future works Problem and objectives ETR case Vlasov-BGK-Poisson cases Monte-Carlo method for adapting the number of particles automatically. Models where ε = ε(x). Extension to a Vlasov-BGK-Maxwell model: 1D in x / 2D in v.... A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 44

References Problem and objectives ETR case Vlasov-BGK-Poisson cases [4] S. Jin: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, J. Sci. Comput. 21, pp. 441-454 (1999). [5] M. Lemou, L. Mieussens: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, J. Sci. Comp. 31, pp. 334-368 (2008). [6] T.-P. Liu, S.-H. Yu: Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles, Comm. Math. Phys. 246 pp. 133-179 (2004). [7] N. Crouseilles, M. Lemou: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, KRM 4, pp. 441-477 (2011). [8] M. Lemou:, Relaxed micro-macro schemes for kinetic equations, Comptes Rendus Mathématique 348, pp. 455-460, (2010). [9] P. Degond, G. Dimarco, L. Pareschi: The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids 67, pp. 189-213 (2011). [10] A. C., N. Crouseilles, M. Lemou: Micro-macro decomposition for Vlasov-BGK equation using particles, Kinetic and Related Models 5, pp. 787-816, (2012). Thank you for your attention! A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 45