Algorithmique pour l analyse et la modélisation en géométrie discrète

Similar documents
Mathematical Morphology and Distance Transforms

Convergence of binomial-based derivative estimation for C 2 noisy discretized curves

Multivalued functions in digital topology

Monomial transformations of the projective space

A Bibliography of Publications of Luc Brun

Check boxes of Edited Copy of Sp Topics (was 217-pilot)

CS 372: Computational Geometry Lecture 14 Geometric Approximation Algorithms

Functions and Equations

Discrete Applied Mathematics. Weighted distances based on neighborhood sequences for point-lattices

Integer Linear Programs

Voronoi Diagrams for Oriented Spheres

Theoretical Computer Science

Check boxes of Edited Copy of Sp Topics (was 261-pilot)

Chord properties of digital straight line segments

Characterization of bijective digitized rotations on the hexagonal grid

Binomial Convolutions and Derivatives Estimation from Noisy Discretizations

Alternative Methods for Obtaining. Optimization Bounds. AFOSR Program Review, April Carnegie Mellon University. Grant FA

Reading Mathematical Expressions & Arithmetic Operations Expression Reads Note

10/22/16. 1 Math HL - Santowski SKILLS REVIEW. Lesson 15 Graphs of Rational Functions. Lesson Objectives. (A) Rational Functions

The Class of Simple Cube-Curves Whose MLPs Cannot Have Vertices at Grid Points

CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

Continuous extension in topological digital spaces

Chapter 2 Formulas and Definitions:

4/12/2011. Chapter 8. NP and Computational Intractability. Directed Hamiltonian Cycle. Traveling Salesman Problem. Directed Hamiltonian Cycle

Chapter 8B - Trigonometric Functions (the first part)

Algorithms for Calculating Statistical Properties on Moving Points

Sample. An Incremental Development. John H. Saxon, Jr. Third Edition. Used by Permission SAXON PUBLISHERS, INC.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

Parent Guide. Number System. Diocese of Cleveland

The Orchid School Weekly Syllabus Overview Std : XI Subject : Math. Expected Learning Objective Activities/ FAs Planned Remark

A note on the computation of the fraction of smallest denominator in between two irreducible fractions

Calculus Course Description and Philosophy

Solving an integrated Job-Shop problem with human resource constraints

Intersecting curves (variation on an observation of Maxim Kontsevich) by Étienne GHYS

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

Lecture 18: March 15

Accessible Topic - Topics accessible to visually impaired students using a screen reader.

Decision Diagram Relaxations for Integer Programming

Computational Intractability 2010/4/15. Lecture 2

1.1 GRAPHS AND LINEAR FUNCTIONS

Linear and Integer Optimization (V3C1/F4C1)

Analysis of California Mathematics standards to Common Core standards Algebra I

arxiv:math/ v1 [math.co] 3 Sep 2000

A Class of Star-Algebras for Point-Based Qualitative Reasoning in Two- Dimensional Space

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

(δ, ε)-ball approximation of a shape: definition and complexity

Check boxes of Edited Copy of Sp Topics (was 145 for pilot) Beginning Algebra, 3rd Ed. [open all close all] Course Readiness and

Math 164-1: Optimization Instructor: Alpár R. Mészáros

Pre Algebra and Introductory Algebra

A Library of Functions

Algorithms for Picture Analysis. Lecture 07: Metrics. Axioms of a Metric

Global optimization, polynomial optimization, polynomial system solving, real

Eighth Grade Algebra I Mathematics

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

Solutions 2016 AB Exam

Algebraic Complexity Theory

Columbus City Schools High School CCSS Mathematics III - High School PARRC Model Content Frameworks Mathematics - Core Standards And Math Practices

Brownian surfaces. Grégory Miermont based on ongoing joint work with Jérémie Bettinelli. UMPA, École Normale Supérieure de Lyon

Preliminaries and Complexity Theory

MATHEMATICS SYLLABUS SECONDARY 6th YEAR

Math Level 2. Mathematics Level 2

Approximating the Minimum Closest Pair Distance and Nearest Neighbor Distances of Linearly Moving Points

MATH 162 R E V I E W F I N A L E X A M FALL 2016

Better restore the recto side of a document with an estimation of the verso side: Markov model and inference with graph cuts

CS 301: Complexity of Algorithms (Term I 2008) Alex Tiskin Harald Räcke. Hamiltonian Cycle. 8.5 Sequencing Problems. Directed Hamiltonian Cycle

Fly Cheaply: On the Minimum Fuel Consumption Problem

Mathematics (6-8) Graduation Standards and Essential Outcomes

Algebra Vocabulary. abscissa

Lesson 5b Solving Quadratic Equations

Finiteness properties for Pisot S-adic tilings

Geometric optimization and sums of algebraic functions

CG Basics 1 of 10. Mathematical Foundations: Vectors, Matrices, & Parametric Equations

Math 120, Sample Final Fall 2015

Machine Learning 4771

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

A grid model for the design, coordination and dimensional optimization in architecture

Computing the Diameter of a Point Set

MATH Spring 2010 Topics per Section

Lecture 22. m n c (k) i,j x i x j = c (k) k=1

A note on parallel and alternating time

A2 HW Imaginary Numbers

Basic Math. Curriculum (358 topics additional topics)

On Newton-Raphson iteration for multiplicative inverses modulo prime powers

PreCalculus. Curriculum (447 topics additional topics)

March Algebra 2 Question 1. March Algebra 2 Question 1

Completely Independent Spanning Trees in Some Regular Graphs

A Correlation of. Pearson Integrated CME Project. to the. Common Core State Standards for Mathematics - High School PARRC Model Content Frameworks

Discrete Geometry. Problem 1. Austin Mohr. April 26, 2012

Separating Simple Domino Parity Inequalities

1 Radon, Helly and Carathéodory theorems

Approximation Basics

West Windsor-Plainsboro Regional School District Algebra Grade 8

Weighted distance transforms generalized to modules and their computation on point lattices

College Algebra Notes

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

A Simple Proof of Optimal Epsilon Nets

Design and Analysis of Algorithms

SMSU Mathematics Course Content

Hardware Operator for Simultaneous Sine and Cosine Evaluation

Polynomial and Rational Functions. Chapter 3

Transcription:

5 décembre 2007 Algorithmique pour l analyse et la modélisation en géométrie discrète David Coeurjolly Laboratoire d InfoRmatique en Image et Systèmes d information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université Lumière Lyon 2/Ecole Centrale de Lyon INSA de Lyon, bâtiment J. Verne 20, Avenue Albert Einstein - 69622 Villeurbanne cedex http://liris.cnrs.fr

Short Bio and Educational Activities Education Since December 2003 CHARGÉ DE RECHERCHE CNRS, Laboratoire LIRIS, UMR 5205. Sept. 2003 - Dec. 2003 ATTACHÉ TEMPORAIRE D ENSEIGNEMENT ET DE RECHERCHE à l Institut National des Sciences Appliquées de Lyon (INSA), laboratoire de rattachement LIRIS UMR 5205. March 2003 - June 2003 POST DOCTORAT, Laboratoire LIS, Université Joseph Fourier, Grenoble Sept. 2000 - Dec. 2002 DOCTORAT D UNIVERSITÉ, Spécialité Informatique, Université Lumière Lyon 2 Sept. 1997 - Sept. 2000 MAGISTÈRE INFORMATIQUE ET MODÉLISATION, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1 Sept. 1995 - Sept. 1997 DEUG MIAS, Université Claude Bernard Lyon 1 Lectures Filière Matière Type Vol. 07 08 Master 1ere année, UCBL Responsable UE TER - - 06 07 Master 2ième année, UCBL Cours de spécialité recherche TD 6h 05 06 Master 2ième année, UCBL Cours de spécialité recherche CM 10h 3ième année école d ingénieurs Cours de spécialité recherche CM 8h IEG, Grenoble 04 05 Master 2ième année, UCBL Cours de spécialité recherche CM 10h 3ième année école d ingénieurs IEG, Grenoble Cours de spécialité recherche CM 8h 03 03 ATER (demi-poste) département Programmation C++ TP 80h informatique, INSA, Lyon 00 03 Moniteur à l Institut de la Communication, Lyon2 - TD 192h David Coeurjolly 2 / 48

Scientific Responsibilities International Chair of the Technical Committee 18 Discrete Geometry, IAPR (06-08) Co-General Chair of the 14th International Conference on Discrete Geometry for Computer Imagery Reviewer for several international journals and conferences National Organizer and co-organizer of several meetings (JIG 2006, Working Group Géométrie Discrète ) Chair of the ACI Jeunes Chercheurs GeoDiGit Member of the ANR GeoDiB Local Member of the Conseil Scientifique, Université Claude Bernard Lyon 1 Member of the CSES 26-27-61, Université Lumière Lyon 2 David Coeurjolly 3 / 48

Discrete Geometry in one slide Analysis of geometrical problems on objects defined on regular grids [Eric Andres 95] David Coeurjolly 4 / 48

Motivations Pragmatic approach (data driven) Data produced by acquisition devices which consider an underlying grid (CDD, Scanner, Scanner+T,... ) Modeling of numerical problems on grids/integer numbers [BERNOUILLI, ROSENFELD,... ] Arithmetization Constructive approach (model driven) Construction from scratch of a geometry based on integer numbers e.g. Theory based on the Non-Standard Analysis [HARTONG, REEB, REVEILLES,... ] Modeling [Météo-France/ESRF] Complete Geometrical Paradigm (objects, axioms, ALGORITHMS,... ) well-adapted to image analysis David Coeurjolly 5 / 48

Motivations Pragmatic approach (data driven) Data produced by acquisition devices which consider an underlying grid (CDD, Scanner, Scanner+T,... ) Modeling of numerical problems on grids/integer numbers [BERNOUILLI, ROSENFELD,... ] Arithmetization Constructive approach (model driven) Construction from scratch of a geometry based on integer numbers e.g. Theory based on the Non-Standard Analysis [HARTONG, REEB, REVEILLES,... ] Modeling [Météo-France/ESRF] Complete Geometrical Paradigm (objects, axioms, ALGORITHMS,... ) well-adapted to image analysis David Coeurjolly 5 / 48

Discrete Geometry Model [Continuous world] Discrete Analytic Models Grid definitions, digitization schemes, fundamental algebraic and arithmetic facts,... Fundamental Objects and Properties Points, straight lines, planes, simplexes, circles, intersection, parallelism,... Objects Analysis/Modeling Feature extraction, distance transformation,... Loss-less Model Conversion Reversible reconstruction with linear structures, volumic encoding with unions of balls,... [Polygons, Meshes, Poly-ball structures] ALGORITHMIC POINT OF VIEW David Coeurjolly 6 / 48

Discrete Geometry Model [Continuous world] Discrete Analytic Models Grid definitions, digitization schemes, fundamental algebraic and arithmetic facts,... Fundamental Objects and Properties Points, straight lines, planes, simplexes, circles, intersection, parallelism,... Objects Analysis/Modeling Feature extraction, distance transformation,... Loss-less Model Conversion Reversible reconstruction with linear structures, volumic encoding with unions of balls,... [Polygons, Meshes, Poly-ball structures] ALGORITHMIC POINT OF VIEW David Coeurjolly 6 / 48

Contribution Overview Discrete Analytic Models Supercover & Interval Arithmetic, Irregular isothetic grid formulation Fundamental Objects and Properties Computational analysis of fundamental object recognition algorithms Objects Analysis/Modeling Separable techniques for the EDT and REDT problems Loss-less Model Conversion MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction David Coeurjolly 7 / 48

Contribution Overview Discrete Analytic Models Supercover & Interval Arithmetic, Irregular isothetic grid formulation Fundamental Objects and Properties Computational analysis of fundamental object recognition algorithms Objects Analysis/Modeling Separable techniques for the EDT and REDT problems Loss-less Model Conversion MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction David Coeurjolly 8 / 48

Regular Grids and Basic Topological Principles Mapping on Z 2 Easy access to neighbors (1) adjacency (0) adjacency (r) path r {0, 1} (r) curve one (0) object but two (1)-objects (1)-curve but only a (0) path David Coeurjolly 9 / 48

The Irregular Isothetic Model Main idea Relax the constraints on the size and on the center position of isothetic cells lx = λ ly = µ p = (λi, µj) avec (i, j) Z 2 E D H lx = p Z 2 ly = 1 I lx = ly Règles de regroupement ou de fusion A Q Règles de subdivision S Cellule de niveau k : p = ( m l = 1 2 k, n 2k) avec 1 m, n < k 2 k - Contraintes + Subdivision grids Adaptive grids QuadTree decomposition based grids Elongated grids... ACI GEODIGIT Objective: Design uniform definitions (e.g. Straight lines) and algorithms ANTOINE VACAVANT, PhD (defence: Dec. 2008) David Coeurjolly 10 / 48

Classical Digitization Schemes and Analytic Models Grid-point based approaches Cell based approaches GAUSS digitization, GIQ, BBQ,... Supercover, Standard model,... David Coeurjolly 11 / 48

Classical Digitization Schemes and Analytic Models Grid-point based approaches Cell based approaches GAUSS digitization, GIQ, BBQ,... { Supercover, Standard model,... } Analytic Models David Coeurjolly 11 / 48

Discrete Analytic Models: Supercover Model Def. S(F) = {X Z d B(X) F } = {X Z d d (X, F) 1 2 } = (F M) Z d Properties S(F G) = S(F) S(G), S(F) = [ p F S(p), S(F G) S(F) S(G), if F G then S(F) S(G). David Coeurjolly 12 / 48

Discrete Analytic Models - Examples Supercover Closed Naive Model Pythagorician Supercover Generalization to I grids [DGCI 2005, Computer & Graphics 2005] David Coeurjolly 13 / 48

Interval Arithmetic Elements = Intervals x X = [x, x] such that x = x and x = x are representable numbers, e.g. I Z+ 1 2 Examples and arithmetic operations on I Z+ 1 2 3.144546 [2 + 1 2, 3 + 1 2 ] [2 + 1 2, 3 + 1 2 ] [0 + 1 2, 4 + 1 2 ] = [2 + 1 2, 8 + 1 2 ]... Fundamental principle = Inclusion Let f : R R, and f : I I the interval function (extension) associated to f. For all x X, f should be such that : f (x) = y y f (X) David Coeurjolly 14 / 48

Interval Arithmetic and Supercover Model Interval Arithmetic & Supercover: same ideas Uncertainty on the underlying Euclidean object position We propagate the uncertainty through the construction/computation Main result on I Z+ 1 2 S(f ) [ k Z[K f (K)] strict equality if f is optimal f (x) = 1 3 x f (x) = 10 sin(x) exp x2 /50 3.5 3 2.5 2 1.5 1 0.5 0 Intervalles 1/3.0*x 0.5 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 Intervalles 10.0*sin(x)*exp( x*x/50.0) 10.5 15.5 14.5 13.5 12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.50.5 1.52.53.54.55.56.57.58.59.510.511.512.513.514.5 David Coeurjolly 15 / 48

Conclusion Contributions Supercover: Cell/curve intersection B(X) F Metric definition d (X, F) 1 2 Morphological definition (F M) Z d Algebraic definition Interval Arithmetic based interpretation of the Supercover Model (or conversely ;)) Applications: Certified digitization of complex functions (e.g. implicit functions with the help of an Interval Arithmetic Solver) Novel approach to model image transformations (certified transformations) David Coeurjolly 16 / 48

Contribution Overview Discrete Analytic Models Supercover & Interval Arithmetic, Irregular isothetic grid formulation Fundamental Objects and Properties Computational analysis of fundamental object recognition algorithms Objects Analysis/Modeling Separable techniques for the EDT and REDT problems Loss-less Model Conversion MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction David Coeurjolly 17 / 48

Definitions Pragmatic approach Digitization of the Euclidean object Constructive approach Model Driven definition Example DSS = the result of the BRESENHAM s drawing algorithm Example DSS = set of grid point solution a discrete resolution of y = a Objects are usually identical but the representation choice matter when you derive properties David Coeurjolly 18 / 48

Recognition Problem Statement Given a set of grid-point S, is S a piece of <yourfavoriteobjecthere>? Answer Types Binary answer: Yes/No A valid parametrization of <yourfavoriteobjecthere> (if applicable) The set of parameters of all valid <yourfavoriteobjecthere> Preimage e.g.: DSS 1 0.8 S S β 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 α David Coeurjolly 19 / 48

Recognition Problem Statement Given a set of grid-point S, is S a piece of <yourfavoriteobjecthere>? Answer Types Binary answer: Yes/No A valid parametrization of <yourfavoriteobjecthere> (if applicable) The set of parameters of all valid <yourfavoriteobjecthere> Preimage Goals Exploit discrete object properties to design fast recognition algorithms David Coeurjolly 19 / 48

What kind of Properties? Related to discrete mathematics Arithmetic, Number Theory, Theory of words, Patterns, Lattice Polytopes e.g. DSS Euclidean Straight line with rational slope (r [0, 1]) Finite possible intercepts with vertical lines The sequence of intercepts is periodic Periodic patterns in the DSS and arithmetical properties of DSS parameters Efficient algorithms David Coeurjolly 20 / 48

Toolbox: Computational Geometry, Linear Programming, Arithmetic,... Arithmetic Euclid s division algorithm O(log (min( a, b ))) Computation Geometry Convex hull and Integer Convex Hull Linear Programming and Integer LP Solve a linear system: 8 >< >: a 11x 1 + a 12x 2 +... + a 1nx n b 1 a 21x 1 + a 22x 2 +... + a 2nx n b 2... a m1x 1 + a m2x 2 +... + a mnx n b m max cx Ax b x {R n, Z n } LP: O(m) (n fixed) ILP: NP-hard David Coeurjolly 21 / 48

Focus: Integer Convex Hull / Lattice Polytopes Consider an object included in a N d window or with volume (Vol P) (P not empty)) in 2-D f 1(N) = 12 (4π 2 ) 1/3 N2/3 + O(N 1/3 log(n)) General Formula f k denotes the number of k facets of CH(P) f k c n(vol P) n 1 n+1 Important trick to design tight computation costs [DAM 2005, IWCIA 2006] David Coeurjolly 22 / 48

Example of the approach Problem Digital Disk Recognition Solution in C&G Separability of two sets S and T by an circle O( S + T ) Brute-force approach O(n 2 ) Arithmetic approach Integer Convex Hull + BEZOUT S points O(n 2/3 log n) [DAM 2004,IWCIA 2001] David Coeurjolly 23 / 48

Digital Plane and Hyperplane Recognition Main problem Asymptotic computational analysis Experimental Analysis Contributions Use lattice polytope properties to obtain tight asymptotic bounds Preimage based recognition algorithms Convex hull width based recognition algorithms... David Coeurjolly 24 / 48

Contribution Overview Discrete Analytic Models Supercover & Interval Arithmetic, Irregular isothetic grid formulation Fundamental Objects and Properties Computational analysis of fundamental object recognition algorithms Objects Analysis/Modeling Separable techniques for the EDT and REDT problems Loss-less Model Conversion MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction David Coeurjolly 25 / 48

Problem Description Objectives Extract metric information from discrete objects Many applications: Shape description Motion planning Image synthesis... First step of the Medial Axis Extraction Distance Euclidean: vector displacement, square of the EDT isotropic but complex algorithms Chamfer: mask based approximation of the Euclidean metric fast algorithms but anisotropic Contribution Fast algorithms for the error-free Euclidean metric David Coeurjolly 26 / 48

Definitions Distance Transformation Definition Label each object grid point with the distance to the closest background point Reverse Distance Transformation Definition Given a set of discs, reconstruct the shape 2 0 0 0 0 1 2 1 4 1 0 2 3 0 3 4 2 3 0 0 1 1 0 0 0 2 3 2 0 0 0 David Coeurjolly 27 / 48

Uniform problem and Uniform Algorithmic Tool E 2 DT s(q) = min{d 2 euc (p, q)} p X s(q)= min {(x i) 2 + (y j) 2 } p(x,y) X g(i, j) = min x { (i x) 2 } h(i, j) = min y { g(i, y) + (j y) 2 } REDT Disc MA: {(x m, y m, r (xm,ym) }: X = {(i, j) X = {(i, j) m, (i x m) 2 + (j y m) 2 < r xmym } max (xm,ym) MA {rxmym (i xm)2 (j y m) 2 } > 0} g(i, j) = max{f (x, j) (x i) 2 } x h(i, j) = max{ g(i, y) (j y) 2 } y David Coeurjolly 28 / 48

Uniform problem and Uniform Algorithmic Tool E 2 DT s(q) = min{d 2 euc (p, q)} p X s(q)= min {(x i) 2 + (y j) 2 } p(x,y) X g(i, j) = min x { (i x) 2 } h(i, j) = min y { g(i, y) + (j y) 2 } REDT Disc MA: {(x m, y m, r (xm,ym) }: X = {(i, j) X = {(i, j) m, (i x m) 2 + (j y m) 2 < r xmym } max (xm,ym) MA {rxmym (i xm)2 (j y m) 2 } > 0} g(i, j) = max{f (x, j) (x i) 2 } x h(i, j) = max{ g(i, y) (j y) 2 } y David Coeurjolly 28 / 48

Uniform problem and Uniform Algorithmic Tool E 2 DT s(q) = min{d 2 euc (p, q)} p X s(q)= min {(x i) 2 + (y j) 2 } p(x,y) X g(i, j) = min x { (i x) 2 } h(i, j) = min y { g(i, y) + (j y) 2 } REDT Disc MA: {(x m, y m, r (xm,ym) }: X = {(i, j) X = {(i, j) m, (i x m) 2 + (j y m) 2 < r xmym } max (xm,ym) MA {rxmym (i xm)2 (j y m) 2 } > 0} g(i, j) = max{f (x, j) (x i) 2 } x h(i, j) = max{ g(i, y) (j y) 2 } y David Coeurjolly 28 / 48

Uniform problem and Uniform Algorithmic Tool E 2 DT s(q) = min{d 2 euc (p, q)} p X s(q)= min {(x i) 2 + (y j) 2 } p(x,y) X g(i, j) = min x { (i x) 2 } h(i, j) = min y { g(i, y) + (j y) 2 } REDT Disc MA: {(x m, y m, r (xm,ym) }: X = {(i, j) X = {(i, j) m, (i x m) 2 + (j y m) 2 < r xmym } max (xm,ym) MA {rxmym (i xm)2 (j y m) 2 } > 0} g(i, j) = max{f (x, j) (x i) 2 } x h(i, j) = max{ g(i, y) (j y) 2 } y David Coeurjolly 28 / 48

Uniform problem and Uniform Algorithmic Tool E 2 DT s(q) = min{d 2 euc (p, q)} p X s(q)= min {(x i) 2 + (y j) 2 } p(x,y) X g(i, j) = min x { (i x) 2 } h(i, j) = min y { g(i, y) + (j y) 2 } REDT Disc MA: {(x m, y m, r (xm,ym) }: X = {(i, j) X = {(i, j) m, (i x m) 2 + (j y m) 2 < r xmym } max (xm,ym) MA {rxmym (i xm)2 (j y m) 2 } > 0} g(i, j) = max{f (x, j) (x i) 2 } x h(i, j) = max{ g(i, y) (j y) 2 } y 4SDT 6 4SDT 6 2 2 j i David Coeurjolly 28 / 48

Uniform problem and Uniform Algorithmic Tool (bis) To sum up: Separable 1D processes (dimension by dimension) Straightforward generalization to higher dimensions On each 1D slice: Upper/Lower Envelope Computation O(n) (stack based technique) Optimal in time algorithms O(n d ) [DGCI 2002, IEEE PAMI 2007] 1 2 3 4 5 6 1 4 5 2 1 2 5 4 3 2 1 1 1 2 4 4 1 1 1 2 3 2 1 1 1 1 2 1 2 1 1 2 3 1 1 1 2 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 2 0 1 0 0 4 0 0 1 0 0 3 4 3 0 1 0 0 3 4 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 2 0 0 3 2 1 0 2 0 1 0 0 0 David Coeurjolly 29 / 48

David Coeurjolly [Image& Vision Computing 2007] 30 / 48 Preliminaries Discrete Models Fundamental Objects EDT, REDT Model Conversion Related Research Activities Conclusion & Future works Variation on the Theme (1): The Discrete Voronoi Diagram Contribution Separable algorithm to compute the complete Discrete Voronoi mapping O(n c)

Variation on the Theme (2): Toric Spaces Toric domain Contribution Take benefits from the separability: Process each column/row independently For each row, extract a break point b and we use i + b modulo N indices 2 1 1 1 1 1 1 1 2 1 David Coeurjolly 31 / 48

Variation on the Theme (2): Toric Spaces Overall process for the EDT 1 2 3 3 2 1 2 3 3 2 1 1 1 2 3 2 1 2 1 1 2 3 1 1 2 1 1 2 1 1 4 4 1 1 1 1 1 2 1 1 1 1 2 1 David Coeurjolly 32 / 48

Variation on the Theme (2): Toric Spaces 2-D EDT example (+MA extraction) 3-D REDT example David Coeurjolly 32 / 48

Conclusion Optimal separable techniques for the: Euclidean Distance Transformation Reverse Euclidean Distance Transformation Complete Discrete Voronoi Diagram mapping (Coming next) Discrete Euclidean Medial Axis Extraction on: d dimensional Images d dimensional Toric Images David Coeurjolly 33 / 48

Contribution Overview Discrete Analytic Models Supercover & Interval Arithmetic, Irregular isothetic grid formulation Fundamental Objects and Properties Computational analysis of fundamental object recognition algorithms Objects Analysis/Modeling Separable techniques for the EDT and REDT problems Loss-less Model Conversion MA extraction algorithms and NP-completeness of the Minimal MA, Reversible reconstruction on irregular grids, Reversible surface reconstruction David Coeurjolly 34 / 48

Medial Axis Definition Maximal ball: an open ball B X is maximal in X if for all included open balls B : B B X = B = B. Medial Axis: denoted AM(X), set of maximal ball centers in X Many applications Shape description/matching Image synthesis... David Coeurjolly 35 / 48

Discrete Medial Axis Reformulation Discrete domain, discrete metric and discrete balls Extracted from the E 2 DT E 2 DT disks included in the shape with maximal radii 1 1 1 2 1 1 1 1 2 1 1 1 1 1 4 1 1 2 4 1 1 1 1 1 1 1 David Coeurjolly 36 / 48

Separability rocks... Idea 1-D process 4SDT 6 2 s[q] Start with all disks obtained during the EDT Mark upper envelope parabola apex and propagate labeling through dimensions Maximal disks Upper envelope of elliptic paraboloids i t[q] F 0 0 1 2 4 0 0 G 0 0 1 3 4 3 0 REDT 0 0 1 1 1 1 0 h B(x, y) = r 2 (x i) 2 (y j) 2 David Coeurjolly 37 / 48

Examples... David Coeurjolly 38 / 48

DMA Minimality Statement of the problem subsets of the MA may describe the same object Two problems 1 Find the Minimum Discrete Medial Axis (min. in number of disks) 2 Find a subset of the DMA with less that k balls that covers the entire object (k MIN) Contribution Problem 2 is NP-complete and thus Problem 1 is NP-hard David Coeurjolly 39 / 48

DMA Minimality Statement of the problem subsets of the MA may describe the same object Two problems 1 Find the Minimum Discrete Medial Axis (min. in number of disks) 2 Find a subset of the DMA with less that k balls that covers the entire object (k MIN) Contribution Problem 2 is NP-complete and thus Problem 1 is NP-hard David Coeurjolly 39 / 48

NP-completeness proof: PLANAR-4-3-SAT reduction Overview φ = (x 1 x 3 x 4) ( x 1 x 2 x 5) (x 1 x 3 x 4) x 1 x 2 C 1 x 1 x 2 C 2 x 3 C 1 x5 C 3 C 2 x 3 C 3 x 4 x 5 x 4 Instance of PLANAR-4-3-SAT Discrete Orthogonal Embedding Discrete Object X Key-points Polynomial reduction of ALL PLANAR-4-3-SAT instances into a subset of k MIN instances An algorithm able to solve k MIN should also solve PLANAR-4-3-SAT David Coeurjolly 40 / 48

Conclusion Main result The Minimum Discrete Medial Axis is NP-hard Future Works and Open Questions Complete the proof for other metrics (Chamfer,... ) Is the problem still NP-complete on hole-free discrete objects? David Coeurjolly 41 / 48

What s next? Next Step: Approximation heuristics with bounds (if possible) Object F = AMD(X) ˆF BORGEFORS ET AL. ˆF Greedy (with bound!) 104 56 (-46%) [<0.01s] 66 (-36%) [< 0.01s] 1292 795 (-38%) [0.1s] 820 (-36%) [0.19s] 17238 6177 (-64%) [48.53s] 6553 (-62%) [57.79s] David Coeurjolly 42 / 48

Reversible Reconstruction with linear structures Objective Reconstruct a reversible polygonal (resp. polyhedral) object from a discrete object Intensive use of digital straight lines and digital plane recognition algorithms 2-D 3-D Topological and Geometrical dynamic reconstruction in the Irregular Isothetic Model Application to Interval Arithmetic solver reconstruction Topologically correct polyhedral reconstruction based on MC simplification David Coeurjolly 43 / 48

2D/3D Shape Description Context: SEMANTIC-3D Objective: 3D-Objects indexing and retrieval from 2D and 3D queries JULIEN RICARD (PhD), defence 12/2005. Advised in coordination with ATTILA BASKURT (Pr - LIRIS) Main Contributions Generalization of the MPEG-7 Angular Radial Transform Fourier based 2D/3D matching Analytic computation of volumic integrals on a 3D mesh (geometrical moments, Fourier Transform,... ) [PRL-2005, ICPR, ICIP] David Coeurjolly 44 / 48

Conclusion Algorithmic solution to discrete shape analysis and modeling From many fields: Arithmetic / Number theory Computational Geometry Complexity Analysis Topics Model Definitions Fundamental Object Recognition EDT, REDT, RDMA,... Reversible reconstruction Two-way Cooperation C&G Algorithms to solve Discrete Geometry problems Use Discrete Geometry specificities to tune classical C&G algorithms David Coeurjolly 45 / 48

Collaborations [EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS] Discrete Analytic Models [L. TOUGNE] [A. VACAVANT] [L. ZERARGA] Fundamental Objects and Properties [R. KLETTE] [V. BRIMKOV] [J.-M. CHASSERY] [F. FESCHET] [Y. GÉRARD] [J.-P. REVEILLÈS] [L. TOUGNE] [I. SIVIGNON] [A. VACAVANT] Loss-less Model Conversion Objects Analysis/Modeling [R. KLETTE] [S. SVENSSON] [J.-B. BRZOSKA] [M. COUPRIE] [E. THIEL] [R. ZROUR] [F. DUPONT] [I. SIVIGNON] [L. TOUGNE] [S. MIGUET] [J. RICARD] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] [E. ANDRES] [J.-M. CHASSERY] [J. HULIN] [A. MONTANVERT] [F. DUPONT] [I. SIVIGNON] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] RNRT SEMANTIC-3D co-encadrement J. RICARD ACI GeoDiGit 2005-2007 (Responsable) ANR GeoDiB 2006-2010 (Membre) LORIA, LABRI, LAIC, LIRIS David Coeurjolly 46 / 48

Collaborations [EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS] Discrete Analytic Models [L. TOUGNE] [A. VACAVANT] [L. ZERARGA] Fundamental Objects and Properties [R. KLETTE] [V. BRIMKOV] [J.-M. CHASSERY] [F. FESCHET] [Y. GÉRARD] [J.-P. REVEILLÈS] [L. TOUGNE] [I. SIVIGNON] [A. VACAVANT] Loss-less Model Conversion Objects Analysis/Modeling [R. KLETTE] [S. SVENSSON] [J.-B. BRZOSKA] [M. COUPRIE] [E. THIEL] [R. ZROUR] [F. DUPONT] [I. SIVIGNON] [L. TOUGNE] [S. MIGUET] [J. RICARD] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] [E. ANDRES] [J.-M. CHASSERY] [J. HULIN] [A. MONTANVERT] [F. DUPONT] [I. SIVIGNON] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] RNRT SEMANTIC-3D co-encadrement J. RICARD ACI GeoDiGit 2005-2007 (Responsable) ANR GeoDiB 2006-2010 (Membre) LORIA, LABRI, LAIC, LIRIS David Coeurjolly 46 / 48

Collaborations [EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS] Discrete Analytic Models [L. TOUGNE] [A. VACAVANT] [L. ZERARGA] Fundamental Objects and Properties [R. KLETTE] [V. BRIMKOV] [J.-M. CHASSERY] [F. FESCHET] [Y. GÉRARD] [J.-P. REVEILLÈS] [L. TOUGNE] [I. SIVIGNON] [A. VACAVANT] Loss-less Model Conversion Objects Analysis/Modeling [R. KLETTE] [S. SVENSSON] [J.-B. BRZOSKA] [M. COUPRIE] [E. THIEL] [R. ZROUR] [F. DUPONT] [I. SIVIGNON] [L. TOUGNE] [S. MIGUET] [J. RICARD] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] [E. ANDRES] [J.-M. CHASSERY] [J. HULIN] [A. MONTANVERT] [F. DUPONT] [I. SIVIGNON] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] RNRT SEMANTIC-3D co-encadrement J. RICARD ACI GeoDiGit 2005-2007 (Responsable) ANR GeoDiB 2006-2010 (Membre) LORIA, LABRI, LAIC, LIRIS David Coeurjolly 46 / 48

Collaborations [EXTERNAL] [INTERNAL] [PHD STUDENTS] [MASTER STUDENTS] Discrete Analytic Models [L. TOUGNE] [A. VACAVANT] [L. ZERARGA] Fundamental Objects and Properties [R. KLETTE] [V. BRIMKOV] [J.-M. CHASSERY] [F. FESCHET] [Y. GÉRARD] [J.-P. REVEILLÈS] [L. TOUGNE] [I. SIVIGNON] [A. VACAVANT] Loss-less Model Conversion Objects Analysis/Modeling [R. KLETTE] [S. SVENSSON] [J.-B. BRZOSKA] [M. COUPRIE] [E. THIEL] [R. ZROUR] [F. DUPONT] [I. SIVIGNON] [L. TOUGNE] [S. MIGUET] [J. RICARD] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] [E. ANDRES] [J.-M. CHASSERY] [J. HULIN] [A. MONTANVERT] [F. DUPONT] [I. SIVIGNON] [A. VACAVANT] [C. CHEVARIER] [L. JOSPIN] RNRT SEMANTIC-3D co-encadrement J. RICARD ACI GeoDiGit 2005-2007 (Responsable) ANR GeoDiB 2006-2010 (Membre) LORIA, LABRI, LAIC, LIRIS David Coeurjolly 46 / 48

Future Works Discrete Analytic Models Theoretical framework: Non-Standard Analysis, Constructive maths,... Continue the interaction analysis between IA and the discrete model [SIC-Poitiers, LMA-La Rochelle] Fundamental Objects and Properties Uncertainty and noise integration in definitions and algorithms [ANR GeoDiB (2006-2010)] Objects Analysis/Modeling GPU based Discrete Object Volumic Analysis [Internal] Loss-less Model Conversion Parallel discrete contours reconstruction with combinatorial maps [G. DAMIAND] THE DIGITAL SPHERE TREE David Coeurjolly 47 / 48

THE DIGITAL SPHERE TREE Objectives: Hierarchical/Multiresolution Discrete Medial Axis Multiresolution of the underlying grid Multiresolution and hierarchical sphere structures Sphere-Tree Trade-Off: Structure compactness & approximation Many developments and applications in geometric processing [G. BRADSHAW AND C. O SULLIVAN] Intermediate Steps Power (LAGUERRE) diagram First sphere structure (flat graph) could be extracted from the Discrete Power Diagram Better comprehension of interactions between Power diagram and Discrete Medial Axis... 30 25 20 15 10 5 0 5 10 10 8 6 4 2 0 0 2 4 6 8 10 30 25 20 15 10 5 0 5 10 Interactions C&G, Discrete Geometry David Coeurjolly 48 / 48

Appendix Convex hulls Objects Computational cost References Points 2D O(m log m) GRAHAM Points 2D O(mh) JARVIS Points 2D O(m log h) CHAN Points 3D O(m log h) CHAN Points dd O(m log m + m n/2 ) CHAZELLE Chaîne simple 2D O(m) incrémental O(1) MELKMAN Chaîne simple 2D O(m) dynamique O(1) BUZER Courbe discrète O(m) VOSS Objet discret convexe X O(h log δ(x)) HAR-PELED Back David Coeurjolly 49 / 48

Appendix IA Operators Arithmetic operators X Y = [ x + y, x + y ] X Y = [ x y, x y ] X Y = [min ( x y, x y, x y, x y ), max ( x y, x y, x y, x y )]... David Coeurjolly 50 / 48

Appendix Interval Arithmetic Analysis Example Example on I F Arithmetic intervals f(x) 1 0.8 0.6 f (x) = (x + 1)(x 1) on [ 1, 1] f (X) = (X [1, 1]) (X [1, 1]) 0.4 0.2 0-1 -0.5 0 0.5 1 Optimality of an extension f X I, Y f (X) such that x X, f (x) Y David Coeurjolly 51 / 48

Appendix Variation on the Theme (1): The Discrete Voronoi Diagram Voronoi Diagrams Given a set of sites S = {s i} in R 2, the Voronoi diagram is a decomposition of the plane into cells C = {c i} (one cell c i R 2 per site s i) such that each point p in the (open) cell c i, we have d(p, s i) < d(p, s j) for i j. DT and Voronoi Diagrams DT Voronoi Diagram of background grid points DT algorithms Discrete Voronoi Diagram mapping Association of each grid point to its associated cell s i Difficulties to handle equidistant background points (when Voronoi diagram edges/vertices intersect Z d points) David Coeurjolly 52 / 48

Appendix Variation on the Theme (1): The Discrete Voronoi Diagram Ideas Propagate parabola apex indices and detect when two parabolas intersect at an integer coordinate position a a A a b b B b c c C c c c c k K k k l l L l d d d d D d d E e e e f f f F g g g G g g g 4 1 4 1 9 0 SEDT 16 SEDT 16 12 12 8 8 4 4 1 2 3 4 5 6 7 8 j 1 2 3 4 5 6 7 8 j David Coeurjolly 53 / 48

Appendix Geometrical interpretation of a PLANAR-4-3-SAT instance Variable Eight slots to encode the uses of the variable in a PLANAR-4-3-SAT formula Two minimal decomposition with d E balls (72 balls) one protrudes out only at even slots True one protrudes out only at odd slots False Constant size 1 2 1 2 8 8 Wires Clauses David Coeurjolly 54 / 48

Appendix Geometrical interpretation of a PLANAR-4-3-SAT instance Variable Wires Transmission of the Truth assignment signals from variables to clauses Wires can be bent without changing the signal Extremities of the wires are placed on a 6 6 sub-grid Size independent to the signal value Clauses David Coeurjolly 54 / 48

Appendix Geometrical interpretation of a PLANAR-4-3-SAT instance Variable Wires Clauses Input: three wires 10 balls required to cover the shape if all signals are False and 9 otherwise Constant size David Coeurjolly 54 / 48

Appendix Geometrical interpretation of a PLANAR-4-3-SAT instance Variable Wires x 1 x 2 C 2 C 1 x 1 x 2 x 3 C 1 x5 C 3 C 2 x 3 C 3 x 4 x 5 Clauses x 4 Putting all together φ Planarity + Discrete Orthogonal Embedding + sub-grid alignments (1) connected discrete object such that there is no intersection between wires, variables and clauses Object size polynomial in the φ size [Details skipped... ] The Minimum Medial Axis problem is NP-complete David Coeurjolly 54 / 48

Appendix Committee GUNILLA BORGEFORS (Rapporteur), Pr, CBA, Uppsala Universitet, Suède ACHILLE BRAQUELAIRE (Rapporteur), Pr, LaBRI, Université Bordeaux 1 HENRI MAITRE (Rapporteur), Pr, LTCI, ENST Paris ANNICK MONTANVERT (Examinateur), Pr, GIPSA-Lab, Université Pierre Mendès-France, Grenoble OLIVIER DEVILLERS (Examinateur), DR INRIA, Sophia-Antipolis BERNARD PÉROCHE (Examinateur), Pr, LIRIS, Université Lyon 1 David Coeurjolly 55 / 48