\-. [)fe-~ LDO ~ (puct)

Similar documents
Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

A L A BA M A L A W R E V IE W

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Time Response Analysis (Part II)

Lecture 7:Time Response Pole-Zero Maps Influence of Poles and Zeros Higher Order Systems and Pole Dominance Criterion

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

APPH 4200 Physics of Fluids

< < or a. * or c w u. "* \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * *

APPLICATIONS FOR ROBOTICS

Second Order and Higher Order Systems

ECE 4213/5213 Test 1. SHOW ALL OF YOUR WORK for maximum partial credit! GOOD LUCK!

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

P a g e 5 1 of R e p o r t P B 4 / 0 9

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain

necessita d'interrogare il cielo

is: 3o>« P 6 Jsgg E 2 si O j= o ocq O o & s r 3 O O K O r " CD r cd as c 3 ^th ^ "OU a 5 " c ?.53 drag S.S pqc O r OT3 4J o >> o.- X h 5 c o o C C :_

Tausend Und Eine Nacht

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

Mathematics Extension 1

PHYS 232 QUIZ minutes.

T h e C S E T I P r o j e c t

to", \~~!' LSI'r-=- 5 b H 2-l

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

AECD-3260 PILE TRANSFER FUNCTIONS. _Mai. By " Joseph P. Franz. July 18, Westinghouse Atomic Power Division UWIXMT!OISTA!

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

z E z *" I»! HI UJ LU Q t i G < Q UJ > UJ >- C/J o> o C/) X X UJ 5 UJ 0) te : < C/) < 2 H CD O O) </> UJ Ü QC < 4* P? K ll I I <% "fei 'Q f

Control Systems, Lecture04

> DC < D CO LU > Z> CJ LU

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Physics 122 Exam #1 Spring 2015

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

DIAMOND DRILL RECORD

K E L LY T H O M P S O N

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Control Systems. Laplace domain analysis

& Ö IN 4> * o»'s S <«

Oi ir\ o CM CM ! * - CM T. c *" H - VO - a CM - t - T - j. Vv VO r t- CO on *- t- «- - ** <* - CM CM CM b- f - on on. on CM CVJ t - o.

l [ L&U DOK. SENTER Denne rapport tilhører Returneres etter bruk Dokument: Arkiv: Arkivstykke/Ref: ARKAS OO.S Merknad: CP0205V Plassering:

Chapter 6: The Laplace Transform. Chih-Wei Liu

Housing Market Monitor

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

FOR TESTING THill POWER PLANT STANLEY STEAM AUTOMOBILE SOME TESTS MADE WITH IT. A Thesis surmitted to the

Flow. Digital IWU. Illinois Wesleyan University. Tommy Bravos Illinois Wesleyan University. Recommended Citation

THE WORLD BANK GROUP ARCHIVES PUBLIC DISCLOSURE AUTHORIZED

n

SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

o ri fr \ jr~ ^: *^ vlj o^ f?: ** s;: 2 * i i H-: 2 ~ " ^ o ^ * n 9 C"r * ^, ' 1 ^5' , > ^ t g- S T ^ r. L o n * * S* * w 3 ** ~ 4O O.

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

MPM 2D Final Exam Prep 2, June b) Y = 2(x + 1)2-18. ~..: 2. (xl- 1:'}")( t J') -' ( B. vi::: 2 ~ 1-'+ 4 1<. -t-:2 -( 6! '.

Pledged_----=-+ ---'l\...--m~\r----

b. e> nsjfitmjs - cne> Nursing Services Center, Faculty of Nursing Chiang Mai University. njauynfaa phuapmiu e'linaula* ftvnflwtivlvm ofooo

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class


LABORATORY INSTRUCTION MANUAL CONTROL SYSTEM I LAB EE 593

I N A C O M P L E X W O R L D

EE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models

Physics 7A Lecture 2 Fall 2014 Final Solutions. December 22, 2014

Accumulated provision for depreciation and amortization. cs fl

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Dr. Ian R. Manchester

Lab # 4 Time Response Analysis

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

Chapter 6: The Laplace Transform 6.3 Step Functions and

Score: Fall 2009 Name Row 80. C(t) = 30te- O. 04t

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

Pg #11-13, 15, 17, 18, AND Pg # 3-5, 12-15, 19, 20, 25, 27

Mv3" L7-- Art L 31. am rt. ao - M rr. a cn. art O' N. t00. to o( C7 c O. Ort. n ' C ( a ( W 0. z D0) Ln rni 90 O H N rt 0. to0) O mx rt N. W n.

Beginning and Ending Cash and Investment Balances for the month of January 2016


-74- Chapter 6 Simulation Results. 6.1 Simulation Results by Applying UGV theories for USV

Performance of Feedback Control Systems

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

Control Systems. System response. L. Lanari

.Sua. 8f fc"g. II f 8. *1 w. a -a M +» * <N H Q. o * H CO. * o M < a «* n 55 ti 55 «55 «55 Pi. u < < M C C * Ztf fc tf fctf tf tf ISO.

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Poles, Zeros and System Response

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

EEE 184: Introduction to feedback systems

Time Response of Systems

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

p r * < & *'& ' 6 y S & S f \ ) <» d «~ * c t U * p c ^ 6 *

EXAM 2, MATH 132 WEDNESDAY, OCTOBER 23, 2002

Problem 4.4 Derive the ramp response by nding the particular and homogeneous solutions of the ordinary di. equation.

Helping Kids Prepare For Life (253)

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

. Choose 4 out of 5 problems. Use an X in the table below to indicate which problem to

Basic Procedures for Common Problems

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

I I. R E L A T E D W O R K

MA 266 Review Topics - Exam # 2 (updated)

o V fc rt* rh '.L i.p -Z :. -* & , -. \, _ * / r s* / / ' J / X - -

s(\y'+- -Y;/ o o- UN9 EHF fri "rii I lt iil# trd= llllll r-rrl a_ / r_*{fr d3= ffffi0" n6 _ n'n.tr ff== ooh cn lu 22.Jtu<. P Qfo -_L -T d ;u \, a c

Transcription:

t Co A) \" (2.() L-- ~ C-H tv Y($ U I:!""S \-. [)fe-~ LDO ~ (puct) f) f re-aj vs e---b UJ1,\1-+ s I' e-pp /L M~")Il (U 2 ( C:1-C~e=-D-,-em P {tp c.vq _ 0~lj 1 Feec -t> A--cX:..- (J2),u 'HU>L - ~ DS\ u> i?0 3 ;1DMTLvt" AND C)~,)~L. UN/~L ft~~-)tg - c,o f'j I~ L fa yz.a-tv\t:; "\ en.s L}fA-10 9 F A c:..tk:>-(l D \ f'l q \b tl'-l evi:tj{~ L k 0 A-..D \J;\yL, " 1"10 JJ -- Mb P-e-l- ~ Pr~f:;() c.o r.j 1\2..D ~ " U ry\p AIlE' 'R t-s'polj>e"' ~ ~ Pet- tll-lt:="" P lct/wv A-J...JD t4 P Ju.t r i'a ({l.a.m~ TerL..c '1-~M.fL.c w\ PFl..Y u' e p- p\ott)tva\ic. 0 A (N c..~f'jt~l-- Jf'-I RjtDrD - IJ f clw\4-l ~rjr/~ G (p z..~"1) ~V(r2-l>t- tv opttmt-te L~~/ML/~s J A- (J&F" (L~LI:- (Jr+p2..;9-h\.~/7=rL- [;JH \ LE fv'\~t7 tv9 LA /VS T12 ()-/ A",,-s L. e.. p,,0 0 )NP un Ttr/ff" ~(m/~ tr'" 7'Pe-e-D ()p' rvw leba) ~l-nl- L~(r1t'T'bfti.:>;J o c 5u fvl-'-{ VOl-TIt<j c- ~ P1rW~ '/tfio ~~ t;,

~~~ s: &/-mass. 11+-1f--r- VVL-<l (-0 e: ~t. (J [f) ce-: ~~ A--Pf~(~ l1-=f S cujij D trl2-4j t:~ Y f IE-;l~.z:-~(L J v!r It (UrJL }N ~.---. ------,..., e. e-~(,)~..it -S;) i_iti- \ ~VV(_ ' ylb (0 1L::(' ( \ t-s 1M... L--- ~ --- '-------~-- - ------- '" 5)~+ Ct+AKM~ --- ~~.Ys ~m It 1""t\"Y~# f(p t:=- ~ +- Tt~Kp A ~~ ~~~------------~--- ~[f 1M. 'i- CI+AtJ.\ ~)J+ A K'" ~ r- A~fr~ -.. ---.

T [s)::. Xp W",L :Lz Lor." (I + 4~~ A., ) ---1: (I + A ~ /(1It)/fH1... FrS> rl n+l??- A) f) o-(lf) ell s'1s ~fvl }(J'-U~DeR.O~~ i L(L,)T'L4-L-~y PrA-/Vj7~. 6(L ~ t({?l DA-M;et;> '- 1> If=--/ 5 '2. t- 2...) wj1-~i- W", 1.,..: D S''l.:' -2.5 W n ~ ~ll-~wij)l -4LN'JA'~?- ::::. - ~ u.9 f\:!: wh- ~,'l...... \ f;:,/ fl4j/~f)~ 5 ~I CQMf~ f >I ru..t J "1L~wt

!.!~),S rf?'p.s /' 5~1?". 1-1...L - f WJ1 1:- ( If) -:: - f3 e 5:1/'? p /»1'1 t-1-f7) #~fi-~; e~+dn-'(~), -1'::-y, t '5 wn ~ c,u ~\) e- S.r-"R ""-lall) eos 0 F f & sec~ r:o.. tf,c ufo {~LA f:t.ef2-j l~,a~!!>- :~ ~,.c Y' -r-vvt. F! 15) ::: t;)~<-s'j - G(,5) 0.) JNOl~">{1,J9 ~J CV~~ J \N c..(lfit-! r5. f-ua b~ P~fN9 b) ItJ~~fN~ y?b~ In 01'0 Ft!1:OGA--ct::. ~p t>rul~~ <i. q 13, l:j.j tt I 3. 10) l{,"3,j1 J 4, 3" '7 ~/51rs ~ IS) ~ t<f E(5) i- S K/~ E (s) -I- ~.1 f.(.!j A-c tua-ne.5 s~/ua-ll~ edts):... ~ ~N.f'tlJNI Lsre= IN-pur) S J@U) ([ ~J Y'v\C+l-.. ~p lbe/.,- 19Li')] ~ r J;.t- T ~5) ~d - B{;I;-!.i it \( P ( r- q I ~ q ) L~ rut,("(2 t::..p - ~ A-~ r'ee. ~~>e'j J?~ CG-/;p 1<1.>(F 9,~.i&) LA.J2.t.;t:1L /co - SL.-&W'> ~e-~ptuuje IF K.f) ~(hi)'- C. ft.j TI c 14- L DAM-fIUj k.p\:'2.0 ~ U:) i~ (""cui#- S JAY';.

-';.' 122 System Responses Chapter 4 The inverse Laplace transform is not derived here (see Problem 4.8); however, assuming for the moment that the poles of G(s) are complex, the result is I -Coo (. (A e c(t) = I- ~e - sm "'(Ont + ) (4-20) where p = Jl- S2 and e = tan-i (~/S). In this response, 1: = 1IS(On is the time constant of the exponentially damped sinusoid in seconds (we can usually ignore this term after approximately four time constants). Also, l3(on is the frequency of the damped sinusoid. We wish now to show typical step responses for a second-order system. The step response given by (4-20) is a function of both S and (On' Ifwe specify S, we still cannot plot c(t) without specifying (On- To simplify the plots, we give c(t) for a specified S as a function of (Ont. A family of such curves for various values of S is very useful and is given in Figure 4.4 for 0 ~ S ~ 2. Note that for 0 < S < 1, the response is a damped sinusoid. For S = 0, the sinusoid is undamped, or of sustained amplitude. For S 2: 1, the oscillations have ceased. It is apparent from (4-20) that for S < 0, the response grows without limit. We consider only the case that I;; 2: 0 in this chapter. A MATLAB program that calculates some of the step responses of Figure 4.4 is given by zeta = [0.2 0.5 1 2), for k = 1:4 G =tf ([1),[1 2*zeta(k) I); step(g) hold on end hold off The two poles of the transfer function G(s) in (4-18) occur at s = -~(On±jro,.~ For I;; > 1, these poles are real and unequal, and the damped sinusoid portion of c(t) is replaced by the weighted sum of two exponential functions; that is, (4-21 ) where 1:1 = l/ (S (On + (OnJr/ -1 ), 1:2 = 11(I;;(On-(OnJl;;2 - I ) are the two system time constants. For S = I, the poles of G(s) are real and equal, so that cet) = l+kle-li1+k2te-llt,1:= I/<.On For 0 < 1;; < 1, the system is said to be underdamped, and for 1;; = 0 it is said to be undamped. For I;; = I, the system is said to be critically damped, and for I;; > 1, the system is overdamped. For a linear time-invariant system, C(s) = G(s)R(s) For the case that r(t) is a unit impulse function, R(s) = I and e(t) = -I[G(S)] = get) (4-22) (4-23) where g (t) is the unit impulse response, or weighting function, of a system with the transfer function G(s). Then, by the convolution integral (see Appendix B), for a general '1'- t ma,#t

'''-' Section 4.2 Time Response of Second-order Systems 123 c(t) 2.0-1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 I I, ~ 0 2 4 6 10 12 wnt Figure 4.4 Step response for second-order system (4-20). input r(t), eel) = {g("t)r(t - or) dt (4-24) from (4-22). [In (4-24), or is the variable of integration and is not related to the time constant.] Hence, all response information for a general input is contained in the impulse response g(t). Recall also from Section 4.1 that an initial condition on a first-order system can be modeled as an impulse function input. While the initial condition excitation of higher-order systems cannot be modeled as simply as that of the first-order system, the impulse response of any system does give an indication of the nature of the initial-condition response, and thus the transient response, of the system. The unit-impulse response of the second-order system (4-18) is given in Figure 4.5. This figure is a plot of the function c(t) = -I( ffi~ ) = ffine-{w.lsin/3ffinl = get) (4-25) s2 + 2i;ffi n S + ffi~ f3 Compare Figure 4.4 with Figure 4.5 and note the similarity of the information. In fact, the unit impulse response of a system is the derivative of the unit step response (see Problem 4.9). The impulse response of the second-order system can also be considered to be the response to certain initial conditions, with r(t) = 0 (see Problem 4.9). of

'Ib~t \fv\.;0 jl) tl V &4 ~ ~ ~:r-g\. 1- L0 L"=-)!E I/VbTP ~l ~I~LL \J CV'\...~ ~ 2-4:: V r4-~ W'- ::: {(CJ.AM,.":: 1-i /l ~ 2. ~L( /l. II!>.., _~ T~t- a.jr- WMCYj- W~!)- Cl0 Tit ~- ( JI"- 1-J '-) e + i:?;> W L-t:) t-1f. I F 8.-\A..e.wJ-.::o V tla W\ V ~l--v\. 'e. W L'f:) t:f ~ 0- \{t?"":::"'" "'2- <.t v 'C- 3crV" -3./. 8 ~LD v{r~m Do --r-e rl 1. ~ u? N\4ll -r::..o SLU""'}